Hydrowl: A Hybrid Query Answering System
for OWL 2 DL Ontologies

Giorgos Stoilos

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

Abstract. This system description paper introduces the OWL 2 query
answering system Hydrowl. Hydrowl is based on novel hybrid techniques
which in order to compute the query answers combine at run-time a rea-
soner ans; supporting a (tractable) fragment of OWL 2 (e.g., OWL 2 QL
and OWL 2 RL) with a fully-fledged OWL 2 DL reasoner ansy. The mo-
tivation is that if most of the (query answering) work is delegated to the
(usually) very scalable system ans; while the interaction with ans; is kept
to a bare minimum, then we can possibly provide with scalable query
answering even over expressive fragments of OWL 2 DL. We discuss the
system’s architecture and we present an overview of the techniques used.
Finally, we present some first encouraging experimental results.

1 Introduction

Conjunctive query (CQ) answering over ontological knowledge expressed in the
OWL 2 DL language has attracted the interest of many researchers as well as
application developers the last decade [1, 2]. Unfortunately, query answering over
OWL 2 DL ontologies is of very high computational complexity [3,4] and even
after modern optimisations and intense implementation efforts [5] OWL 2 DL
systems are still not able to cope with datasets containing billions of data.

The need for efficient query answering has motivated the development of sev-
eral fragments of OWL 2 DL 6], like OWL 2 EL, OWL 2 QL, and OWL 2 RL
for which query answering can be implemented (at-most) in polynomial time
with respect to the size of the data. Consequently, for many of these languages
there already exist highly scalable systems which have been applied successfully
to industrial-strength applications, like OWLim [1] and Oracle’s RDF Semantic
Graph [7]. The attractive properties of these systems have led application de-
velopers to use them even in cases where the input ontology is expressed in the
far more expressive OWL 2 DL language. Clearly, in such cases these systems
would most likely be incomplete—that is, for some user query and dataset they
will fail to compute all certain answers. However, techniques that attempt to
deliver complete query answering even when using scalable systems that are not
complete for OWL 2 DL have also been proposed [8,9].

In this system description paper we present the architecture and main char-
acteristics of the Hydrowl!! query answering system. Hydrowl supports expressive

! http://www.image.ece.ntua.gr/~gstoil/hydrowl/

ontology languages and like the latter mentioned approaches it is based on novel
techniques which attempt to use scalable but possibly incomplete systems as
much as possible in order to achieve favourable performance. All inferences in-
volving “problematic” constructors of OWL 2 DL that these systems do not sup-
port (e.g., existential restrictions and disjunctions) are either explicated (“mate-
rialised”) at a pre-processing step as additional axioms or are restricted as much
as possible during on-line query evaluation. Our first experimental evaluation
using Hydrowl has provided with many encouraging results several of which we
report in Section 4.

We have so far tried to keep the design of Hydrowl as modular as possible.
Hence, we feel that one of its interesting features is that any application de-
veloper can plug his/her system into Hydrowl with minimum implementation
effort and, moreover, many different combinations of systems are possible. This
is also supported by the fact that we have already provided implementations in
Hydrowl that combine the OWL 2 RL reasoner OWLim [1] with HermiT [10],
with HermiT-BGP [5], and with Rapid [11].

2 Techniques Used in Hydrowl

In the current section we briefly outline the techniques used in Hydrowl.

As mentioned above, for a given OWL 2 DL ontology T, dataset A, and query
Q, Hydrowl still tries to use as much as possible an incomplete but scalable system
ans to compute the certain answers of Q over 7 U A. Clearly, in that case, there
can be entailments of 7 U A related to Q that ans will miss. To recover such
missing inferences Hydrowl follows two different but not necessarily incompatible
approaches.

In the first approach, inferences involving unsupported constructors are ex-
plicated (“materialised”) in a form that ans can eventually “recognise”. For ex-
ample, let ans be an OWL 2 RL system and let 7 = {A C 3R, 3R C B}. Since
ans is an OWL 2 RL system it cannot handle axioms with existential restrictions
in the right hand side. Hence, Hydrowl will compute for ans a new set of axioms
R that will contain the axiom A C B, i.e., it will materialise the entailment
T E A C B. It can be verified that when ans is applied over 7 U R it is able
to return all answers to every ground query and every datasets over 7—that is,
for every ground CQ Q and A we have cert(Q,7 UA) C ans(Q, T URU A).2
Such a set of axioms R is called the repair of T for ans [8,12] and the process
of computing it repairing.

However, repairing captures only ground entailments hence even after repair-
ing ans is still incomplete for queries containing existential variables (which in
the following we call non-SPARQL queries). To also support such queries we
need to further materialise the non-ground inferences that are related to the ex-
istential variables of the query. Hydrowl accomplishes this by combining ans with
a second system ans’ which can explicate such type of information. One such

2 Note that this allows ans to be unsound, i.e., return wrong answers. However, to the
best of our knowledge, the vast majority of OWL 2 RL systems are sound.

family of systems are query rewriting systems which take as input a (possibly
non-SPARQL) query Q and a TBox 7 and compute a so-called query rewriting
Rew [13-15]. Roughly speaking, a rewriting Rew for Q, T consists of two parts, a
set of datalog rules Rewp which captures ground entailments of 7 and a union
of conjunctive queries Rewg which captures all inferences related to non-ground
entailments. Consequently, for Rewg W Rewp a rewriting for a non-SPARQL CQ
Q over a TBox T we have that cert(Q, 7 U.A) C ans(Rewg, 7 UR U A) for every
dataset 4. Summarising, this approach of Hydrowl to query answering follows
the following three steps:

1. Compute a repair R of T for ans.

2. Load the dataset A, the input TBox 7, and the repair R to ans.

3. For a CQ Q, if Q is SPARQL then directly evaluate it over ans; otherwise
compute a rewriting Rewp & Rewg for Q, T and evaluate Rewg over ans.

Note that steps 1 and 2 are usually required to be performed only once as a pre-
processing (changes in A can be handled incrementally). Moreover, note that
the important component both in computing R as well as in computing Rewg
is a query rewriting system [8, 12]. Hence, we call this approach rewriting-based
query answering.

Interestingly, by recent theoretical results [16-18], it follows that for systems
complete for OWL 2 RL repairs always exists for ontologies expressed in Horn-
SHIQ (a fairly expressive fragment of OWL 2) and they might also exist even
for arbitrary OWL 2 DL ontologies. Unfortunately, there can be ontologies where
a repair does not exist. The second approach followed by Hydrowl can work even
if no repair has been pre-computed at all (although some best effort “partial”
repair can be assumed). Instead, for an ontology 7 and a system ans, Hydrowl
first constructs the set U of atomic (concept and role) queries over T for which
ans is complete, called query base of ans for 7. Then, for an arbitrary query O,
the query base can be used to efficiently determine if ans is complete for Q (and
any dataset A) or not [19]; in the former case, Hydrowl uses ans to evaluate Q,
while in the latter it resorts to a fully-ledged OWL 2 DL reasoner ans’. There
are three benefits here. First, it is trivial to see that in theory query bases always
exist.3 Second, ans is expected to be mostly complete (7 usually includes few
“problematic” constructors) leaving few queries that need to be evaluated using
the fully-fledged OWL 2 DL system. Third, it has been shown [19] that even in
cases that Hydrowl needs to use ans’, the scalable system can still be exploited
in order to speed up the evaluation by ans’. We call this approach of Hydrowl
hybrid query answering and is summarised by the following three steps:

1. Load the dataset 4 and the input TBox 7 to ans.

2. Compute a query base U of ans for T.

3. For a (ground) CQ Q, if it can be determined using U that ans is complete
for Q then directly evaluate Q using ans; otherwise evaluate Q using a fully-
fledged OWL 2 DL reasoner ans’ together with ans.

3 Note, however, that there are limitation in automatically extracting them.

Note that indeed the two previous approaches are not incompatible. For
example, before computing a query base one can pre-compute some partial repair
R and also load it to ans. Then clearly, the more the partial R approximates the
(full) repair the smaller the query base of ans for 7 is. Moreover, a query rewriting
system can also be used in Step 3 of the hybrid query answering approach in
order to capture some non-ground entailments and hence provide some support
for non-SPARQL CQs, however, this has not been forulated and implemented
yet.

3 Architecture of Hydrowl

Hydrowl is implemented in JAVA and is available under the AGPL license.
Figure 1 presents its main components, where JAVA classes are marked as
rectangles, procedures by ovals and data-flow (TBox) with light-blue arrows.
The two approaches outlined in the previous section are implemented by the
two main classes HybridEvaluator and RewritingBasedEvaluator. As illustrated,
to implement these approaches the methods use internally an incomplete and
a complete reasoner and this communication is performed through interfaces,
namely IncompleteReasoner and CompleteReasoner in the case of HybridEvalu-
ator and IncompleteReasoner and QueryRewritingSystem in the case of Rewrit-
ingBasedEvaluator. HybridEvaluator is using an additional componenent called
(Q,T)-CompletenessChecker with which it decides whether the user query can
be evaluated using the incomplete reasoner or the complete one needs to be
employed.

Query Answering

| HybridEvaluator | | Rewriting-BasedEvaluator |
<<Interface>> (Q,T)-Compl. <<Interface>> <<Interface>>
CompleteReasoner Checker IncompleteReasoner QueryRewritingSystem
[|) Fay
————————— H
| HermiT | |Herm'\T-BGP| TUR.

Repairing (Pre-processing)

Compute

TU R, Repair
T Ontology/Query OWL2 DL
Rewriting System Reasoner

Fig. 1. Main components of Hydrowl

Compute
Query Base

The use of interfaces makes the architecture highly modular as by imple-
menting them one can readily use the query answering techniques of Hydrowl
with their reasoner of choice. So far we have provided implementations of Com-
pleteReasoner using the standard HermiT reasoner [10] and HermiT-BGP [5], an
implementation of QueryRewritingSystem using Rapid [11], and an implemen-
tation of IncompleteReasoner using OWLim, however, we envision that OWL 2
DL systems such as Pellet, query rewriting systems such as Ontop and Clipper,
as well as OWL 2 RL systems and triple stores such as Apache Jena, RDFox,
and Stardog can be easily integrated.

For both approaches to work, a repair R or a query base U for the incomplete
system ans used in query answering should have been computed previously at
a pre-processing step. This can be done using the repairing package of Hydrowl.
Internally, this package uses a rewriting system, an OWL 2 DL reasoner and the
system ans with which it again communicates through an interface. The rewrit-
ing system is used to produce an initial repair (i.e., some first materialisation of
the ground inferences of 7) while both the OWL 2 DL reasoner and ans are used
as minimisation steps to produce the final repair R. The existing implementation
uses again Rapid and HermiT but the choice of these systems compared to the
ones used as implementations of CompleteReasoner and QueryRewritingSystem
is irrelevant (i.e., one can use completely different systems during query answer-
ing). However, clearly, the incomplete reasoner used in this step to produce R
or U must be the same (or at least equivalent in expressivity) as the one used
during query answering.

Subsequently, the query base is used by (Q,T)-CompletenessChecker to de-
termine if the incomplete reasoner is (in)complete for the given user query while
the repair needs to be loaded to QueryRewritingSystem in order for the incom-
plete system to be complete for all ground entailments over the input ontology
and data. As mentioned in the previous section, in the hybrid query answering
approach one can also compute and load some partial (or even full) repair to the
incomplete reasoner. In that case, the “more complete” the partial repair the
smaller the query base would be compared to the one computed using 7 (e.g.,
if the partial repair captures all ground entailments for a concept A then the
query base won’t contain the atomic query :-A(x)).

Finally, due to the systems integrated so far in Hydrowl we note that, the
rewriting-based query answering approach supports repairing and query answer-
ing (of arbitrary CQs) over ontologies expressed in the ELHZ fragment of OWL 2
DL (a limitation stemming from Rapid which currently supports ELHT), while
the hybrid query evaluation approach supports query answering of SPARQL
queries over OWL 2 DL ontologies.

4 Evaluation

We report on some experimental evaluations using the HybridEvaluator and
RewritingBasedEvaluator classes of Hydrowl to answer queries. We used OWLim
as an implementation of IncompleteReasoner, the standard HermiT reasoner as

Table 1. Query Answering Times

LUBM UOBM
Query 1]3[8[9[[3]4]9 [11]12]14
HermiT-BGP|[2.5]1.4[1.4]105[[204]5.8]21.6]1.7[1.2[48.7
Hydrowl [.07[.07].24].13][.02].01] .01 [.07[.04|35.3

an implementation of CompleteReasoner and Rapid as an implementation of
QueryRewritingSystem.

4.1 Hybrid Query Answering

First, using the repairing package of Hydrowl we computed query bases for
OWLim for ontologies LUBM and UOBM. For LUBM we required 14.5 sec-
onds while for UOBM we required 48.7 seconds. Some additional manual editing
was required for UOBM in order to remove the atomic queries :-Woman(x) and
:-PeopleWithManyHobbies(x) from the query base as OWLim is incomplete for
them but this is not recognised automatically by the Compute QueryBase pro-
cedure of Hydrowl. This is because this procedure is based on a computation of a
repair using Rapid which currenlty only supports £LHZ while these queries re-
quire reasoning over disjunctions and functional number restrictions. Second, we
used HybridEvaluator in order to evaluate all the test queries of LUBM (we used
5 universities) and of UOBM (we used 1 department) and we compared against
the HermiT-BGP system [5]. Table 1 presents the results (in seconds) for all the
interesting queries (for the rest both systems have similar response times). In
grey colour we have marked those queries where Hydrowl uses both OWLim and
HermiT. As can be seen, in all queries the hybrid query answering approach of
Hydrowl is faster than HermiT-BGP. In some cases the difference is quite signifi-
cant and this is even in the cases where Hydrowl uses both HermiT and OWLim.
It is worth noting query 3 over UOBM which requires non-deterministic rea-
soning. HermiT-BGP non-deterministicaly checks whether many individuals are
instances of the class Student while Hydrowl using both HermiT and OWLim
manages to restrict this search space to only a few individuals. Similarly, evalu-
ating query 14 requires non-deterministic reasoning over the class Woman.

4.2 Repairing-Based Query Answering

First, we wanted to evaluate whether repairs for large and complex ontologies
can be computed efficiently in practice. Using the repairing package of Hydrowl
we managed to compute repairs for 151 out of the 152 ontologies of our dataset.
In the vast majority of cases a repair could be computed in less than a few
minutes (usually within seconds) and only for the very large ones we required
several minutes; Table 2 presents results for the latter. Despite their size and
complexity we see that we can compute repairs for them in less than 1 hour
which, given that this usually occurs once, we feel is a reasonable amount of

Table 2. |7 (JR]): number of axioms of the input TBox (repair), ¢: time in seconds.

L 7 [m[IR [¢ [7 [Im[R [¢ |
[Not-Galen| 5471] 3015(4153)[298(42)[[Galen-doc[4229]6051(6176)[1152(28)]
[Fly [19845[10361(12368)[2884(178)[] Galen [4229[3012(3062)] 257(24)]

Table 3. Loading times for Fly and UOBM for the various ABoxes.

Universities A 2x A3 x Al4d x A5 x A
112 5 |10 20 Fly 14.0| 21.9] 22.7(27.9| 31.5
UOBM 4.116.8|16.2|31.9| 73.2 FlyuUR |31.9| 55.1| 68.5| 93.0| 119.3
UOBMUR |4.4|8.3|24.3(44.9|108.1 FlyuR™|33.2| 62.1] 70.1| 100.6| 118.2

(a) UOBM (b) Fly

time. Actually, if we discard a very expensive minimisation step of repairing,
then we can compute some (non-minimal) repair very efficiently while its size is
not considerably larger than the minimal one (see Table 2 numbers in brackets).

Next, we loaded the repairs we computed for UOBM and Fly into OWLim;
Table 3 presents loading times of the original ontology with (i) data of various
sizes (for UOBM we used 1 to 20 universities and for Fly we multiplied the
original ABox up to 5 times) and (ii) with and without the computed repairs.
As can be seen, the overhead introduced by additionally loading the repair (R)
is significant only in the Fly ontology, mostly due to its size, however, note that
loading is also usually performed only once. In Fly we have also loaded the
non-minimal repair (R~) and as it turns out there is no significant difference
compared to the minimal one (recall that computing it is much more efficient).

Table 4. Results for Answering the Fly Queries

Q1 Qs Qs s
tRapid | towLim || TRapid | EowLim || tRapid |EOWLim || ERapid |towLim
0.31| 0.31| 0.90| 1.28| 0.07| 0.04|| 0.05| 0.02

Finally, we have used RewritingBasedEvaluator to answer all 4 non-SPARQL
queries of Fly (using the original ABox); Table 4 presents the results where trapid
is the time required by Rapid and towiim the time required by OWLim (total
time is their sum). As we can see in most cases we were able to compute and
evaluate a rewriting almost instantaneously. The good behaviour of Hydrowl can
be attributed to the fact that most hard work is pushed to a pre-processing step
that is materialising all ground entailments into the repair and explicating them
by loading the ontology, the repair, and the data into OWLim.

Acknowledgements. The work was funded by a Marie Curie Career Reinte-
gration Grant within European Union’s 7th Framework Programme (FP7/2007-
2013) under REA grant agreement 303914.

References

10.

11.

12.

13.

14.

15.

16.

Kiryakov, A., Bishoa, B., Ognyanoff, D., Peikov, 1., Tashev, Z., Velkov, R.: The
Features of BigOWLIM that Enabled the BBCs World Cup Website. In: Workshop
on Semantic Data Management (SemData). (2010)

Motik, B., Horrocks, I., Kim, S.M.: Delta-Reasoner: A Semantic Web Reasoner for
an Intelligent Mobile Platform. In: Proceedings of the 21st International World
Wide Web Conference (WWW 2012). (2012) 63-72

Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expres-
sive description logics via tableaux. Journal of Automated Reasoning 41(1) (2008)
61-98

Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for
the description logic SHZQ. Journal of Artificial Intelligence Research (JAIR) 31
(2008) 157-204

Kollia, I., Glimm, B.: Optimizing sparql query answering over owl ontologies. J.
Artif. Intell. Res. (JAIR) 48 (2013) 253-303

Motik, B., Cuenca Grau, B., Horrocks, 1., Wu, Z., Fokoue, A., (Editors), C.L.:
OWL 2 Web Ontology Language Profiles. W3C Recommendation (2009)

Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in oracle. In: Proc. of ICDE, IEEE (2008) 1239-1248

Stoilos, G., Cuenca Grau, B., Motik, B., Horrocks, I.: Repairing ontologies for
incomplete reasoners. In: Proceedings of the 10th International Semantic Web
Conference (ISWC-11), Bonn, Germany. (2011) 681-696

Zhou, Y., Nenov, Y., Grau, B.C., Horrocks, I.: Complete query answering over
horn ontologies using a triple store. In: Proc. of the 12th International Semantic
Web Conference (ISWC), Springer LNCS (2013)

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: An owl 2
reasoner. Journal of Automated Reasoning (JAR), In Press (2014)

Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.: Optimising resolution-based
rewriting algorithms for dl ontologies. In: Proceedings of the 26th Workshop on
Description Logics (DL 2013), Ulm, Germany. (2013)

Stoilos, G.: Ontology-based data access using rewriting, OWL 2 RL systems and
repairing. In: Proceedings of the 11th European Semantic Web Conference (ESWC
2014). (2014)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3) (2007) 385-429

Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family
and relations. Journal of Artificial Intelligence Research (JAIR) 36 (2009) 1-69
Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. Journal of Applied Logic 8(2) (2010) 186—209
Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHZQ plus rules. In: Proc. of AAAL (2012)

17.

18.

19.

Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings
beyond horn ontologies. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI 2013). (2013)

Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog
programs and its applications to ontology reasoning. In: Proceedings of AAAI
2014. (2014)

Stoilos, G., Stamou, G.: Hybrid query answering for owl ontologies. Proceedings
of the 21st European Conference on Artificial Intelligence (ECAI 14) (2014)

