Skip to main content

Hippocampal Theta-Based Brain Computer Interface

  • Chapter
  • First Online:
Book cover Brain-Computer Interfaces

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 74))

Abstract

Theta rhythm is a 3–12 Hz oscillatory potential observed in the hippocampus during cognitive processes ranging from spatial navigation to learning. The 3–7 Hz range occurs during immobility and depends upon the integrity of cholinergic forebrain systems. The amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and impairment of this system substantially slows the rate of learning. Recent experiments utilized a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. Power spectral ratios based on continuous sampling of hippocampal local field potentials were used to ensure that each trial was triggered during the appropriate theta state. One group received training during high theta and the other during very low theta. The results have been consistent and substantial—theta-contingent training produces a two- to four-fold increase in learning speed, accompanied by striking differences in hippocampal, prefrontal and cerebellar electrophysiological patterns. Unlike many interfaces that serve as sensory or motor prostheses, our system appears to engage cognitive resources that accelerate the rate of associative learning. One mechanism for this improvement might be better coordination of the phase relationships in the essential circuitry that includes cerebellum, hippocampus and medial prefrontal cortex, as well as brainstem nuclei necessary for the sensory and motor events during each trial. This chapter reviews such findings and proposes experiments that use this cognitive BCI to clarify the essential roles and coordination of structures in the distributed system that underlies eyeblink conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCI:

Brain-computer interface

CR:

Conditioned response

CS:

Conditioned stimulus

HVI:

Hemispheric lobule VI

I/E:

Inhibitory/excitatory

IPN:

Interpositus nucleus

ISI:

Inter-stimulus interval

ITI:

Inter-trial interval

LFP:

Local field potential

LTD:

Long-term depression

LTP:

Long-term potentiation

T+:

Theta-triggered

T−:

Non-theta-triggered

UR:

Unconditioned response

US:

Unconditioned stimulus

References

  1. Allen, M.T., Padilla, Y., Gluck, M.A.: Ibotenic acid lesions of the medial septum retard delay eyeblink conditioning in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 116(4), 733–738 (2002)

    Google Scholar 

  2. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J.: The Hippocampus Book. Oxford University Press, New York (2007)

    Google Scholar 

  3. Arikuni, T., Ban, T.: Subcortical afferents to the prefrontal cortex in rabbits. Exp. Brain Res. 32(1), 69–75 (1978)

    Google Scholar 

  4. Asaka, Y., Mauldin, K.N., Griffin, A.L., Seager, M.A., Shurell, E., Berry, S.D.: Nonpharmacological amelioration of age-related learning deficits: the impact of hippocampal theta-triggered training. Proc. Natl. Acad. Sci. USA 102(37), 13284–13288 (2005)

    Google Scholar 

  5. Asaka, Y., Griffin, A.L., Berry, S.D.: Reversible septal inactivation disrupts hippocampal slow-wave and unit activity and impairs trace conditioning in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 116, 434–442 (2002)

    Google Scholar 

  6. Azar, A.T., Balas, V.E., Olariu, T.: Classification Of EEG-based brain-computer interfaces, advanced intelligent computational technologies and decision support systems. Stud Comput Intell 486, 97–106 (2014)

    Google Scholar 

  7. Berger, T.W., Alger, B., Thompson, R.F.: Neuronal substrate of classical conditioning in the hippocampus. Science 192(4238), 483–485 (1976)

    Google Scholar 

  8. Berry, S.D., Hoffmann, L.C.: Hippocampal theta-dependent eyeblink classical conditioning: coordination of a distributed learning system. Neurobiol Learn Mem 95(2), 185–189 (2011)

    Google Scholar 

  9. Berry, S.D., Thompson, R.F.: Prediction of learning rate from the hippocampal electroencephalogram. Science 200(4347), 1298–1300 (1978)

    Google Scholar 

  10. Berry, S.D., Thompson, R.F.: Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits. Science 205(4402), 209–211 (1979)

    Google Scholar 

  11. Berry, S.D.: Septo-hippocampal activity and learning rate. In: Woody, C.D. (ed.) Conditioning: Representation of Involved Neural Function, pp. 417–431. Plenum Press, New York (1982)

    Google Scholar 

  12. Bland, B., Oddie, S.D.: Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav. Brain Res. 127(1–2), 119–136 (2001)

    Google Scholar 

  13. Blaxton, T.A., Zeffiro, T.A., Gabrieli, J.D.E., Bookheimer, S.Y., Carrillo, M.C., Theodore, W.H., Disterhoft, J.F.: Functional mapping of human learning: A positron emission tomography activation study of eyeblink conditioning. J. Neurosci. 16(12), 4032–4040 (1996)

    Google Scholar 

  14. Brelsford, J., Theios, J.: Single session conditioning of the nictitating membrane in the rabbit: effect of intertrial interval. Psychon Sci 2, 81–82 (1965)

    Google Scholar 

  15. Brodal, A.: Neurological Anatomy. Oxford University Press, New York (1981)

    Google Scholar 

  16. Buchanan, S.L., Thompson, R.H., Maxwell, B.L., Powell, D.A.: Efferent connections of the medial prefrontal cortex in the rabbit. Exp. Brain Res. 100(3), 469–483 (1994)

    Google Scholar 

  17. Buzsáki, G.: Theta oscillations in the hippocampus. Neuron 33(3), 325–340 (2002)

    Google Scholar 

  18. Buzsáki, G.: Neuroscience. Similar is different in hippocampal networks. Science 309(5734), 568–569 (2005)

    Google Scholar 

  19. Buzsáki, G.: Rhythms of the Brain. Oxford University Press Inc, New York (2006)

    MATH  Google Scholar 

  20. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    Google Scholar 

  21. Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Knight, R.T.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)

    Google Scholar 

  22. Caplan, J.B., Madsen, J.R., Raghavachari, S., Kahana, M.J.: Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. J. Neurophysiol. 86(1), 368–380 (2001)

    Google Scholar 

  23. Caplan, J.B., Madsen, J.R., Schulze-Bonhage, A., Aschenbrenner-Scheibe, R., Newman, E.L., Kahana, M.J.: Human theta oscillations related to sensorimotor integration and spatial learning. J. Neurosci. 23(11), 4726–4736 (2003)

    Google Scholar 

  24. Choi, J.S., Moore, J.W.: Cerebellar neuronal activity expresses the complex topography of conditioned eyeblink responses. Behav. Neurosci. 117(6), 1211–1219 (2003)

    Google Scholar 

  25. Christian, K.M., Thompson, R.F.: Neural substrates of eyeblink conditioning: Acquisition and retention. Learn. Mem. 10(6), 427–455 (2003)

    Google Scholar 

  26. Cicchese, J. J. (2013). Identified interneurons of dorsal hippocampal area CA1 show different theta-contingent response profiles during classical eyeblink conditioning. Master’s thesis. http://rave.ohiolink.edu/etdc/view?acc_num=miami1367583089

  27. Cicchese, J.J., Berry, S.D.: Comparison of identified neural response profiles in CA1 and CA3 during theta-contingent eyeblink conditioning. Unpublished poster presentation at: The Annual Meeting of the Society for Neuroscience, 13–17 Oct 2012, New Orleans, LA (2012)

    Google Scholar 

  28. Clark, R.E., McCormick, D.A., Lavond, D.G., Thompson, R.F.: Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 291(1), 125–136 (1984)

    Google Scholar 

  29. Clark, R.E., Squire, L.R.: Classical conditioning and brain systems: The role of awareness. Science 280(5360), 77–81 (1998)

    Google Scholar 

  30. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3), 423–446 (2010)

    Google Scholar 

  31. Darling, R.D., Takatsuki, K., Griffin, A.L., Berry, S.D.: Eyeblink conditioning contingent on hippocampal theta enhances hippocampal and medial prefrontal responses. J. Neurophysiol. 105(5), 2213–2224 (2011)

    Google Scholar 

  32. Darling, R.D.: Single cell analysis of hippocampal neural ensembles during theta-triggered eyeblink classical conditioning in the rabbit. Unpublished doctoral dissertation. http://rave.ohiolink.edu/etdc/view?acc_num=miami1225460517 (2008)

  33. Daum, I., Channon, S., Canavan, A.G.: Classical conditioning in patients with severe memory problems. J. Neurol. Neurosurg. Psychiatry 52(1), 47–51 (1989)

    Google Scholar 

  34. Daum, I., Channon, S., Polkey, C.E., Gray, J.A.: Classical conditioning after temporal lobe lesions in man: Impairment in conditional discrimination. Behav. Neurosci. 105(3), 396–408 (1991)

    Google Scholar 

  35. Daum, I., Schugens, M.M., Ackermann, H., Lutzenberger, W., Dichgans, J., Birbaumer, N.: Classical conditioning after cerebellar lesions in humans. Behav. Neurosci. 107(5), 748–756 (1993)

    Google Scholar 

  36. Deupree, D., Coppock, W., Willer, H.: Pretraining septal driving of hippocampal rhythmic slow activity facilitates acquisition of visual discrimination. J. Comp. Physiol. Psychol. 96(4), 557–562 (1982)

    Google Scholar 

  37. Eichenbaum, H.: Hippocampus: mapping or memory? Curr. Biol. 10(21), 785–797 (2000)

    Google Scholar 

  38. Fontan-Lozano, A., Troncoso, J., Munera, A., Carrion, A., Delgado-Garcia, J.: Cholinergic septo-hippocampal innervation is required for trace eyeblink classical conditioning. Learn. Mem. 12(6), 557–563 (2005)

    Google Scholar 

  39. Fox, S., Ranck, J.: Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp. Brain Res. 41(3–4), 399–410 (1981)

    Google Scholar 

  40. Fries, P.: A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci. 9(10), 474–480 (2005)

    Google Scholar 

  41. Gabrieli, J., McGlinchey-Berroth, R., Carrillo, M., Gluck, M., Cermak, L., Disterhoft, J.F.: Intact delay-eyeblink classical conditioning in amnesia. Behav. Neurosci. 109(5), 819–827 (1995)

    Google Scholar 

  42. Garcia, K.S., Steele, P.M., Mauk, M.D.: Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses. J. Neurosci. 19(24), 10940–10947 (1996)

    Google Scholar 

  43. Givens, B.: Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. NeuroReport 8(1), 159–163 (1996)

    Google Scholar 

  44. Gormezano, I.: Investigations of defense and reward conditioning in the rabbit. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II: Current Research and Theory, pp. 151–181. Appleton Century Crofts, NY (1972)

    Google Scholar 

  45. Green, J.D., Arduini, A.A.: Hippocampal electrical activity in arousal. J. Neurophysiol. 17(6), 533–557 (1954)

    Google Scholar 

  46. Griffin, A.L., Asaka, Y., Darling, R.D., Berry, S.D.: Theta-contingent trial presentation accelerates learning rate and enhances hippocampal plasticity during trace eyeblink conditioning. Behav. Neurosci. 118(2), 403–411 (2004)

    Google Scholar 

  47. Hasselmo, M.E.: What is the function of hippocampal theta rhythm? Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15(7), 936–949 (2005)

    Google Scholar 

  48. Hasselmo, M.E.: Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369(1635), 20120523 (2014)

    Google Scholar 

  49. Hasselmo, M.E., Bodeldon, C., Wyble, B.P.: A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14(4), 793–817 (2002)

    MATH  Google Scholar 

  50. Hoffmann, L.C., Berry, S.D.: Cerebellar theta oscillations are synchronized by hippocampal theta-contingent trace conditioning. Proc. Natl. Acad. Sci. USA 106(50), 21371–21376 (2009)

    Google Scholar 

  51. Hoffmann, L.C.: Interactions between hippocampal and cerebellar theta oscillations during cerebellar theta-contingent trace eyeblink classical conditioning acquisition and extinction in the rabbit. Unpublished doctoral dissertation, Miami University (2013)

    Google Scholar 

  52. Hoffmann, L.C., Berry, S.D.: Differential role of network oscillations during acquisiton and extinction of cerebellar theta-contingent trace eyeblink classical conditioning. Unpublished poster presentation at: The Annual Meeting of the Society for Neuroscience, 9–13 Nov 2013, San Diego, CA (2013)

    Google Scholar 

  53. Huerta, P.T., Lisman, J.E.: Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364(6439), 723–725 (1993)

    Google Scholar 

  54. Hyman, J.M., Wyble, B.P., Goyal, V., Rossi, C.A., Hasselmo, M.E.: Stimulation in hippocampal region CA1 in behaving rats yield long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the through. J. Neurosci. 23(37), 11725–11731 (2003)

    Google Scholar 

  55. Hyman, J.M., Zilli, E.A., Paley, A.M., Hasselmo, M.E.: Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15(6), 739–749 (2005)

    Google Scholar 

  56. Jensen, O.: Information transfer between rhythmically coupled networks: Reading the hippocampal phase code. Neural Comput. 13(12), 2743–2761 (2001)

    MATH  Google Scholar 

  57. Jog, M.S., Connolly, C.I., Kubota, Y., Iyengar, D.R., Garrido, L., Harlan, R., Graybiel, A.M.: Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117, 141–152 (2002)

    Google Scholar 

  58. Jones, M.W., Wilson, M.A.: Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus 15(7), 867–873 (2005)

    Google Scholar 

  59. Kahana, M.J., Sekuler, R., Caplan, J.B., Kirschen, M., Madsen, J.R.: Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399(6738), 781–784 (1999)

    Google Scholar 

  60. Kalmbach, B.E., Davis, T., Ohyama, T., Riusech, F., Nores, W.L., Mauk, M.D.: Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J. Neurophysiol. 103(4), 2039–2049 (2010)

    Google Scholar 

  61. Kalmbach, B.E., Ohyama, T., Kredier, J.C., Riusech, F., Mauk, M.D.: Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn. Mem. 16(1), 86–95 (2009)

    Google Scholar 

  62. Kalmbach, B.E., Voicu, H., Ohyama, T., Mauk, M.D.: A subtraction mechanism of temporal coding in cerebellar cortex. J. Neurosci. 31(6), 2025–2034 (2011)

    Google Scholar 

  63. Kaneko, T., Thompson, R.F.: Disruption of trace conditioning of the nictitating membrane response in rabbits by central cholinergic blockade. Psychopharmacol. 131(2), 161–166 (1997)

    Google Scholar 

  64. Kehoe, E., Gormezano, I.: Effects of trials per session on conditioning of the rabbit’s nictitating membrane response. Bull. Psychon. Soc. 2, 434–436 (1974)

    Google Scholar 

  65. Kirov, R., Weiss, C., Siebner, H., Born, J., Marshall, L.: Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc. Natl. Acad. Sci. USA 106(36), 15460–15465 (2009)

    Google Scholar 

  66. Klausberger, T., Somogyi, P.: Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 321(5885), 53–57 (2008)

    Google Scholar 

  67. Kramis. R., Vanderwolf, C.H., Bland, B.H.: Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol. 49, 58–85 (1975)

    Google Scholar 

  68. Kronforst-Collins, M.A., Disterhoft, J.F.: Lesions of the caudal area of rabbit medial prefrontal cortex impair trace eyeblink conditioning. Neurobiol. Learn. Mem. 69(2), 147–162 (1998)

    Google Scholar 

  69. Kunec, S., Hasselmo, M.E., Kopell, N.: Encoding and retrieval in the CA3 region of the hippocampus: A model of theta-phase separation. J. Neurophys. 94(1), 70–82 (2005)

    Google Scholar 

  70. Kyd, R., Bilkey, D.: Prefrontal cortex lesions modify the spatial properties of hippocampal place cells. Cereb. Cortex 13(5), 444–451 (2003)

    Google Scholar 

  71. Landfield, P., Lynch, G.: Impaired monosynaptic potentiation in in vitro hippocampal slices from aged, memory-deficient rats. J. Gerontol. 32(5), 523–533 (1977)

    Google Scholar 

  72. Lega, B., Jacobs, J., Kahana, M.: Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 22(4), 748–761 (2012)

    Google Scholar 

  73. Lisman, J.: The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15(7), 913–922 (2005)

    Google Scholar 

  74. Llinas, R.: Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162(3), 797–804 (2009)

    Google Scholar 

  75. Logothetis, N.: The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 23(10), 3963–3971 (2003)

    Google Scholar 

  76. Marshall, S., Lang, E.: Inferior olive oscillations gate transmission of motor cortical activity to the cerebellum. J. Neurosci. 24(50), 11356–11367 (2004)

    Google Scholar 

  77. Mauk, M.D., Garcia, K.S., Medina, J.F., Steele, P.M.: Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun. Neuron 20(3), 359–362 (1998)

    Google Scholar 

  78. Mauk, M.D., Ruiz, B.P.: Learning-dependent timing of Pavlovian eyelid responses: Differential conditioning using multiple interstimulus intervals. Behav. Neurosci. 106(4), 666–681 (1992)

    Google Scholar 

  79. Mauk, M.D., Thompson, R.F.: Retention of classically conditioned eyelid responses following acute decerebration. Brain Res. 403(1), 89–95 (1987)

    Google Scholar 

  80. McCartney, H., Johnson, A.D., Weil, Z.M., Givens, B.: Theta reset produces optimal conditions for long-term potentiation. Hippocampus 14(6), 684–687 (2004)

    Google Scholar 

  81. McCormick, D.A., Clark, G.A., Lavond, D.G., Thompson, R.F.: Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79(8), 2731–2735 (1982)

    Google Scholar 

  82. McCormick, D.A., Steinmetz, J.E., Thompson, R.F.: Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res. 359(1–2), 120–130 (1985)

    Google Scholar 

  83. McCormick, D.A., Thompson, R.F.: Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223(4633), 296–299 (1984)

    Google Scholar 

  84. McGlinchey-Berroth, R., Carrillo, M.C., Gabrieli, J.D., Brawn, C.M., Disterhoft, J.F.: Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav. Neurosci. 111(5), 873–882 (1997)

    Google Scholar 

  85. McLaughlin, J., Skaggs, H., Churchwell, J., Powell, D.A.: Medial prefrontal cortex and Pavlovian conditioning: trace versus delay conditioning. Behav. Neurosci. 116, 37–47 (2002). doi:10.1037/0735-7044.116.1.37

  86. Mehta, M., Lee, A., Wilson, M.: Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890), 741–746 (2002)

    Google Scholar 

  87. Moyer, J., Deyo, R., Disterhoft, J.F.: Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav. Neurosci. 104(2), 243–252 (1990)

    Google Scholar 

  88. Nokia, M., Penttonen, M., Korhonen, T., Wikgren, J.: Hippocampal theta (3–8 Hz) activity during classical eyeblink conditioning in rabbits. Neurobiol. Learn. Mem. 90(1), 62–70 (2008)

    Google Scholar 

  89. Nokia, M., Penttonen, M., Wikgren, J.: Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits. J. Neurosci. 30(34), 11486–11492 (2010)

    Google Scholar 

  90. O’Keefe, J., Recce, M.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3), 317–330 (1993)

    Google Scholar 

  91. Perrett, S.P., Mauk, M.D.: Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. J. Neurosci. 15(3), 2074–2080 (1995)

    Google Scholar 

  92. Perrett, S.P., Ruiz, B.P., Mauk, M.D.: Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J. Neurosci. 13(4), 1708–1718 (1993)

    Google Scholar 

  93. Powell, D.A., Skaggs, H., Churchwell, J., McLaughlin, J.: Posttraining lesions of the medial prefrontal cortex impair performance of Pavlovian eyeblink conditioning but have no effect on concomitant heart rate changes in rabbits (Oryctolagus cuniculus). Behav. Neurosci. 115, 1029–1038 (2001)

    Google Scholar 

  94. Prokasy, W.F., Grant, D.A., Myers, N.A.: Eyelid conditioning as a function of unconditioned stimulus intensity and intertrial interval. J. Exp. Psychol. 55(3), 242–246 (1958)

    Google Scholar 

  95. Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., Bourgeois, B., Madsen, J.R., Lisman, J.E.: Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001)

    Google Scholar 

  96. Salafia, W., Mis, F., Terry, W., Bartosiak, R., Daston, A.: Conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus) as a function of length and degree of variation of intertrial interval. Anim. Learn. Behav. 1, 109–115 (1973)

    Google Scholar 

  97. Salvatierra, A.T., Berry, S.D.: Scopolamine disruption of septo-hippocampal activity and classical conditioning. Behav. Neurosci. 103(4), 715–721 (1989)

    Google Scholar 

  98. Scarlett, D., Dypvik, A., Bland, B.: Comparison of spontaneous and septally driven hippocampal theta field and theta-related cellular activity. Hippocampus 14(1), 99–106 (2004)

    Google Scholar 

  99. Schmaltz, L.W., Theios, J.: Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). J. compar. physiol. psychol. 79(2), 328–333 (1972)

    Google Scholar 

  100. Schneiderman, N., Gormezano, I.: Conditioning of the nictitating membrane of the rabbit as a function of CS–US interval. J. Compar. Physiol. Psych. 57, 1881–1895 (1964)

    Google Scholar 

  101. Schreurs, B., McIntosh, A., Bahro, M., Herscovitch, P., Sunderland, T., Molchan, S.: Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. J. Neurophysiol. 77(4), 2153–2163 (1997)

    Google Scholar 

  102. Seager, M.A., Johnson, L.D., Chabot, E.S., Asaka, Y., Berry, S.D.: Oscillatory brain states and learning: impact of hippocampal theta-contingent training. Proc. Natl. Acad. Sci. USA 99(3), 1616–1620 (2002)

    Google Scholar 

  103. Sears, L.L., Steinmetz, J.E.: Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behav. Neurosci. 104(5), 681–692 (1990)

    Google Scholar 

  104. Shusterman, V., Troy, W.: From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 77(6), 061911

    Google Scholar 

  105. Siapas, A., Lubenov, E., Wilson, M.A.: Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1), 141–151 (2005)

    Google Scholar 

  106. Siegel, J.J., Kalmbach, B., Chitwood, R.A., Mauk, M.D.: Persistent activity in a cortical-to-subcortical circuit: Bridging the temporal gap in trace eyelid conditioning. J. Neurophysiol. 107(1), 50–64 (2012)

    Google Scholar 

  107. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)

    Google Scholar 

  108. Skaggs, W.E., McNaughton, B.L., Permenter, M., Archibeque, M., Vogt, J., Amaral, D.G., Barnes, C.A.: EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J. Neurophysiol. 98(2), 898–910 (2007)

    Google Scholar 

  109. Smith, M., Coleman, S., Gormezano, I.: Classical conditioning of the rabbit’s nictitating membrane response at backward, simultaneous, and forward CS–US intervals. J. Comp. Physiol. Psychol. 69(2), 226–231 (1969)

    Google Scholar 

  110. Smith, A., Frank, L., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Brown, E.: Dynamic analysis of learning in behavioral experiments. J. Neurosci. 24(2), 447–461 (2004)

    Google Scholar 

  111. Solomon, P.R., Gottfried, K.E.: The septohippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. J. Comp. Physiol. Psychol. 95(2), 322–330 (1981)

    Google Scholar 

  112. Solomon, P.R., Solomon, S.D., Vander Schaaf, E., Perry, H.E.: Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure. Science 220(4594), 329–331 (1983)

    Google Scholar 

  113. Solomon, P.R., Stowe, G.T., Pendlebury, W.W.: Disrupted eyelid conditioning in a patient with damage to cerebellar afferents. Behav. Neurosci. 103(4), 898–902 (1989)

    Google Scholar 

  114. Solomon, P.R., Vander Schaaf, E.R., Thompson, R.F., Weisz, D.J.: Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behav. Neurosci. 100(5), 729–744 (1986)

    Google Scholar 

  115. Solomon, P.R., Groccia-Ellison, M.E., Flynn, D., Mirak, J., Edwards, K.R., Dunehew, A., Stanton, M.E.: Disruption of human eyeblink conditioning after central cholinergic blockade with scopolamine. Behav. Neurosci. 107, 271–279 (1993)

    Google Scholar 

  116. Spence, K.W., Norris, E.B.: Eyelid conditioning as a function of the inter-trial interval. J. Exp. Psychol. 40(6), 716–720 (1950)

    Google Scholar 

  117. Steinmetz, J.E., Woodruff-Pak, D.S. (eds.): Eyeblink Classical Conditioning, vol. 2. Animal Models, Kluwer, Boston (2000)

    Google Scholar 

  118. Stewart, M., Fox, S.: Do septal neurons pace the hippocampal theta rhythm? Trends in Neurosci. 13(5), 163–168 (1990)

    Google Scholar 

  119. Takehara, K., Kawahara, S., Kirino, Y.: Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J. Neurosci. 23(30), 9897–9905 (2003)

    Google Scholar 

  120. Takehara-Nishiuchi, K., McNaughton, B.L.: Spontaneous changes of neocortical code for associative memory during consolidation. Science 322(5903), 960–963 (2008)

    Google Scholar 

  121. Thompson, R.F., Gluck, M.A.: Brain substrates of basic associative learning and memory. In: Lister, R.G., Weingartner, H.J. (eds.) Perspectives on Cognitive Neuroscience, pp. 25–45. Oxford University Press, New York (1991)

    Google Scholar 

  122. Topka, H., Valls Sole, J., Massaquoi, S., Hallett, M.: Deficit in classical conditioning in patients with cerebellar degeneration. Brain 116(4), 961–969 (1993)

    Google Scholar 

  123. Tsanov, M., Manahan-Vaughan, D. (2009). Long-term plasticity is proportional to theta-activty. PLoS One 4(6). doi:10.1371/journal.pone.0005850

  124. Ulhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2), 100–113 (2010)

    Google Scholar 

  125. Weible, A.P., Weiss, C., Disterhoft, J.F.: Activity of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J. Neurophysiol. 90(2), 599–612 (2003)

    Google Scholar 

  126. Weiss, C., Disterhoft, J.F.: Exploring prefrontal cortical memory mechanisms with eyeblink conditioning. Behav. Neurosci. 125(3), 318–326 (2011)

    Google Scholar 

  127. Weiss, C., Knuttinen, M., Power, J., Patel, R., O’Connor, M., Disterhoft, J.F.: Trace eyeblink conditioning in the freely moving rat: Optimizing the conditioning parameters. Behav. Neurosci. 113(5), 1100–1105 (1999)

    Google Scholar 

  128. Welsh, J.P., Lang, E.J., Suglahara, I., Llinas, R.R.: Dynamic organization of motor control within the olivocerebellar system. Nature 374(65241), 453–457 (1995)

    Google Scholar 

  129. Wetzel, W., Ott, T., Matthies, H.: Hippocampal rhythmic slow activity (“theta”) and behavior elicited by medial septal stimulation in rats. Behav. Biol. 19(4), 534–542 (1977)

    Google Scholar 

  130. Williams, J.M., Givens, B.: Stimulation-induced reset of hippocampal theta in the freely performing rat. Hippocampus 13(1), 109–116 (2003)

    Google Scholar 

  131. Woodruff-Pak, D.S., Lavond, D.G., Thompson, R.F.: Trace conditioning: Abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 348(2), 249–260 (1985)

    Google Scholar 

  132. Woodruff-Pak, D.S., Papka, M., Ivry, R.B.: Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychol. 10(4), 443–458 (1996)

    Google Scholar 

  133. Wyble, B.P., Linster, C., Hasselmo, M.E.: Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. J. Neurophys. 83(4), 2138–2144 (2000)

    Google Scholar 

  134. Yeo, C.H., Hardiman, M.J., Glickstein, M.: Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit. Behav. Brain Res. 13(3), 261–266 (1984)

    Google Scholar 

  135. Yeo, C.H., Hardiman, M.J., Glickstein, M.: Classical conditioning of the nictitating membrane response of the rabbit. Lesions of the cerebellar nuclei. Exp. Brain Res. 60(1), 87–98 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffmann, L.C., Cicchese, J.J., Berry, S.D. (2015). Hippocampal Theta-Based Brain Computer Interface. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics