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Abstract. We investigate the control problem of the optimal choice
of idle server (if any) for arriving customer in order to minimize
the mean system time (waiting time + service time). The considered
MAP/MAP/N queue consists of a common infinite buffer and multi-
ple identical servers with MAP service processes whose phases (internal
states) are known. Customers arrive according to a MAP (whose phase
is also known) and are served with work conserving policy. Idle servers
preserve their phases.

We transform the obtained infinite state optimization problem to a finite
state one and apply two optimization procedures, policy iteration of finite
state MDP and linear programming.

Keywords: Markov arrival process, Markov decision process, MAP/MAP/N
queue.

1 Introduction

Suboptimal control of multi-server systems may result in lower utilisation and,
consequently, higher system time, therefore finding the optimal control scheme
in these systems may be critical. Different types of queueing systems have been
analysed from the point of view of optimal control. Earlier works typically con-
sider Poisson arrival process and exponential service time, see e.g. [11] for a
survey. The work dealing with problems closest to our topic is probably that
of Efrosinin [5], which analyses several types of queueing systems including the
MAP/PH/K/B-K structure. Efrosinin uses Markov decision processes (MDPs)
to investigate various multi-server systems with a common finite queue and inde-
pendent service times. In our work we consider an infinite queue with correlated
arrival and service times, characterised by Markov arrival processes (MAPs).
The direct Markov chain description of the infinite queueing system contains
infinite states, for which the classical MDP and linear programming (LP) solution
techniques cannot be applied. With the use of the matrix analytic methodology,
however, we have derived two finite state formalizations of the optimization prob-
lem which can be used to find the optimal policy of the infinite system employing
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finite MDP solvers and LP, respectively. According to [6], the finite MDP for-
malization of the problem ensures that a pure stationary optimal control policy
exists. The LP formalization is an alternative description of the optimization
problem which is more efficient in certain cases.

The rest of the paper is organised as follows. In Section 2 we present the
necessary theoretical background on MAPs and MDPs. In Section 3 we provide
the matrix analytic description of the MAP/MAP/N system. Based on this
description we give the finite state MDP model and the LP description of the
problem in Section 4 and 5. Section 6 presents some numerical results, finally
Section 7 concludes the paper.

2 Background

In the following we will use the form M to denote matrices without and Mj
with an index. For their elements in position (¢, j) we will use notations M, ;
and My, ; respectively. Furthermore we will use 1 to denote a column vector
of 1s and e; to denote a column vector for which ei; = di,j, where d; ; is the
Kronecker delta.

2.1 Markov arrival processes

The standard description of a MAP is given using the square matrix pair
(Do, D1), where Do+ D is the infinitesimal generator of the background CTMC
[8]. Dg describes state transitions without arrival and D7 with an arrival. The

average arrival intensity of a MAP is u = m, where v is the solution of

the system of linear equation v ((—DO)_1D1 — I) =0and vl =1.

2.2 Markov Decision Processes

Definition 1 Let us consider a process X (k) on a discrete time Markov chain
with state space S, a set of decisions A, a set of transition probability matrices
P ={Pq, a € A} such that Py; ; = Pr(X(k+1) = j|X(k) = i,ax = a), Vi,j €
S,a€ A, k€N and a set of cost functions C = {C,(s), a € A, s € S}. We
say that the tuple (S, A, P,C) is a Markov decision process.

MDPs are powerful tools for optimal control of Markovian systems [11]. The
previous definition stands only for discrete time homogeneous MDPs and can be
generalised to continuous time and heterogeneous cases, but the above definition
is sufficient in the current discussion. We also note that S can be finite or infinite,
however the common algorithms are only applicable for the finite case.

Any function 7(s) that assigns an a € A to every s € S is called a strategy.
The standard problem of MDPs is to find an optimal strategy, i.e. a w(s)* that
minimizes a given objective function. The objective function used in this paper
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is the average cost per step in steady state, thus the optimal policy is

k
Tt = :ﬂxrg:{;nlnE,r hm 0o Z: rx i) (X ()] (1)
or equivalently
T = arg mlnz r(8)Cr(s)(8), (2)
seS

where a(s) is the steady state probability of being in state s for policy .

The previous description stands for pure strategies (i.e. we always make the
same decision in a state with 1 probability). In general a convex combination of
pure strategies (called mixed strategies) can be considered as well, however, as
shown in [6], there always exists a pure strategy that gives the optimum for the
average cost per step problem.

3 Infinite state description of the queueing system

The service processes of the N servers of a MAP/MAP /N queue are stochastically
identical, but in the considered control problem apart of the pair of matrices
characterizing the MAP service process the phase of the individual servers are
also known and the available idle servers (if any) are distinguished based on this
information at customer arrival. The goal is to find the policy for assigning the
arriving customer with the optimal idle server.

The natural structured representation of the MDP characterizing the
MAP/MAP/N queue with this control option is presented below for N = 2.
Extension to more servers is quite straightforward, but would needlessly com-
plicate the description. We refer to the totality of states that have & customers
in the system as level k and denote state i of level k as (k, 7). Levels for which
the number of customers in the system is higher than the number of servers are
called regular the others are called irregular. Let the MAP describing the inter-
arrival times be of size n, and defined by (Ag, A1) and the MAP describing
the service times be of size n, and defined by (Sp, S1). We recall again that we
consider only work conserving schemes. Thus the MAP/MAP/2 queue can be
described as a continuous time Markov chain that has the standard structure of
a quasi birth-death (QBD) process [8] with infinitesimal generator

Ly Fo 0 ---
B, L F, 0 ---

0 B, L F 0O
Q=| ? e (3)
. 0 BLF -

where

Lo=Aq®I(n?), Fo=(A(A1®In?)| (I(n.)— A)(S1®I(n?)),
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and I(z) is the identity matrix of size x.

As the system is work conserving (i.e. servers can only be idle, if the queue
is empty), decisions have to be made at the arrival of a new customer on levels
1 =0,...,N — 2, that is, when 2 or more servers are empty at the time of an
arrival. For the considered N = 2 case this means only the Oth level. The specific
control here is determined by diagonal matrix A. Assuming that the size of the
arrival MAP is n, and the size of the service MAP is nys A has the following
special structure (for N=2):

pj,k,k:0-57 ifi:(j_l)*ng+(k_1)*ns+k;
Aii = Pkl ifi=G—-1*n2+(k—1)xns+1,
L=pjp,  ifi=G—1)*n2+ 10 —1)*ns+k,

where j = 1,...,n, and k,l = 1...,n,, with £ < [. Parameter p;; is the
probability, that we choose the first server if the MAP of the arrival is in phase
j, the MAP of the first server is in phase k, and the MAP of second server
is in phase [. From this 0 < pj; < 1. If both servers are in the same state
we choose both with the same 0.5 probability. Otherwise, the only constraint
is that p;x1 = 1 — p;,1,, for any given j, k, [ set. This constraint corresponds to
the assumption that the probability of choosing the server in phase k£ does not
depend on whether it is labeled first or second.
The steady state solution of the system is partitioned according to the levels
as o = (ag ag s .. ) . Due to the level independent behaviour of (3) for i > 2
we have
a; = azR™? (4a)

where R is the minimal non-negative solution of the quadratic matrix equation
(8]
0=F+ RL+ R’B.

Matrix R can be determined using efficient numerical methods [8]. Based on
(3) and using matrix R, the irregular part of the steady state distribution is the
solution of the linear system

Lo Fo 0
(dpoyaz) [ By Ly Fy =0, (4b)
0 B, L+RB
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with normalization condition
ool + a1l + s (I—R)fl]lzl. (4c)

Using the steady state distribution (4c), the mean number of customers in
the system can be expressed as

E(n) =) io;l=o1l+» icaR°1 (5)
=0 =2
—a;l1+2a;(I-R) '1+0asR(I—-R)*1,

and, applying Little’s law, the mean system time can be calculated as
T=—-" (6)

where )\ is the expected value of the inter-arrival time. Based on the connection
between T and E(n) it is clear that optimizing one is equivalent with optimiz-
ing the other. In the following we will use E(n) as objective function in the
optimization.

These equations can be easily extended for the N > 2 case. Doing so we get

N-1
E(n)= Y iol+Nany(I—-R)'l+ayR(I-R)’L (7)
i=1

Equation (5) and (6) is relatively simple, however in the expression of the
a; vectors terms including p;,il and (1 — pj )" will appear. This makes the
straightforward optimisation a non-linear problem.

4 Finite state MDP formalization of the problem

In this section we present a finite state MDP formalization of the queueing system
control problem. This formalization is based on the following observations:

— Decisions have to be made only on levels 0,..., N — 2.
— The objective function of the optimization is (7), which has a similar form
to the objective function of the MDP (2) and contains only «;, ¢ =1,... N.

Using these our goal is to make an MDP for which (2) (the objective function of
the MDP) is identical to (7) (the objective function of the optimization problem).
To achieve this we use the following method.

In the first step we apply the simple transformation: P = %Q +1I, where v =
nilz;x \Qi7j|, i.e., the absolute value of the element of @ with the largest absolute

value. This ensures that P is a valid DTMC transition matrix. Furthermore
a@ = 0 (where « is the steady state probability vector of Q), thus aP =
a%Q + ol = «a, consequently « is the steady state probability vector of the
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new DTMC as well. Note that this transformation is the same as the one used
in randomization [7]. It is easy to see that this DTMC defines the S, A, P sets
of an infinite state MDP, where decisions correspond to possible server choices
upon arrival. For example in the two server example: A = {1,2}, and if ¢ =
(j—1)*n2+ (k—1)xns+ 1, then pj; = 1 if 7(i) = 1 and pjj,; = 0 if
n(i) = 0, in other words Py is P with p;,; = 1, Vj,k,l and P, is P with
Diki =0, Vj,k,I. Note that the resulting DTMC is a discrete time QBD with
B, = %Bi, F,/ = %FZ and L; = %Li + I for all i, where M;’ denotes the
discrete time pair of the continuous time QBD’s M; matrix.

In the second step we change the infinite state regular part to a finite set of
states and transitions while keeping the steady state probabilities of the irregular
part unaffected. This step will be discussed in more detail shortly.

In the third step we assign the costs to the states based on objective function
of the original optimization problem (7). This assignment is fairly straightfor-
ward. The cost of state i of level k is

k, for k=0,1,...,N —1,
Cony={ e’ (NI-R) '+ RI-R) )1, for k=N, 8)
0, otherwise.

We would like to stress that the dynamic behaviour of the MDP, i.e., the
cost collected in a state of the MDP, does not have to be proportional to the
waiting time accumulated in the corresponding state of the CTMC. The only
important thing is that the irregular part of the MDP has the same steady state
probabilities as the irregular part of original CTMC. Consequently, using the
appropriate costs, the MDP has the same objective function - thus the same
optimum - as the original problem.

The main question of the above procedure is how to carry out step two, i.e.,
how to substitute the infinite state regular part of the DTMC so that the steady
state probabilities of the irregular part remain the same. For this we need to
introduce two new matrices, G and H. G; ; shows the probability that, starting
from (k,i), k > N we reach k — 1 and the first time this occurs we arrive in
(k—1,75), ie.,

Gij = Pr(t <oo, X(7) = (k—1,j)|X(0) = (k, 1)), (9)
where 7 is the time of the first arrival to level k—1. H; ; is the the expected time
(number of steps) of reaching level £k — 1 (k > N) if we start in (k,4) supposing
we arrive in phase (k — 1,7), multiplied by G; ;, i.e.,

Hij = E[rIx(n)=x-1.X(0) = (k, 1), (10)

where again 7 is the time of the first arrival to level k—1 and I is the indicator
function. It can be shown that G and H are the solutions of

B' + (L' -I)G+ F'G* =0 (11)



Optimal control scheme for MAP/MAP/N queues 7

and
G+ (L'-1)H+ F'GH + F'HG =0, (12)

respectively. Equation (11) can be solved numerically using efficient numerical
methods, while (12) is a Sylvester equation, which is linear in the elements of
H thus can be solved analytically if G is known. More details, including the
derivation of the equations and the applicable numerical procedures for (11) can
be found in [8].

Using G and H a finite state equivalent of the infinite QBD can be given.
The irregular part of the DTMC consists of the 0th to Nth level. These are left
unchanged during the transformation process. The regular part is substituted by
M? states, where M is the size of one level. The probability of the event that the
process, starting from (N, ) goes up to any phase of level N 41 in the next step
and reaches level N again in phase j for the first time (after possibly multiple
transitions on higher levels) is

M
bij =Y F'i1Gu;. (13)
k=1

Let the random variable 7; ; be 73 ; = (TIx (r)=(k—1,j)| X (0) = (k,7)) /G; ;. Note
that E[r; ;] = % For solving the optimization problem we only have to know

the steady state probabilities of states on the irregular levels, therefore we do not
need to distinguish states of the regular levels, thus we can modify the system the
following way. From level 0,..., N tolevel O,..., N transitions happen as before.
We substitute the regular part (levels N+1 and above) of the DTMC with a level
of M? states denoted by s, ;, 4,7 = 1,..., M. From state (NN, ) transition to state
si,; happens with b; ; probability. If the process reaches s; ; it transitions to (N, j)
after staying in s; ; for 7; ; time. This structure has the following interpretation.
The instant the process would enter the regular part of the DTMC we determine
the first state it arrives to upon first reaching the irregular part again. Instead
of moving on to a state of the regular part the process moves to an intermediate
state where it stays for the random time which is the same as the time needed in
the original DTMC to go back to level N conditional on the fact that it arrives
to state (IV,j). It is clear, that the substitution does not make a difference
from the irregular part’s point of view. This new structure, however, is not
Markovian as the distributions of transition times from s; ; are not memoryless.
Processes where transition probabilities are according to a transition matrix,
but transition times may have a general distribution are called semi-Markov
processes. For semi-Markov processes the steady state distribution depends only
on the expected value of the transition times. For proof see e.g. [3]. Thus, without
affecting the steady state probabilities of the irregular part we can change 7; ;

to the geometrically distributed 7; ; if E[7] ;] = E[; ;] = g” . This geometrical
V)

distribution can be achieved using a feedback in s; ; with probability ¢; ; and

transition to (IV,j) with probability 1 — ¢; j, where ¢; ; = }I‘IJ{;G” Now the

g
modified system is a DTMC and its irregular part has the same steady state
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probability distribution as the original CTMC. In the following we will denote the
transition matrix of this DTMC by P*. Matrix P* coupled with the previously
defined costs and actions form a finite state MDP that can be optimized using
standard methods (e.g. linear programming, value iteration, policy iteration) and
has the same optimal strategy and optimal cost as the original infinite continuous
time system.

Using the description of Section 3, the size of level 0,..., N is n,nY each,

while the size of level N 41 is (n,n2)? consequently the size of P* is Nn,nl +
(nenN)2. To improve the speed of the optimization this size has to be reduced,
which can be done using two methods. The first one is the reduction of the
original QBD, the second one is the reduction of the part used for substituting

the regular part of the QBD.

We will not discuss the first method in detail just present its basic idea. It
is easy to see, that the labelling of the servers is arbitrary, i.e., while in the
description in Section 3 the phase of every server is followed individually, it is
enough to keep track of the number of empty and busy servers at each point
(and the phase of the arrival process of course). Consequently the irregular levels
(where the buffer is empty) can be described using a set of 2ng + 1 numbers. The
first element of the set indicates the phase of the arrival and can be between 1
and ng, the next ng elements show the number of empty servers in each of the
service phases, the final n, elements show the number of occupied servers in each
of the service phases. As there are a total of IV servers, the sum of the last 2n
elements of the set is N. E.g. if the queueing system has three servers (N = 3),
the service process is described by a size 3 MAP and the arrival process by a
size 4 MAP, then (4/0,1,1]0,0,1) denotes the state where the arrival process is
in phase 4, there are two empty servers, one in phase 2 one in phase 3, and there
is one working server in phase 3. It can be easily seen that there are a total
of ng ((2]7\17)) different configurations for the set, where ((})) = (”ﬂffl) is the
k combination of n with repetition. Using the above idea a more efficient QBD
description can be constructed where each state of the irregular part corresponds
to a specific configuration of the set. This construction is done by combining
multiple equivalent states into one, which is called lumping and is a standard
method for state space reduction. The previously described method of making a
finite state MDP from the infinite QBD can still be applied without any changes.
Using the same thought process the finite state substitute of the regular part

can be reduced to (na ((7}\;)))2 states.

The second improvement can be made by realizing that there are a few
constraints that the regular part of the original CTMC and its substitute has
to satisfy. If these requirements are met, the size of the substituted part and
its exact structure are not important. These constraints come from a@) = 0,

N—1
S ;1 + an(I—R)"'1 = 1 and the general Markovian constraints of a

=0
CTMC. For simplicity’s sake we discuss the N = 2 case, from which the general
case can be easily derived. Let us consider the modified CTMC with generator
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Q that has the following structure

Ly Fy, 0 0O
A BlL1F10
Q= 0 B, L F*
0 0 B*L*

(14)

We have to keep the steady state probabilities of level 0, 1,2 the same, but
the new part can have a different o}, aj # a3 steady state probability vector.
First of all, from a*1 = al = 1 using az = as R we get

a3l =aR(I — R)™'1. (15)

From a@Q = 0 we have a1 Fy; + asL + a3B = 0 and from a*Q = 0 we have
o1 F1 + oo L 4+ a5 B* = 0. By subtracting these equations from each other and
using a; = as R"™2 we get

a3 B* = aaRB. (16)

Furthermore from a*Q =0 and QIL =0 we get

agF* + aiL* =0, (17)
(BoL + F*)1 =0, (18)
(B* + L*)1 = 0. (19)

Finally, we have the standard sign constraints, i.e. all elements of B*, L* F™*
are non-negative, except for the diagonal of L* which is strictly negative.

These constraints give a constrained linear equation system if we first tie aj.
We can assign values to aj randomly or e.g. make all the elements equal. This
system can be solved using linear programming if a solution does exist. In general
it is not guaranteed that a constrained linear equation system has a solution,
however the method presented previously in this section gives one where the size
of L* is M? x M? if M is the size of the last irregular level. Thus one possible
method is to start by trying to find a solution to the above equations with an
L* of size n xn, n =1 (the size of B* and F* are n x 1 and 1 x n respectively)
and increase the size until the system can be solved or n = M? is reached. After
this the optimization problem can be solved (after transforming the CTMC with
generator Q into a DTMC) using standard MDP methods.

5 Linear programming solution of the problem

In this section we give a method for solving the queueing system control opti-
mization problem using linear programming (LP). First we mention that linear
programming is one of the classical ways to optimize a finite state MDP. As
such, the last step of the optimization after the transformation of the infinite
state MDP to a finite state one could be using LP to find the optimal strategy.
In this section, however, we make use of the flexibility of LP to describe the
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problem without forming a finite MDP, although the description will be based
on the LP formalization of MDP optimization. Consequently we first present the
LP formalization of the general average cost MDP problem. We will follow the
same thought process as in [1] with different notations. After that we make the
necessary customization for the problem at hand.

Let us take an MDP with the previously introduced (S, A, P,C') notation,
but consider also mixed strategies. In case of a mixed strategy decision a € A is
made at state ¢ € S with probability u; q, i.e., u(i,a) = Pr(ay = a|X (k) = 1),
with > w(i,a) =1, Vi € S. The goal is to optimize u(i,a) for alli € S, a € A

a€A
according to the given objective function. Let us define U such that U;, =

u(i,a), Vi € S and a € A and P, such that Py, ; = > u(i,a)Py,; ;. Now
a€A
the objective function in (2) changes to > a(u); > U; 4Cq(?). From these the

€S a€A
optimization problem can be given in a form that is similar to the standard LP

form as
min Z o; Z Ui oCa(2),

€S acA
st. a(P,—I)=0,
Ul=1, (20)

where the variables are the elements of a and U. This problem is non-linear
because P,, depends on the elements of U, thus the products of the elements of
« and U appear in the constraints, however, it can be linearised by introducing
new variables x; o = o;u;,4. That is, x; , is the steady state probability that the
process is in state ¢ and decision a is made. Let us introduce matrix X with
Xia=2Tiq VieSandaec Aand denote its ith column by X, ;. Notice that
(X1)T = a. As such the optimization problem can now be defined as an LP as

min Z Z X;.aCal(1),

€S acA
st. Y X1, Pa— (X1)T =0,
a€A
2 Xia=1,
€S acA
Xio>0, Vies§, VaeA. (21)

Here X; ,P,; ; is the steady state probability that the process is in state 1,
decision a is made, and as a result the process transitions to state j.

As mentioned before, the above introduced LP could be used to solve the
finite state MDP of Section 3. Instead we make use of the fact that the LP opti-
mization is a general purpose tool unlike methods that are particularly developed
to solve MDPs, e.g. value and policy iteration. The MAP/MAP/N optimization
problem can be formalized using LP by noticing that equations (4b) and (4c)
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(more precisely their N server generalizations) are sufficient constraints to solve
the optimization problem. To be consistent with the previous discrete time de-
scription we use the discrete time counterpart of (4c), i.e., P = %Q + I just as
in Section 3. Thus, for the N = 2 case for example

a = (Oto o Olz) ) (22)
1 Lo Fp 0
P=—-|B; L F, +1I. (23)

7"\ 0 B,L +RB’

These can be substituted into (21). The only difference is in the last normaliza-
tion constraint. This changes to apl + @11 + aa (I — R)f1 1 =1 according to
(4c). Finally the cost vector is the same as in Section 3, thus, when the index of
the last state of level i is k;, the LP problem is

min Z Z XiaCali),

€S acA
sty XL, Pa—(X1)" =0,
acA
k1 k2 ko
Z Z Xia+ Z Z Z Xl — R)i_—lkl,j—kl =1,
i=1 acA i=k1+1j=ki+1acA
Xia>0, VieS, VaeA. (24)

As in the previous section P; and P can be obtained by using substitu-
tion pjxy; = 1 and p;x; = O respectively Vj,k,I. If, for a given ¢ € S and
a1, a2, a1 7 az we get u; 4, Ui q, > 0, then the optimization gives a mixed strat-
egy as optimum. In that case choosing either of the decisions with 1 probability
gives the same optimum. The significance of enabling mixed strategies is that
it makes the optimization an ordinary LP problem instead of the integer LP
problem that results from considering only pure strategies.

6 Numerical experiments

6.1 Computational complexity

The computational complexity of building up the QBD, finding its G and H
matrices and transforming the problem to finite state is negligible compared to
the one of the solution of the resulting MDP or LP problem, therefore we only
consider complexity of the solution the finite MDP and LP.

The complexity of the basic MDP solution methods is summarized in [9].
Let |S| be the number of states and |A| be the number of possible decisions. We
upper bound the number of decisions by |A| = ns, which means that there is
an empty server in every phase for all the states of the MDP. Policy iteration
has a complexity O(]S|?) per step and requires O(|A|) steps in the average case.



12 Andrés Mészaros, Miklés Telek

As seen in Section 4 [S| = nq ((*n°)) + (14 ((%)))2 - or less, if the substitute
of the regular part can be further reduced. The second term of the expression
is usually higher than the first one, for the computationally tractable cases the
difference is 0 — 2 orders of magnitude.

For the LP approach the number of variables is | X| = n, ((2]’\}5)) ng and the
number of constraints (from (24)) is n. = | X| 4+ nq ((2;\;5)) + 1. There is a vast
number of algorithms for solving LP problems. The simplest and most frequently
used are probably the simplex and the revised simplex methods. For the latter
the average computational cost is O(|X|?) (see e.g. [10]). Using more involved
methods this cost can be reduced. See [4] for example for a comprehensive sum-
mary.

In general the two methods have similar computational costs. The MDP
approach is better if the substitute of the regular part can be reduced, while
the LP approach is more efficient if this is not possible and a more involved LP
solver is used.

6.2 Numerical examples

M/MAP(2)/2 systems First we discuss the simplest interesting case, the
M/MAP(2)/2 queue, in which arrivals happen according to a Poisson process,
and the service is carried out by two servers that have the same order 2 MAP
service time. The first part of this segment is the reiteration of the results of the
corresponding section in [2].

In the M/MAP(2)/2 queue there is one simple question to be answered: If
both servers are idle, one of them is in phase 1 and the other one is in phase
2, which server has to process the next arriving customer to have a minimal
average system time? In other words, what is the optimal value of p; 2?7 It
seems natural, and from the first part of the paper we already know, that a pure
strategy is optimal, i.e., p1,1,2 is either 1 or 0. The intuitive answer is to choose
the server which can serve the customer faster. This means that we compare
the mean service time starting from phase 1 and phase 2, i.e., eilT(fSO)*I]l and
esT(—So) '1, and if the first expression is smaller, we choose the server in phase
1 (p1,1,2 = 1), otherwise the one in phase 2 (p1,1,2 =0).

This greedy decision can be motivated by the fact that we would like to serve
the customer as fast as possible to have an idle queue as soon as possible. For the
examined system, however, the numerical results show that the opposite choice
is better, i.e., it is better to choose the server which serves the customer slower.
This counter-intuitive result can be interpreted the following way. If we use the
faster server for the first customer, the probability of finishing the service before
a new arrival is high, as the mean service time of the faster state is smaller than
the mean inter-arrival time of a new customer. Upon service there is a chance
that the server moves to the slower state, leaving the system with two servers
in the phase with higher service time. In this state there is a higher chance
that more than 2 consecutive customers arrive before the first customer can be
served, which leads to a higher average system time. In other words, assigning the
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customer with the faster server leads to a more deteriorated state after service
completion, while assigning the customer with the server in the slower phase,
there is a chance that the server will move to the faster state upon service, thus
the state of the system improves. One can think of this effect as the repair of
the server at the cost of a slower service. Our extensive numerical investigations
suggest that choosing the server with higher service time is optimal for MAP(2)
servers regardless of their other characteristics and the intensity of arrivals.

A natural question to ask is what does the possible gain, i.e., the magnitude
of the difference between the worst and best strategies, depend on. In other
words, how can we characterize systems where the best strategy is significantly
better then the worst. In the following we denote by g, the absolute value of the
maximum gain, and by g, its ratio to the cost of the best strategy. That is, g, =

E.(n)—Ef(n), g, = %ﬁ;‘r(”), where E; (n) is the mean number of customers

for policy 7, and 7+ and 7~ are the optimal and worst strategy respectively.
According to our experiments, classic statistical measures of the service MAP
such as its autocorrelation or the moments of its marginal distribution cannot
be used to characterize the gain in the general case. This can be understood by
knowing that different MAPs can have the same exact statistical properties. We
have found that it is best to consider the following simple characteristics:

— The ratio of the mean arrival (\) and service rate (u (see Section 2.1 for
computation)), r; = % (To have a stable queue 71 < N has to hold.)

— The ratio of mean service times of the server starting from the different
phases of the MAP, i.e. 7o = %7 with m; = e17(=So) 711, mo =
ea” (=So0)7'L.

— The steady state probability vector of the phases embedded to the arrivals
of the service MAP, v = {v1,v2} (see Section 2.1).

Intuitively the higher 71, the bigger the difference is. This is true for the absolute
gain g, but not for the relative gain g,. Figure 1 shows the relative gain versus
the arrival intensity for the M/MAP(2)/2 queue with service MAP

S, — (-1({10 1/1%%> 5 = (1/520 905) ’ (25)

It can be seen that g, has a maximum around A ~ 0.44. Based on our
experiments this behaviour is typical, i.e., the relative gain is the highest for
medium load. Intuitively, the higher 75, the bigger the g, is, as there is a more
significant difference between the possible decisions. This time the intuition is
correct. Finally we found that g, can get higher if the MAP is more ”balanced”,
i.e. both elements of the v embedded probability vector are high enough.

The above observations for the M/MAP(2)/2 case are reflected in Figure
2, where 1000 service MAPs with a given mean and completely random ele-
ments were taken and their relative gains ¢, were plotted against flexibility
f that represents the randomness due to the embedded stationary vector and
the difference of the mean service times starting from different initial states as
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Fig. 1. Relative gain as the function
of arrival intensity for a given service
process

Fig. 2. Relative gain in mean system
time as the function of flexibility f

f(ra,v) = /(r2 — 1) % v1 % va. The correlation between f and g, was ~ 0.98. We
examined more special types of random MAPs as well, the correlation between
f and g, was always > 0.9.

More complex systems Intuitive understanding of the optimal control of more
complex systems becomes increasingly hard. Again we refer back to [2], where
it was demonstrated that for M/MAP(3)/2 queues already the optimal strategy
cannot be explained as simply as for the M/MAP(2)/2 case. For example let us
take the service MAP with

-1 0 0 010
So=[10 -23 0 , S1i=1 0 023
0 0 -100 1000 O

For A\ = 1.5 the optimal strategy is to always prioritize the server in phase 1 and
choose the server in phase 3 over the one in phase 2. For A = 1.2 the priority
of phase 2 and phase 3 are swapped. The rq, 7y, v factors introduced for the
M/MAP(2)/2 queue can still be used to roughly evaluate the system.

For N > 2 using simple intuitive rules gets even harder. In these cases the
optimal server choice can even depend on the phase of the servers that are occu-
pied at the time of a new arrival. For example let us consider an M/MAP(3)/3
queue with arrival intensity A = 3.6 and service MAP

-076 0 O 00.76 0
So = 0 -100]), S =(0 0 10
0 0 -1 10 0

If the queue is on level 1, the empty servers are in phase 1 and 3 and the occupied
server is in phase 1, the optimal decision is to process the new customer by the
server in phase 3. However if the occupied server is in phase 3, the optimal choice
is the server in phase 1.

Finally, we have to stress that the intuitive explanations of the optimal con-
trol are only conjectures based on numerical experiments, and that in spite of
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the relatively efficient optimization techniques the proposed methods can only
be used for relatively small systems (depending on the size service and arrival

MAPs for N =2,..., 10 servers) due to the multiplicative increase of the state
space.
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7 Conclusion

In this paper we presented two procedures for finding the optimal policy in
MAP/MAP/N queues. Both procedures are based on the matrix analytic meth-
ods, which make an efficient treatment possible. Using these procedures we
demonstrated some of the characteristics of the MAP/MAP/N systems. We
showed that even the simplest queues have counter intuitive behaviour and il-
lustrated the lack of simple intuitive rules in case of more complex systems (e.g.
N > 3), which makes the use of a computational approach is necessary.
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