
Checking Data Structure Properties
Orders of Magnitude Faster

Emmanouil Koukoutos and Viktor Kuncak

EPFL, Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract. Executable formal contracts help verify a program at run-
time when static verification fails. However, these contracts may be pro-
hibitively slow to execute, especially when they describe the transforma-
tions of data structures. In fact, often an efficient data structure opera-
tion with O(log(n)) running time executes in O(n log(n)) when naturally
written specifications are executed at run time.
We present a set of techniques that improve the efficiency of run-time
checks by orders of magnitude, often recovering the original asymptotic
behavior of operations. Our implementation first removes any statically
verified parts of checks. Then, it applies a program transformation that
changes recursively computed properties into data structure fields, en-
suring that properties are evaluated no more than once on a given data
structure node. We present evaluation of our techniques on the Leon
system for verification of purely functional programs.

1 Introduction

Static verifiers can demonstrate program correctness for any given input. How-
ever, their limitations prevent them from proving complex programs. Runtime
verification can be of great help in such circumstances. Unfortunately, contracts
that are good for static verification are often expensive to check at runtime, and
may even degrade program performance asymptotically.

Related Work. There have been some attempts to mitigate the performance
penalty of runtime checks. Shankar and Bod́ık [7] present DITTO, an automatic
incrementalizer for imperative data structure invariant checking. The system
memoizes results of runtime checks for data structures, and recomputes them
only when the data structure is mutated, rather than every time it is accessed.
Memoization itself is first proposed by Michie [5]. Hughes [4] introduces lazy
memo-functions, which optimize memoization by computing the results of the
memoized functions lazily. Memoization (or tabling) has also been included as a
built-in feature in XSB and other variants of Prolog [9], providing both theoret-
ical and practical benefits to performance and termination of Prolog programs.

Another popular strategy for optimizing runtime checks is partially evaluat-
ing checks ahead of time, i.e. running a static verification step before executing
the program, in order to simplify or completely remove runtime checks. This



2

sealed abstract class Tree
case class Leaf() extends Tree
case class Node(left : Tree, value : Int, right: Tree) extends Tree
def insert(t: Tree, e : Int) : Tree = {
require(isBST(t))
t match {
case Leaf() ⇒ Node(Leaf(), e, Leaf())
case Node(l,v,r) ⇒ if (e == v) t
else if (e < v) Node(insert(l,e), v, r)
else Node(l, v, insert(r,e))}

} ensuring (res ⇒ isBST(res))

def isBST(t:Tree) : Boolean = t match {
case Leaf() ⇒ true
case Node(l,v,r) ⇒ isBST(l) && isBST(r) && treeMax(l) < v && v < treeMin(r) }

Fig. 1: Binary Search Tree

case class TreeFields(isBST: Boolean, treeMin : Int, treeMax : Int)
sealed abstract class Tree
case class Leaf(treeFields : TreeFields) extends Tree
case class Node(left : Tree, value : Int, right: Tree, treeFields : TreeFields) extends Tree
def makeNode(left : Tree, value : Int, right: Tree) = Node(left, value, right, {
val lmin = left.treeFields.min; val lmax = left.treeFields.max
val rmin = right.treeFields.min; val rmax = right.treeFields.max
val thisBST = left.treeFields.isBST && right.treeFields.isBST && lmax < v && v < rmin
TreeFields(thisBST, min3(lmin,value,rmin), max3(lmax,value,rmax)) }

def isBST(t:Tree) : Boolean = t.treeFields.isBST

Fig. 2: Binary Search Tree with Memoization

idea has been applied to partially evaluate finite-state properties [2] as well as
for dynamically typed languages and languages with expressive type systems [3].

Contributions. In this paper, we show that a particular, predictable form of
memoization, which introduces extra fields into data structures, can substantially
improve the performance of runtime checks that remain after static verification
attempts. Our system works for a purely functional subset of Scala recognized
by the Leon verification tool [1], [8]. It provides executable formal contracts in
the form of pre- and postconditions of functions, and supports algebraic data
types (ADTs). Our implementation and the benchmarks we used to evaluate it
are available at https://github.com/manoskouk/leon/tree/memoization.

Example. Consider the example in Fig. 1, which defines a tree datatype along
with a decorated insert operation in PureScala. require denotes a precondition,
whereas ensuring denotes a postcondition that takes an anonymous function that



3

applies to function result. isBST is a function used as a specification, denoting
that its argument is indeed a binary search tree. treeMin and treeMax are full tree
traversals, so isBST would also need to traverse the whole tree when executed.
If executed directly as written, each recursive call of insert calls isBST, which
makes insert on unbalanced trees quadratic instead of linear. To avoid such costly
computation without losing any information, we add extra fields into Tree to
denote the result of isBST, treeMin and treeMax for each node. Fig. 2 sketches such
transformed version of the data structure. The information that was previously
computed using recursive functions is now available with a field lookup. We use
constructor functions such as makeNode to compute the additional fields when
creating a node, using a constant amount of additional work. The next sections
present and evaluate an automated transformation that performs such rewriting.

2 Our Approach

In our system, memoization and static verification jointly reduce the cost of
runtime checks.

2.1 Memoizing Fields for Formal Contracts

Intuitively, we memoize whatever the program’s formal contracts need, and use
the data structure itself as the storage space. A function is eligible to be mem-
oized, if 1) it is called (directly or indirectly) from a formal contract (otherwise
its value is not needed for runtime checks), 2) it has a single argument of a class
type, i.e. an ADT (to ensure that a single memoized field can indeed uniquely
describe the result of the function for the object it is applied to), 3) it is recur-
sive, possibly through mutual recursion (to make memoization worthwhile), 4)
its return type is not the same as its argument type (as a heuristic to exclude
storing large fields). Our system memoizes each function that fits the above cri-
teria by turning it into an extra field. Each invocation of the function in the
program is substituted with a field retrieval. Every instantiation of a class that
was enhanced with extra fields is modified to initialize these fields correctly.

Memoizing further fields. The above memoization technique is not specific to
runtime checks, but can also memoize bookkeeping fields for data structures
that require them, such as AVL sub-tree heights. This saves the programmer the
effort to prove that the memoized field matches a definition. Our system there-
fore supports an explicit annotation in the source code to memoize additional
functions. We have used this functionality to simplify some of our benchmarks.

2.2 Utilizing Static Verification

Memoization, although useful on its own, does not yield the optimal results in
isolation. This is because we often end up memoizing fields to monitor properties
that have already been proven statically. This may have large associated cost,



4

especially when complex properties are involved (e.g. the contents of a data
structure).

Therefore, in our system, memoization is preceded by static verification. Each
statically verified postcondition is removed from the program, and each precon-
dition verified at a call site is removed from this call site. Additionally, all formal
contracts expressed as conjuncts of simpler contracts are split and the conjuncts
are verified separately, to remove as many checks as possible.

3 Evaluation

To demonstrate how this transformation can improve programs, we evaluated
it on benchmarks available at https://github.com/manoskouk/leon/tree/

memoization. We consider benchmarks where we perform a series of element
insertions to a data structure, and benchmarks where we sort a list.

In Table 1, we compare the asymptotic running time bounds for the original
version of each benchmark with the fully optimized version, where we have re-
moved statically verified formal contracts and then applied memoization. This
analysis demonstrates that our approach indeed restores the asymptotic bounds
of programs in many cases.

Benchmark SortedList1 AVLTree1 RBTree1 AmQueue1,2 HeapSort InsertionSort
Original O(n2) O(n logn) O(n) O(n) O(n2 logn) O(n3)
Optimized O(n) O(logn) O(n) O(1) O(n logn) O(n2)

Table 1: Asymptotic time bounds. 1Per element insertion. 2Amortized.

To further confirm the results, we compiled and ran these benchmarks. The
tests were compiled to JVM bytecode with the internal compiler of Leon. The
input used was a sequence of pseudorandom numbers produced by a simple
arithmetic function (using linear and mod operators). For each benchmark, we
present four sets of measurements, corresponding to the original program, and
the version of the program after applying each of our two techniques, isolated or
together (“Original”, “Memoized”, “Static” and “Static+Memoized”).

Note that the AVLTree and HeapSort benchmarks had the subtree height auto-
matically memoized rather than manually in the original version, which makes
the “Original” and “Static” versions slower; however, this influences asymptoti-
cally only the “Static” version of HeapSort (by a logarithmic factor), since in all
other cases the performance penalty is at least matched by unverified checks.
Also, we use an implementation of AmortizedQueue that uses the sizes of the front
and back stacks to decide when it has to reverse the former onto the latter [6].
So our system memoizes the size of both stacks.

The results are presented in Fig. 3. Missing measurement points mean that
the corresponding benchmark timed out with a timeout of 100 seconds.

Our techniques improved the performance of programs by orders of magni-
tude. In several of these benchmarks, all checks were removed statically; this



5

is because we originally started from benchmarks that were used to show the
strengths of static verification of Leon [8]. In these cases, the memoized version
without checks performs almost identically to the non-memoized one. It is also
notable that the memoized version with all checks was always much better than
the original one, even when tracking the contents of the data structures. This in-
dicates that memoization can be useful in more difficult problems as well, where
static verification fails to remove any contracts.

Comment on space usage. Although memoization improves the running time of
programs, it has negative impact on space usage. For most of our benchmarks
the increase is by a constant factor. This is in our opinion acceptable for JVM,
where objects already have a large footprint. The only exception is the RBTree

benchmark, where a set representing the content of each subtree had to be
memoized, resulting in asymptotically increased space usage (about 100 times
for input size 2000). In future versions of our system we will rule out memoization
of such complex properties, or better exploit the opportunities for fine-grained
sharing within memoized values, using techniques such as hash consing.

Conclusion. Overall, we have found that memoization provides orders of mag-
nitude improvements in running time of benchmarks compared to directly exe-
cuting formal contracts. It works well both in isolation, or in synergy with less
predictable techniques of static verification.

References

1. R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the Leon verifica-
tion system: Verification by translation to recursive functions. In Scala Workshop,
2013.

2. E. Bodden, P. Lam, and L. Hendren. Partially evaluating finite-state runtime mon-
itors ahead of time. ACM Trans. Program. Lang. Syst., 34(2):7:1–7:52, June 2012.

3. C. Flanagan. Hybrid type checking. In J. G. Morrisett and S. L. P. Jones, editors,
POPL, pages 245–256. ACM, 2006.

4. J. Hughes. Lazy memo-functions. In Functional Programming Languages and Com-
puter Architecture, pages 129–146. Springer, 1985.

5. D. Michie. Memo functions and machine learning. Nature, 218(5136):19–22, 1968.
6. C. Okasaki. Functional data structures. In J. Launchbury, E. Meijer, and T. Sheard,

editors, Advanced Functional Programming, volume 1129 of LNCS, pages 131–158.
Springer, 1996.

7. A. Shankar and R. Bodik. Ditto: automatic incrementalization of data structure
invariant checks (in java). In ACM SIGPLAN Notices, volume 42, pages 310–319.
ACM, 2007.

8. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.
In Static Analysis Symposium (SAS), 2011.

9. T. Swift and D. S. Warren. Xsb: Extending prolog with tabled logic programming.
Theory and Practice of Logic Programming, 12(1-2):157–187, 2012.



6

0 500 1,000 1,500 2,000
10−1

100

101

102

103

104

Number of insert operations

Time(ms) SortedList

0 500 1,000 1,500 2,000

101

102

103

104

Number of insert operations

Time(ms) AVLTree

0 500 1,000 1,500 2,000
101

102

103

104

Number of insert operations

Time(ms) RedBlackTree

Original

Memoized

Static

St.+Memo

0 500 1,000 1,500 2,000
100

101

102

103

104

105

Number of insert operations

Time(ms)
AmortizedQueue

0 500 1,000 1,500 2,000

100

101

102

103

Length of input list

Time(ms)
HeapSort

0 500 1,000 1,500 2,000

100

102

104

Length of input list

Time(ms) InsertionSort

Fig. 3: Performance of programs before and after memoization


