Skip to main content

Brain Computer Interface: A Review

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

Abstract

A brain-computer interface (BCI) systems permit encephalic activity to solely control computers or external devices. Accordingly, people suffering from neuromuscular diseases can highly benefit from these technologies, since a computer could allow them to perform multiple tasks, such as accessing computer-based entertainment (videos, games, books, music, movies, etc.), communication (Internet, VoIP, e-mails, text processors, speech synthesis, etc.) and means of research (computational capacity, programming languages, simulation applications, etc.). Moreover, nowadays a computer can control various electronic devices, from TVs, DVD and CD players to electric wheel chairs, elevators, doors and lights. The purpose of this chapter is to discuss the concept of brain computer interface (BCI) along with presenting its definition, description, and classification of BCI systems. Also, provides insights on the Neuroimaging modalities for BCI systems such as Electroencephalography (EEG), Electrocorticography (ECoG), and Magnetoencephalography (MEG) approaches. Moreover, this chapter addresses EEG signal processing for BCI from the different perspectives of preprocessing techniques that deal with EOG/EMG artifacts, feature extraction approaches for BCI designs, classification methods and Post-processing. Furthermore, the chapter gives a brief survey of classifiers used in BCI research along with classification performance metrics utilized for BCI systems. Finally, the chapter concludes with outlining ongoing research directions for Brain–computer interface (BCI) systems.

Quiet people have the loudest minds.

Stephen Hawking

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabrera, A.: Feature extraction and classification for brain-computer interfaces. Ph.D. thesis, Brain-Computer Interface Laboratory, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Denmark (2009)

    Google Scholar 

  2. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  3. Khalid, M.B., Rao, N.I., Rizwan-i-Haque, I., Munir, S., Tahir, F.: Towards a brain computer interface using wavelet transform with averaged and time segmented adapted wavelets. In: Proceedings of the 2nd International Conference on Computer, Control and Communication (IC4’09), Karachi, Sindh, Pakistan, 17–18 Feb 2009, pp. 1–4

    Google Scholar 

  4. Coburn, K., Lauterbach, E., Boutros, N., Black, K., Arciniegas, D., Coffey, C.: The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association. J. Neuropsychiatry Clin. Neurosci. 18(4), 460–500 (2006)

    Article  Google Scholar 

  5. Romanowski, P.: How products are made, EEG machine article vol. 7. http://www.madehow.com/Volume-7/EEG-Machine.html (2014). Accessed 1 July 2014

  6. Marshall, P.J., Saby, J.N., Meltzoff, A.N.: Infant brain responses to object weight: exploring goal-directed actions and self-experience. Infancy 18, 942–960 (2013)

    Article  Google Scholar 

  7. Marshall, P.J., Saby, J.N., Meltzoff, A.N.: Imitation and the developing social brain: infants’ somatotopic EEG patterns for acts of self and other. Int. J. Psychol. Res. 6, 22–29 (2013)

    Google Scholar 

  8. Bos, D.O.: EEG-based emotion recognition—the Influence of visual and auditory stimuli. Emotion 57(7), 1798–1806 (2006)

    Google Scholar 

  9. Stikic, M., Johnson, R., Tan, V., Berka, C.: EEG-based classification of positive and negative affective states. Brain Comput. Interfaces 1(2), 99–112 (2014)

    Article  Google Scholar 

  10. Freeman, W.J., Holmes, M.D., Burke, B.C., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114(6), 1053–1068 (2003)

    Article  Google Scholar 

  11. Schwartz, A.B., Cui, X.T., Weber, D.J., Moran, D.W.: Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1), 205–220 (2006)

    Article  Google Scholar 

  12. Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A., Moran, D.W.: Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg. Focus 27(1), E4 (2009)

    Article  Google Scholar 

  13. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63–71 (2004)

    Article  Google Scholar 

  14. Chao, Z.C., Nagasaka, Y., Fujii, N.: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Frontiers Neuroeng. 3(3), 1–10 (2010)

    Google Scholar 

  15. Kubanek, J.O.J.W.G.S.J., Miller, K.J., Ojemann, J.G., Wolpaw, J.R., Schalk, G.: Decoding flexion of individual fingers using electrocorticographic signals in humans. J. Neural Eng. 6(6), 066001 (2009)

    Google Scholar 

  16. Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., Ball, T.: Decoding natural grasp types from human ECoG. Neuroimage 59(1), 248–260 (2012)

    Google Scholar 

  17. Baillet, S., Mosher, J.C., Leahy, R.M.: Electromagnetic brain mapping. Sig. Process. Mag. IEEE 18(6), 14–30 (2001)

    Article  Google Scholar 

  18. Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., Kübler, A.: An MEG-based brain-computer interface (BCI). Neuroimage 36(3), 581–593 (2007)

    Article  Google Scholar 

  19. The National Research Council (NRC): Canada, Laboratory for Clinical Magnetoencephalography, ARCHIVED—magnetoencephalography system. http://archive.nrc-cnrc.gc.ca/eng/facilities/ibd/imaging-research/halifax/meg-research.html. Accessed 1 July 2014

  20. Cohen, D.: Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175(4022), 664–666 (1972)

    Article  Google Scholar 

  21. Zimmerman, J.E., Thiene, P., Harding, J.T.: Design and operation of stable rf-Biased superconducting point-contact quantum devices, and a note on the properties of perfectly clean metal contacts. J. Appl. Phys. 41(4), 1572–1580 (1970)

    Article  Google Scholar 

  22. Manoach, D.S., Halpern, E.F., Kramer, T.S., Chang, Y., Goff, D.C., Rauch, S.L., Kennedy, D.N., Gollub, R.L.: Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am. J. Psychiatry 158(6), 955–958 (2001)

    Article  Google Scholar 

  23. Zamrini, E., Maestu, F., Pekkonen, E., Funke, M., Makela, J., Riley, M., Bajo, R., Sudre, G., Fernandez, A., Castellanos, N., Pozo, F.D., Stam, C. J., Dijk, B.W.V., Bagic, A., Becker, J.T.: Magnetoencephalography as a putative biomarker for Alzheimer’s disease. Int. J. Alzheimer’s Dis, vol. 2011, Article 280289, pp. 1-10, 2011

    Google Scholar 

  24. Hampel, H., Lista, S., Teipel, S.J., Garaci, F., Nisticò, R., Blennow, K., Zetterberg, H., Bertram, L., Duyckaerts, C., Bakardjian, H., Drzezga, A., Colliot, O., Epelbaum, S., Broich, K., Lehéricy, S., Brice, A., Khachaturian, Z.S., Aisen, P.S., Dubois, B.: Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem. Pharmacol. 88(4), 426–449 (2014)

    Article  Google Scholar 

  25. Rousche, P.J.: Bio-MEMS: designs and applications of cortical interfaces for neuroscience and neuroprosthetics. Lecture notes, Department of Bioengineering, University of Illinois, Chicago, USA. http://tigger.uic.edu/classes/bioe/bioe200/Rouschelecture.ppt (2014). Accessed 1 July 2014

  26. Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E.A., Betancur, M., Stanley, G.B., Carin, L., Bellamkonda, R.V.: Relationship between intracortical electrode design and chronic recording function. Biomaterials 34(33), 8061–8074 (2013)

    Article  Google Scholar 

  27. Kozai, T.D., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012)

    Article  Google Scholar 

  28. He, W., McConnell, G.C., Bellamkonda, R.V.: Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3(4), 316–326 (2006)

    Article  Google Scholar 

  29. Azemi, E., Stauffer, W.R., Gostock, M.S., Lagenaur, C.F., Cui, X.T.: Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: in vitro characterization. Acta Biomater. 4(5), 1208–1217 (2008)

    Article  Google Scholar 

  30. Schwartz, A.B.: Motor cortical activity during drawing movements: population representation during sinusoid tracing. J. Neurophysiol 70(1), 28–36 (1993)

    Google Scholar 

  31. Homer, M.L., Nurmikko, A.V., Donoghue, J.P., Hochberg, L.R.: Implants and decoding for intracortical brain computer interfaces. Annu. Rev. Biomed. Eng. 15, 383–405 (2013)

    Article  Google Scholar 

  32. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., Smagt, P., Donoghue, J.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012)

    Article  Google Scholar 

  33. Devlin, H.: What is functional magnetic resonance imaging (fMRI)? http://psychcentral.com/lib/what-is-functional-magnetic-resonance-imaging-fmri/0001056 (2014). Accessed 1 July 2014

  34. Richards, T.L., Berninger, V.W.: Abnormal fMRI connectivity in children with dyslexia during a phoneme task: Before but not after treatment. J. Neurolinguistics 21(4), 294–304 (2008)

    Article  Google Scholar 

  35. Wass, S.: Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 75(1), 18–28 (2011)

    Article  Google Scholar 

  36. Koshino, H., Kana, R.K., Keller, T.A., Cherkassky, V.L., Minshew, N.J., Just, M.A.: fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb. Cortex 18(2), 289–300 (2008)

    Article  Google Scholar 

  37. Welchew, D.E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., Bullmore, E.: Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol. Psychiatry 57(9), 991–998 (2005)

    Article  Google Scholar 

  38. Norris, K.H.: History of NIR. J. Near Infrared Spectrosc. 4, 31–37 (1996)

    Google Scholar 

  39. Villringer, A., Planck, J., Hock, C., Schleinkofer, L., Dirnagl, U.: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154(1), 101–104 (1993)

    Article  Google Scholar 

  40. Taga, G., Homae, F., Watanabe, H.: Effects of source-detector distance of near infrared spectroscopy on the measurement of the cortical hemodynamic response in infants. Neuroimage 38(3), 452–460 (2007)

    Article  Google Scholar 

  41. Repovas, G.: Dealing with noise in EEG recording and data analysis. Informatica Medica Slovenica J. 15(1), 18–25 (2010)

    Google Scholar 

  42. Tan, D., Nijholt A.: Brain-Computer Interaction: Applying Our Minds to Human-Computer Interaction. Springer, London (2010)

    Google Scholar 

  43. Smith, R.C.: Electroencephalograph based brain computer interfaces. M. Sc. thesis, University College Dublin, Duplin, Ireland (2004)

    Google Scholar 

  44. Semmlow, J.: Biosignal and Medical Image Processing, vol. 1. CRC press, Boca Raton (2011)

    Google Scholar 

  45. Palaniappan, R., Syan, C.S., Paramesran, R.: Current Practices in Electroencephalogram-Based Brain-Computer interfaces. Encyclopedia of Information Science and Technology, vol. II, 2nd edn. IGI Global, Hershey, pp. 888–901 (2009)

    Google Scholar 

  46. Mihajlović, V., Garcia-Molina, G., Peuscher, J.: Dry and water-based EEG electrodes in SSVEP-based BCI applications. In: Biomedical Engineering Systems and Technologies. Springer, Berlin, pp. 23–40 (2013)

    Google Scholar 

  47. Hazrati, M.K., Husin, H.M., Hofmann, U.G.: Wireless brain signal recordings based on capacitive electrodes. In: IEEE 8th International Symposium on Intelligent Signal Processing, pp. 8–13 (2013)

    Google Scholar 

  48. Lepola P., Myllymaa, S., Toyras, J., Mervaala, E., Lappalainen, R., Myllymaa, K.: Shielded design of screen-printed EEG electrode set reduces interference pick-up. Sensors J. IEEE, 1–1 (2014)‏

    Google Scholar 

  49. Sabarigiri, B., Suganyadevi, D.: A hybrid pre-processing techniques for artifacts removal to improve the performance of electroencephalogram (EEG) features extraction. In: International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems, Kumara coil (2014)

    Google Scholar 

  50. Fatourechi, M., Bashashati, A., Ward, R. K., Birch, G.E.: EMG and EOG artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118(3), 480–494 (2007)‏

    Google Scholar 

  51. Millán, J.R., Mouriño, J.: Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)‏

    Google Scholar 

  52. Croft, R.J.: Barry RJ (2000) Removal of ocular artifact from the EEG: a review. Neurophysiologie Clinique/Clin. Neurophysiol 30(1), 5–19 (2000)

    Article  Google Scholar 

  53. Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., Kreutz-Delgado, K.: Evolving signal processing for brain-computer interfaces. Proc. IEEE, 100 (Special Centennial Issue), 1567–1584 (2012)

    Google Scholar 

  54. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2), 163–178 (2000)

    Google Scholar 

  55. Lio, G., Boulinguez, P.: Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses. NeuroImage 67, 137–152 (2013)‏

    Google Scholar 

  56. Zhang, Y., Tang, A.C., Zhou, X.: Synchronized network activity as the origin of a P300 component in a facial attractiveness judgment task. Psychophysiology 51(3), 285–289 (2014)‏

    Google Scholar 

  57. Bono, V., Jamal, W., Das, S., Maharatna, K.: Artifact reduction in multichannel pervasive EEG using hybrid WPT-ICA and WPT-EMD signal decomposition technique. In: EEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, IT, pp. 1–5 (2014)

    Google Scholar 

  58. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, R1–R13 (2007)‏

    Google Scholar 

  59. Kołodziej, M., Majkowski, A., Rak, R.J.: A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms. In: Adaptive and Natural Computing Algorithms. Springer, Berlin, pp. 280–289 (2011)

    Google Scholar 

  60. García-Laencina, P., Rodríguez-Bermudez G., Roca-Dorda, J.: Exploring dimensionality reduction of EEG features in motor imagery task classification. J. Expert Syst. Appl. 41(11), 5285–5295 (2014)

    Google Scholar 

  61. Kołodziej, M., Majkowski, A., Rak, R.J.: Linear discriminant analysis as EEG features reduction technique for brain-computer interfaces. PRZEGLĄD ELEKTROTECHNICZNY (Electr. Rev.) R. 88 NR 3a, 28–30 (2012)

    Google Scholar 

  62. Bostanov, V.: BCI competition 2003{data sets ib and iib: feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 51(6), 1057–1061 (2004)

    Article  Google Scholar 

  63. Şen, B., Peker, M., Çavuşoğlu, A., Çelebi, F.V.: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 38(3), 1–21 (2014)

    Google Scholar 

  64. Peterson, D.A., Knight, J.N., Kirby, M.J., Anderson, C.W., Thaut, M.H.: Feature selection and blind source separation in an EEG-based brain-computer interface. EURASIP J. Appl. Sig. Process. 19, 3128–3140 (2005)

    Google Scholar 

  65. Gu, Q., Li, Z., Han, J.: Linear discriminant dimensionality reduction. In: Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, pp. 549–564 (2011)

    Google Scholar 

  66. Bugli, C., Lambert, P.: Comparison between principal component analysis and independent component analysis in electroencephalograms modelling. Biometr. J. 49, 312–327 (2007)

    Article  MathSciNet  Google Scholar 

  67. Dal Seno, B., Matteucci, M., Mainardi, L.: A genetic algorithm for automatic feature extraction in P300 detection. In: Neural Networks, IJCNN 2008.(IEEE World Congress on Computational Intelligence), pp. 3145–3152 (2008)

    Google Scholar 

  68. Yom-Tov, E., Inbar, G.F.: Feature selection for the classification of movements from single movement-related potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 170–177 (2002)

    Google Scholar 

  69. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and de-synchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Google Scholar 

  70. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 141–144 (2003)

    Google Scholar 

  71. Scherer, R., Muller, G.R., Neuper, C., Graimann, B., Pfurtscheller, G.: An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans. Biomed. Eng. 51(6), 979–984 (2004)

    Article  Google Scholar 

  72. Garcia, G.N., Ebrahimi, T., Vesin, J.-M.: Support vector EEG classification in the fourier and time-frequency correlation domains. In: Proceedings of the IEEE EMBS 1st International Conference on Neural Engineering, pp. 591–594 (2003)

    Google Scholar 

  73. Guerrero-Mosquera, C., Verleysen, M., Navia-Vazquez, A.: Dimensionality reduction for EEG classification using Mutual Information and SVM. In: Machine Learning Signal Processing Conference, pp. 18–21 (2011)

    Google Scholar 

  74. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)

    Article  Google Scholar 

  75. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14 (2005)

    Article  Google Scholar 

  76. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? ACM SIGKDD Explor. Newsl. 2(2), 1–13 (2000)

    Article  Google Scholar 

  77. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition : a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

    Article  Google Scholar 

  78. Gandhi, V., Prasad, G., Coyle, D., Behera, L., McGinnity, T.M.: Quantum neural network-based EEG filtering for a brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 278–288 (2014)

    Google Scholar 

  79. Chiappa, S., Donckers, N., Bengio, S., Vrins, F.: HMM and IOHMM modeling of EEG rhythms for asynchronous BCI systems. In: ESANN, pp. 193–204 (2004)

    Google Scholar 

  80. Barreto, G.A., Frota, R.A., de Medeiros, F. N.S.: On the classification of mental tasks: a performance comparison of neural and statistical approaches. In: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, pp. 529–538 (2004)

    Google Scholar 

  81. Balakrishnan, D., Puthusserypady, S.: Multilayer perceptrons for the classification of brain computer interface data. In: Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, pp. 118–119 (2005)

    Google Scholar 

  82. Millan, J.D.R., Mourino, J., Babiloni, F., Cincotti, F., Varsta, M., Heikkonen, J.: Local neural classifier for EEG-based recognition of mental tasks. Int. J. Conf. Neural Netw. IEEE-INNS-ENNS 3, 3632–3632 (2000)

    Google Scholar 

  83. Millan, J.R., Renkens, F., Mourino, J., Gerstner, W.: Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51(6), 1026–1033 (2004)

    Google Scholar 

  84. Solhjoo, S., Moradi, M.H.: Mental task recognition: a comparison between some of classification methods. In: BIOSIGNAL 2004 International EURASIP Conference, pp. 24–26 (2004)

    Google Scholar 

  85. Obermeier, B., Guger, C., Neuper, C., Pfurtscheller G.: Hidden markov models for online classification of single trial EEG. Pattern Recognit. Lett. 22, 1299–1309 (2001)

    Google Scholar 

  86. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989)

    Google Scholar 

  87. Solhjoo, S., Nasrabadi, A.M., Golpayegani, M.R.H.: Classification of chaotic signals using HMM classifiers: EEG-based mental task classification. In: Proceedings of the European Signal Processing Conference (2005)

    Google Scholar 

  88. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New York, (2000)

    Google Scholar 

  89. Blankertz, B., Curio, G., Muller, K.R.: Classifying single trial EEG: towards brain computer interfacing. Adv. Neural Inf. Process. Syst. (NIPS 01), 14, 157–164 (2002)

    Google Scholar 

  90. Friedman, J.H.K.: On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Disc. 1(1), 55–77 (1997)

    Article  Google Scholar 

  91. Borisoff, J.F., Mason, S.G., Bashashati, A., Birch, G.E.: Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6), 985–992 (2004)

    Article  Google Scholar 

  92. Cincotti, F., Scipione, A., Timperi, A., Mattia, D., Marciani, M.G., Millan, J., Bablioni, F.: Comparison of different feature classifiers for brain computer interfaces. In: First International IEEE EMBS Conference on Neural Engineering, pp. 645–647 (2003)

    Google Scholar 

  93. Boostani, R., Moradi, M.H.: A new approach in the BCI research based on fractal dimension as feature and adaboost as classifier. J. Neural Eng. 1(4), 212–217 (2004)

    Google Scholar 

  94. Hoffmann, U., Garcia, G., Vesin, J., Diserens, K., Ebrahimi, T.: A boosting approach to P300 detection with application to brain-computer interfaces. In: Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering. IEEE, pp. 97–100 (2005)

    Google Scholar 

  95. Pfurtscheller, G., Flotzinger, D., Kalcher, J.: Brain-computer interface-a new communication device for handicapped persons. J. Microcomput. Appl. 16, 293–299 (1993)

    Article  Google Scholar 

  96. Qin, J., Li, Y., Cichocki, A.: ICA and committee machine-based algorithm for cursor control in a BCI system. In Advances in Neural Networks. Springer, Berlin, pp. 973–978 (2005)

    Google Scholar 

  97. Rakotomamonjy, A., Guigue, V., Mallet, G., Alvarado, V.: Ensemble of SVMs for improving brain computer interface P300 speller performances. In: Artificial Neural Networks: Biological Inspirations. Springer, Berlin, pp. 45–50 (2005)

    Google Scholar 

  98. Wolpert, D.H.: Stacked generalization. J. Neural Netw. 5, 241–259 (1992)

    Google Scholar 

  99. Aydemir, O., Kayikcioglu, T.: Comparative performance assessment of classifiers in low-dimensional feature space which are commonly used in BCI applications. Elektrorevue J. 2(4), 58–63 (2011)

    Google Scholar 

  100. Mohammadi, R., Mahloojifar A., Coyle, D.: A combination of pre- and postprocessing techniques to enhance self-paced BCIs. Adv. Human-Comput. Interact. 2012(3), (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mostafa Fouad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fouad, M.M., Amin, K.M., El-Bendary, N., Hassanien, A.E. (2015). Brain Computer Interface: A Review. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics