Skip to main content

Dynamic Fuzzy Sliding Mode Control of Underwater Vehicles

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

Abstract

A novel dynamic fuzzy sliding mode control (DFSMC) algorithm is developed for heading angle control of autonomous underwater vehicles (AUV’s) in horizontal plane. At first, we design single input fuzzy sliding mode control (SIFSMC) based on mamdani type fuzzy inference system. The SIFSMC offers significant reduction in rule inferences and simplify the tuning of control parameters. Practically, it can be easily implemented by a look up table using a low cost advanced processor. The control structure provides robustness under the influence of parameter uncertainties and environmental disturbances. Next, we proposed fuzzy adaptation techniques in SIFSMC algorithm to vary the base of input–output membership functions of fuzzy inference engine. This adaptation law provides minimum reaching time to track desired trajectory path and also eliminate chattering effects. So far, the dynamics of AUV’s are highly nonlinear, time varying and hydrodynamic coefficients of vehicle are difficult to be accurately estimated a prior, because of the variations of these coefficients with different operating conditions. These types of difficulties cause modeling inaccuracies of AUV’s dynamics. Therefore, Traditional control techniques may not be able to handle these difficulties promptly and can’t guarantee the desired tracking performance. On the other hand, sliding mode control (SMC) is the suitable choice for control of AUV’s, because of its appreciable features such as design simplicity with robustness to parameter uncertainty and external disturbances. But, it has the inherent problem of chattering phenomenon which is the high frequency oscillations of the controller output and another difficulty in the calculation of equivalent control. Therefore, overall knowledge of the plant dynamics is required for this purpose. These problems are suitably circumvented by combining basic principles of sliding mode and fuzzy logic controllers (FLC’s). With this scheme, the stability and robustness of the FLC algorithm is ensured by the SMC law. By incorporating SMC in to fuzzy logic provides a possible solution to alleviate the chattering phenomena and to achieve zero steady state error. However, the parameters of membership function can’t be adjusted to afford optimal control efforts under the occurrence of uncertainties. Therefore, DFSMC is designed for regulating heading angle in horizontal plane, under the influence of parametric uncertainties (as added mass, hydrodynamic coefficients, lift and drag forces), highly coupled nonlinearities and environmental disturbances (like ocean currents and wave effects). This chapter focuses on design of two supervisory fuzzy systems for tuning of boundary layer and hitting gain which are the basic parameters of fuzzy sliding mode control (FSMC) algorithm. The proposed control algorithm is developed from fuzzy inference module, which has single input as a sliding surface and single output as control signal. The input–output membership functions are depends on base values such as boundary layer, equivalent control and hitting gain. The idea behind this control scheme is to update width of boundary layer and hitting gain, due to which the supports of input–output fuzzy membership functions are varied with the help of two fuzzy approximators. Simulation results shows that, the output tracking response has minimum reaching time and tracking error in the approaching phase along with chattering problem can also reduced. The performance of proposed control strategy has been evaluated by comparison with conventional SMC and FSMC. A summary of fuzzy adaptation schemes in FSMC algorithm are given for enhancing tracking performance of AUV’s. Finally, research directions for adopting optimal fuzzy supervisory techniques in sliding mode based fuzzy algorithm are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amer, A.F., Sallam, E.A., Elawady, W.M.: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl. Soft Comput. 11(8), 4943–4953 (2011)

    Article  Google Scholar 

  • Azar, A.T.: Fuzzy Systems. IN-TECH, Vienna, Austria (2010). ISBN: 978-953-7619-92-3

    Google Scholar 

  • Balasuriya A., Cong L.: Adaptive fuzzy sliding mode controller for underwater vehicles. In: Proceeding of the international conference on control and automation, 12 June 2003, Montreal, Que., Canada, pp. 917–921 (2003). doi:10.1109/ICCA.2003.1595156

  • Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. J. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  • Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 58(1), 16–26 (2010)

    Article  Google Scholar 

  • Choi, S.B., Park, D.W., Jayasuriya, S.: A time-varying sliding surface for fast and tracking control of second-order dynamic systems. Automatica 30(2), 899–904 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, B.J., Kwak, S.W., Kim, B.K.: Design of a sliding mode controller with self-tuning boundary layer. J. Intell. Robot. Syst. 6(2), 3–12 (1996)

    Google Scholar 

  • Choi, S.K., Yuh, J.: Experimental study on a learning control system with bound estimation for underwater vehicles. Int. J. Auton. Robots 3(2), 187–194 (1996)

    Article  Google Scholar 

  • Cristi, R., Papoulias, F.A., Healey, A.J.: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Ocean. Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  • Da Cunha, J.P.V.S., Costa, R.R., Hsu, L.: Design of high performance variable structure control of ROV’s. IEEE J. Ocean. Eng. 20(1), 42–55 (1995)

    Article  Google Scholar 

  • DeBitetto, P.A.: Fuzzy logic for depth control of unmanned undersea vehicles, In Proceedings of IEE of AUV Symposium, 19–20 July 1994, Cambridge, MA, pp. 233–241 (1994). doi:10.1109/AUV.1994.518630

  • Erbatur, K., Kaynak, O., Sabanovic, A., Rudas, I.: Fuzzy adaptive sliding mode control of a direct drive robot. Robot. Auton. Syst. 19(2), 215–227 (1996)

    Article  Google Scholar 

  • Fossen, T.I., Sagatun, S.: Adaptive control of nonlinear systems: a case study of underwater robotic systems. J. Robot. Syst. 8(3), 393–412 (1991)

    Article  MATH  Google Scholar 

  • Goheen, K.R., Jefferys, E.R.: Multivariable self tuning autopilots for autonomous underwater vehicles. IEEE J. Ocean. Engg. 15(3), 144–151 (1990)

    Article  Google Scholar 

  • Guo S., Du J., Xichuan L., Chunfeng Y.: Adaptive fuzzy sliding mode control for spherical underwater robots. In: Proceeding of IEEE international conference on mechatronics and automation, 5–8 Aug. 2012, Chengdu, pp. 1681–1685 (2012). doi:10.1109/ICMA.2012.6284389

  • Guo, J., Chiu, F.C., Huang, C.C.: Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. J. Ocean Eng. 30(16), 2137–2155 (2003)

    Article  Google Scholar 

  • Ha, Q.P.: Robust sliding mode controller with fuzzy tuning. IEE Electron. Lett. 32(17), 1626–1628 (1996)

    Article  Google Scholar 

  • Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  • Hoang, N.Q., Kreuzer, E.: Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: theory and experiments. J. Ocean Eng. 15(4), 411–419 (2007)

    Google Scholar 

  • Hoang, N.Q., Kreuzer, E.: A robust adaptive sliding mode controller for remotely operated vehicles. Technische Mechanik 28(3), 185–193 (2008)

    Google Scholar 

  • Hung, L.C., Lin, H.P., Chung, H.Y.: Design of self tuning fuzzy sliding mode control for TORA system. Expert Syst. Appl. 32(1), 201–212 (2007)

    Article  Google Scholar 

  • Hwang, Y.R., Tomizuka, M.: Fuzzy smoothing algorithms for variable structure systems. IEEE Trans. Fuzzy Syst. 2(4), 277–284 (1994)

    Article  Google Scholar 

  • Ishaque, K., Abdullah, S.S., Ayob, S.M., Salam, Z.: Single input fuzzy logic controller for unmanned underwater vehicle. J. Intell. Robot. Syst. 59(1), 87–100 (2010)

    Article  MATH  Google Scholar 

  • Kanakakis, V., Valavanis, K.P., Tsourveloudis, N.C.: Fuzzy logic based navigation of underwater vehicles. J. Intell. Robot. Syst. 40(1), 45–88 (2004)

    Article  Google Scholar 

  • Kato N., Ito Y., Kojjma J., Asakawa K., Shirasaki Y.: Guidance and control of autonomous underwater vehicle AQUA EXPLORER 1000 for inspection of underwater cables, International symposium on unmanned untethered submersible technology, 13–16 Sep. 1994, Brest, pp. 195–211 (1994). doi:10.1109/OCEANS.1994.363845

  • Kim H.S., Shin Y.K.: Design of adaptive fuzzy sliding mode controller using FBFE for UFV depth control. In: Proceeding of SICE-ICASE iInternational joint conference, 18–21 Oct. 2006, Busan, pp. 3100–3103 (2006). doi:10.1109/SICE.2006.314744

  • Kim, S.W., Lee, J.J.: Design of a fuzzy controller with fuzzy sliding surface. J. Fuzzy Sets Syst. 71(3), 359–367 (1995)

    Article  Google Scholar 

  • Lakhekar, G.V.: Tuning and analysis of sliding mode controller based on fuzzy logic. Int. J. Control Autom. 5(3), 93–110 (2012)

    Google Scholar 

  • Lakhekar, G.V.: A new approach to the design of an adaptive fuzzy sliding mode controller. Int. J. Ocean Syst. Eng. 3(2), 50–60 (2013)

    Article  Google Scholar 

  • Lam W.C., Ura T.: Nonlinear controller with switched control law for tracking control of noncruising AUV. In: Proceeding of IEEE AUV’96, 2–6 June 1996, Monterey, CA, pp. 78–85 (1996). doi:10.1109/AUV.1996.532403

  • Lee, P.M., Hong, S.W., Lim, Y.K., Lee, C.M., Jeon, B.H., Park, J.W.: Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J. Ocean Eng. 24(3), 88–395 (1999)

    Google Scholar 

  • Lee, H., Kim, E., Kang, H.J., Park, M.: A new sliding-mode control with fuzzy boundary layer. Fuzzy Sets Syst. 120(1), 135–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, C.Y., Su, J.P.: A new approach to the design of a fuzzy sliding-mode controller. Fuzzy Sets and Systems 139(1), 111–124 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, D., Yi, J., Zhao, D., Wang, W.: Adaptive sliding mode fuzzy control for a two dimensional overhead crane. Mechatronics 15(5), 505–522 (2005)

    Article  Google Scholar 

  • Marzbanrad A. R., Eghtesad M., Kamali R.: A robust adaptive fuzzy sliding mode controller for trajectory tracking of ROVs. In: Proceeding of IEEE conference on decision and control and european control conference, 12–15 Dec. 2011, Orlando FL, pp. 2863–2870 (2011). doi:10.1109/CDC.2011.6160980

  • Ryu S.H., Park J.H.: Autotuning of sliding mode control parameters using fuzzy logic. In: Proceeding of the American control conference, 25–27 June 2001, Arlington, VA, pp. 618–623 (2001). doi:10.1109/ACC.2001.945615

  • Sebastian, E., Sotelo, M.A.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Robot Syst. 49(2), 189–215 (2007)

    Article  Google Scholar 

  • Shi X., Zhou J., Bian X., and Juan L., (2008). Fuzzy Sliding-Mode Controller for the Motion of Autonomous Underwater Vehicle, In Proceeding of IEEE International Conference on Mechatronics and Automation, 5–8 Aug. 2008, Takamatsu, pp. 466–470. doi:10.1109/ICMA.2008.4798800

  • Smith, S.M., Rae, G.J.S., Anderson, D.T., Shien, A.M.: Fuzzy logic control of an autonomous underwater vehicle. Control Eng. Pract. 2(2), 321–331 (1994)

    Article  Google Scholar 

  • Song F., Smith S.M.: Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: Proceeding of MTS/IEEE ocean conference, 14 Sep. 2000, Providence, RI, pp. 835–840 (2000). doi:10.1109/OCEANS.2000.881362

  • Temeltas, H.: A fuzzy adaptation technique for sliding mode controllers, IEEE International symposium of control applications, 7–10 July 1998, Pretoria, pp. 110–115 (1998). doi:10.1109/ISIE.1998.707758

  • Wai, R.J., Su, K.H.: Adaptive enhanced fuzzy sliding mode control for electrical servo drive. IEEE Trans. Ind. Electron. 53(2), 569–580 (2006)

    Article  Google Scholar 

  • Walchko K. J., and Nechyba M.C., (2003). Development of a sliding mode control system with extended Kalman filter estimation for Subjugator, In Proceding of Florida Conference on Recent Advances in Robotics, 18–20 June 2003, Florida, pp. 185–191

    Google Scholar 

  • Xin S., Zaojian Z.: A fuzzy sliding mode controller with adaptive disturbance approximation for underwater robot. In: Proceeding of international asia conference on informatics in control, automation and robotics, 6–7 March 2010, Wuhan, pp. 50–53 (2010). doi:10.1109/CAR.2010.5456607

  • Yagiz, Y., Haciogluy, Y.: Fuzzy sliding modes with moving surface for the robust control of a planar robot. J. Vib. Control 11(7), 903–922 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoerger, D., Slotine, J.: Adaptive sliding control of an experimental underwater vehicle. In: Proceedings of IEEE conference on robotics and aAutomation, 9–11 April 1991, Sacramento, CA, pp. 2746–2751 (1991). doi:10.1109/ROBOT.1991.132047

  • Yoerger, D., Slotine, J.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Engg. 10(4), 462–470 (1985)

    Article  Google Scholar 

  • Yorgancioglu, F., Komurcugil, H.: Single-input fuzzy-like moving sliding surface approach to the sliding mode control. Electr. Eng. 90(3), 199–207 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lakhekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lakhekar, G.V., Waghmare, L.M. (2015). Dynamic Fuzzy Sliding Mode Control of Underwater Vehicles. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics