Skip to main content

Estimation of the Electric Field across Medium Voltage Surge Arresters Using Artificial Neural Networks

  • Conference paper
  • 1355 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 459))

Abstract

Artificial neural networks (ANNs) are addressed in order to estimate the electric field across medium voltage surge arresters, information which is very useful for diagnostic tests and design procedures. Actual input and output data collected from hundreds of measurements carried out in the High Voltage Laboratory of the National Technical University of Athens (NTUA) are used in the training, validation and testing process. The developed ANN method can be used by laboratories and manufacturing/retail companies dealing with medium voltage surge arresters which either face a lack of suitable measuring equipment or want to compare/verify their own measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, R., Song, Y.: Artificial neural networks in power systems. III Examples of applications in power systems. Power Engin. Journal 12(6), 279–287 (1998)

    Article  Google Scholar 

  2. Mahanty, R.N., Gupta, P.B.D.: Application of RBF neural network to fault classification and location in transmission lines. IEE Proc-Gen Tran. Distr. 151(2), 201–212 (2004)

    Google Scholar 

  3. Mazon, A.J., Zamora, I., Gracia, J., Sagastabeutia, K.J., Saenz, J.R.: Selecting ANN structures to find transmission faults. IEEE Computer Appl. in Power 14(3), 44–48 (2001)

    Article  Google Scholar 

  4. Vasilic, S., Kezunovic, M.: An improved neural network algorithm for classifying the transmission line faults. Power Engin. Society Winter Meeting 2, 918–923 (2001)

    Article  Google Scholar 

  5. Gardoso, G., Rolim, J.G., Zurn, H.H.: Application of neural-network modules to electric power system fault section estimation. IEEE Trans. on PWRD 19(3), 1034–1041 (2004)

    Google Scholar 

  6. Schmidt, H.P.: Application of artificial neural networks to the dynamic analysis of the voltage stability problem. IEE Proc-Gen Tran. Distr. 144(6), 371–376 (1997)

    Google Scholar 

  7. Paucar, V.L., Rider, M.J.: Artificial neural networks for solving the power flow problem in electric power systems. Electric Power Systems Research 62, 139–144 (2002)

    Article  Google Scholar 

  8. Dash, P.K., Pradhan, A.K., Panda, G.: Application of minimal radial basis function neural network to distance protection. IEEE Trans. on PWRD. 16(1), 68–74 (2001)

    Google Scholar 

  9. Coury, D.V., Jorge, D.C.: Artificial neural network approach to distance protection of transmission lines. IEEE Trans. on PWRD 13(1), 102–108 (1998)

    Google Scholar 

  10. Cline, P., Lannes, W., Richards, G.: Use of pollution monitors with a neural network to predict insulator flashover. Electric Power Systems Research 42, 27–33 (1997)

    Article  Google Scholar 

  11. Ahmad, A.S., Ghosh, P.S., Aljunid, S.A.K., Said, H.A.I., Hussain, H.: Artificial neural network for contamination severity assessment of high voltage insulators under various meteorological conditions. In: AUPEC, Perth (2001)

    Google Scholar 

  12. Miti, G.K., Moses, A.J.: Neural network-based software tool for predicting magnetic performance of strip-wound magnetic cores at medium to high frequency. IEE Proc-Sci. Meas. Technol. 151(3), 181–187 (2004)

    Google Scholar 

  13. Martinez, J.A., Gonzalez-Molina, F.: Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks. Power Engin. Society Winter Meeting 3, 1133–1138 (2001)

    Google Scholar 

  14. Sidhu, T.S., Singh, H., Sachdev, M.S.: Design, implementation and testing of an artificial neural network based fault direction discrimination for protecting transmission lines. IEEE Trans. on PWRD 10(2), 697–706 (1995)

    Google Scholar 

  15. Hinrichsen, V.: Metal-oxide surge arresters, 1st edn. Siemens (2001)

    Google Scholar 

  16. James, R.E., Su, Q.: Condition assessment of high voltage insulation in power system equipment, 1st edn. IET Power and Energy Series, p. 53 (2008)

    Google Scholar 

  17. Vahidi, B., Nasab, R.S., Moghani, J., Sh., K.S.A., Hosseinian, S.H.: Three dimensional analyses of electric field and voltage distribution on ZnO surge arrester with broken sheds. In: 2005 IEEE/PES Trans. and Distrib. Conf. & Exhib.: Asia and Pacific, Dalian, China (2005)

    Google Scholar 

  18. Meshkatoddini, M.R.: Study of the electric field intensity in bushing integrated ZnO surge arresters by means of finite element analysis. In: COSMOL Users Conf., Boston (2006)

    Google Scholar 

  19. Lundquist, J., Stenstrom, L., Schei, A., Hansen, B.: New method of the resistive leakage currents of metal-oxide surge arresters in service. IEEE Trans. on PWRD 5(4), 1811–1822 (1990)

    Google Scholar 

  20. Vahidi, B., Nasab, R.S., Moghani, J.S.: Analysis of electric field and voltage distributions on ZnO surge arrester for polluted condition. In: XIV Int. Symp. on High Voltage Engin., Tsinghua University, Beijing, China (2005)

    Google Scholar 

  21. Karthik, R.: A novel analysis of voltage distribution in zinc oxide arrester using finite element method. Int. J. of Recent Trends in Engineering 1(4), 1–3 (2009)

    Google Scholar 

  22. Han, S.J., Zou, J., Gu, S.Q., He, J.L., Yuan, J.S.: Calculation of the potential distribution of high voltage metal oxide arrester by using an improved semi-analytic finite element method. IEEE Trans. on Magnetics 41(5), 1392–1395 (2005)

    Article  Google Scholar 

  23. Abe, S.: Neural networks and fuzzy systems. Kluwer Academic Publishers, Boston (1997)

    Book  MATH  Google Scholar 

  24. Haykin, S.: Neural Networks: a comprehensive foundation. MacMillan College Publishing Company, New York (1994)

    MATH  Google Scholar 

  25. Maghami, P.G., Sparks, D.W.: Design of neural networks for fast convergence and accuracy: dynamics and control. IEEE Trans. on Neural Networks 11(1), 113–123 (2000)

    Article  Google Scholar 

  26. Nolles, O.: Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin (2001)

    Book  Google Scholar 

  27. Lippmann, R.: An introduction to computing with neural nets. IEEE ASSP Magazine 4(2), 4–22 (1987)

    Article  Google Scholar 

  28. Tamura, S.I., Tateishi, M.: Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans. on Neural Nets 8(2), 251–255 (1997)

    Article  Google Scholar 

  29. Demuth, H., Beale, M.: Neural network toolbox user’s guide for use with MATLAB (2002)

    Google Scholar 

  30. Hagan, M.T., Demuth, H.P., Beale, M.: Neural network design. PWS Publishing, Boston (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ekonomou, L., Christodoulou, C.A., Mladenov, V. (2014). Estimation of the Electric Field across Medium Voltage Surge Arresters Using Artificial Neural Networks. In: Mladenov, V., Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2014. Communications in Computer and Information Science, vol 459. Springer, Cham. https://doi.org/10.1007/978-3-319-11071-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11071-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11070-7

  • Online ISBN: 978-3-319-11071-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics