Skip to main content

Optimal Sliding and Decoupled Sliding Mode Tracking Control by Multi-objective Particle Swarm Optimization and Genetic Algorithms

  • Chapter
  • First Online:
Advances and Applications in Sliding Mode Control systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

Abstract

The objective of this chapter is to present an optimal robust control approach based upon smart multi-objective optimization algorithms for systems with challenging dynamic equations in order to minimize the control inputs and tracking and position error. To this end, an optimal sliding and decoupled sliding mode control technique based on three multi-objective optimization algorithms, that is, multi-objective periodic CDPSO, modified NSGAII and Sigma method is presented to control two dynamic systems including biped robots and ball and beam systems. The control of biped robots is one of the most challenging topics in the field of robotics because the stability of the biped robots is usually provided laboriously regarding the heavily nonlinear dynamic equations of them. On the other hand, the ball and beam system is one of the most popular laboratory models used widely to challenge the control techniques. Sliding mode control (SMC) is a nonlinear controller with characteristics of robustness and invariance to model parametric uncertainties and nonlinearity in the dynamic equations. Hence, optimal sliding mode tracking control tuned by multi-objective optimization algorithms is utilized in this study to present a controller having exclusive qualities, such as robust performance and optimal control inputs. To design an optimal control approach, multi-objective particle swarm optimization (PSO) called multi-objective periodic CDPSO introduced by authors in their previous research and two notable smart multi-objective optimization algorithms, i.e. modified NSGAII and the Sigma method are employed to ascertain the optimal parameters of the control approach with regard to the design criteria. In comparison, genetic algorithm optimization operates based upon reproduction, crossover and mutation; however particle swarm optimization functions by means of a convergence and divergence operator, a periodic leader selection method, and an adaptive elimination technique. When the multi-objective optimization algorithms are applied to the design of the controller, there is a trade-off between the tracking error and control inputs. By means of optimal points of the Pareto front obtained from the multi-objective optimization algorithms, plenty of opportunity is provided to engineers to design the control approach. Contrasting the Pareto front obtained by multi-objective periodic CDPSO with two noteworthy multi-objective optimization algorithms i.e. modified NSGAII and Sigma method dramatizes the excellent performance of multi-objective periodic CDPSO in the design of the control method. Finally, the optimal sliding mode tracking control tuned by CDPSO is applied to the control of a biped robot walking in the lateral plane on slope and the ball and beam system. The results and analysis prove the efficiency of the control approach with regard to providing optimal control inputs and low tracking and position errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the cart-pendulum system. ISA Trans. 52(6), 870–880 (2013)

    Article  Google Scholar 

  • Alfaro-Cid, E., McGookin, E.W., Murray-Smith, D.J., Fossen, T.I.: http://www.sciencedirect.com/science/article/pii/S0967066104001741Genetic algorithms optimisation of decoupled sliding mode controllers: simulated and real results. Control Eng. Pract. 13(6), 739–748 (2005)

  • Andalib Sahnehsaraei, A., Mahmoodabadi, M.J., Taherkhorsandi, M.: Optimal robust decoupled sliding mode control based on a multi-objective genetic algorithm. In: Proceedings of International Symposium on Innovations in Intelligent Systems and Application, Albena, 19–21 June 2013, pp. 1–5 doi:10.1109/INISTA.2013.6577641

  • Angeline, P.J.: Using selection to improve particle swarm optimization. Proceedings of Congress on Evolutionary Computation, Anchorage 4–9 May 1998, pp. 84–89 doi:10.1109/ICEC.1998.699327

  • de Aparecida, P.A., Horst Albrecht, C., de Souza Leite Pires, L.B., Pinheiro Jacob, B.: Tailoring the particle swarm optimization algorithm for the design of offshore oil production risers. Optim. Eng. 12(1–2), 215–235 (2011)

    MATH  Google Scholar 

  • Atashkari, K., Nariman-Zadeh, N., Golcu, M., Khalkhali, A., Jamali, A.: Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Convers. Manag. 48(3), 1029–1041 (2007)

    Article  Google Scholar 

  • Aziz, A.S.A., Azar, A.T., Salama, M.A., Hassanien, A.E., Hanafy, S.E.O.: Genetic algorithm with different feature selection techniques for anomaly detectors generation. Proceedings of Federated Conference On Computer Science And Information Systems Kraków, 8–11 Sept 2013, pp. 769–774

    Google Scholar 

  • Basin, M., Rodriguez-Ramirez, P., Ferrara, A., Calderon-Alvarez, D.: Sliding mode optimal control for linear systems. J. Franklin Inst. 349(4), 1350–1363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Bayramoglu, H., Komurcugil, H.: Time-varying sliding-coefficient-based terminal sliding mode control methods for a class of fourth-order nonlinear systems. Nonlinear Dyn. 73(3), 1645–1657 (2013)

    Article  MathSciNet  Google Scholar 

  • Belmecheri, F., Prins, C., Yalaoui, F., Amodeo, L.: Particle swarm optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. J. Intell. Manuf. 24(4), 775–789 (2013)

    Article  Google Scholar 

  • Biswas, S., Mandal, K.K., Chakraborty, N.: Constriction factor based particle swarm optimization for analyzing tuned reactive power dispatch. Front. Energy 7(2), 174–181 (2013)

    Article  Google Scholar 

  • De Carvalho, A.B., Pozo, A.: Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms: a study of many-objective problems. Neurocomputing 75(1), 43–51 (2012)

    Article  Google Scholar 

  • Castillo-Villar, K.K., Smith, N.R., Herbert-Acero, J.F.: Design and optimization of capacitated supply chain networks including quality measures. Math. Probl. Eng., Article ID 218913, pp. 17 (2014)

    Google Scholar 

  • Castillo-Villar, K.K., Smith, N.R., Simonton, J.L.: The impact of the cost of quality on serial supply-chain network design. Int. J. Prod. Res. 50(19), 5544–5566 (2012)

    Article  Google Scholar 

  • Cerman, O., Husek, P.: Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Syst. Appl. 39(11), 10269–10277 (2012)

    Article  Google Scholar 

  • Cha, Y.S., Kim, K.G., Lee, J.Y., Lee, J., Choi, M., Jeong, M.H., Kim, C.H., You, B.J., Oh, S.R.: MAHRU-M: a mobile humanoid robot platform based on a dual-network control system and coordinated task execution. Robot. Auton. Syst. 59(6), 354–366 (2011)

    Article  Google Scholar 

  • Chang, Y.H., Chang, C.W., Tao, C.W., Lin, H.W., Taur, J.S.: Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimizationhttp://www.sciencedirect.com/science/article/pii/S0957417411013613. Expert Syst. Appl. vol. 39(3), 3624–3633 (2012)

  • Chen, Z., Meng, W., Zhang, J., Zeng, J.: Scheme of sliding mode control based on modified particle swarm optimization. Syst. Eng.Theory Pract. 29(5), 137–141 (2009)

    Article  Google Scholar 

  • Dehghani, R., Fattah, A., Abedi, E.: Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases. Multibody Syst. dyn. (2013). doi:10.1007/s11044-013-9404-5

  • Ding, C.-T., Yang, S.-X., Gan, C.-B.: Input torque sensitivity to uncertain parameters in biped robot. Acta. Mech. Sin. 29(3), 452–461 (2013)

    Article  MathSciNet  Google Scholar 

  • Eberhart, R., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. Academic Press Professional, Inc, San Diego (1996)

    Google Scholar 

  • Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. Evolutionary Programming VII, pp. 611–616. Springer, Berlin (1998)

    Google Scholar 

  • Eker, I.: Second-order sliding mode control with PI sliding surface and experimental application to an electromechanical plant. Arab. J. Sci. Eng. 37(7), 1969–1986 (2012)

    Article  Google Scholar 

  • Elshazly, H.I., Azar, A.T., Elkorany, A.M., Hassanien, A.E.: Hybrid system based on rough sets and genetic algorithms for medical data classifications. Int. J. Fuzzy Syst. Appl. 3(4), 31–46 (2013)

    Article  Google Scholar 

  • Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, New York (2002)

    Google Scholar 

  • Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2005)

    Google Scholar 

  • Feng, S., Yahmadi Amur, S.A., Sun, Z.Q.: Biped walking on level ground with torso using only one actuator. Sci. China Inf. Sci. 56(11), 1–9 (2013)

    Article  Google Scholar 

  • Fieldsend, J.E., Singh, S.: A multi-objective algorithm based upon particle swarm optimization and efficient data structure and turbulence, In: Workshop on Computational Intelligence, 2002, pp. 37–44

    Google Scholar 

  • Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002)

    Article  Google Scholar 

  • Fonseca, C., Fleming, P.: Multi-objective optimal controller design with genetic algorithms. Proceedings of the International Conference on Control, Coventry, 21–24 (1994) pp. 745–749 doi:10.1049/cp:19940225

  • Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19(2), 384–391 (2004)

    Article  Google Scholar 

  • Gang, M., Wei, Z., Xiaolin, C.: A novel particle swarm optimization algorithm based on particle migration. Appl. Math. Comput. 218(11), 6620–6626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gosh, A., Das, S., Chowdhury, A., Giri, R.: An ecologically inspired direct search method for solving optimal control problems with Bezier parameterization. Eng. Appl. Artif. Intell. 24(7), 1195–1203 (2011)

    Article  Google Scholar 

  • Han, C., Zhang, G., Wu, L., Zeng, Q.: Sliding mode control of T-S fuzzy descriptor systems with time-delay. J. Franklin Inst. 349(4), 1430–1444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hart, C.G., Vlahopoulos, N.: An integrated multidisciplinary particle swarm optimization approach to conceptual ship design. Struct. Multi. Optim. 41(3), 481–494 (2010)

    Article  Google Scholar 

  • Hu, X., Eberhart, R.: Multi-objective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, 2002, pp. 1677–1681. doi:10.1109/CEC.2002.1004494

  • Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: Robust \(\text{ H }_\infty \) sliding mode control for discrete time-delay systems with stochastic nonlinearities. J. Franklin Inst. 349(4), 1459–1479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Industr. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  • Jadhav, A.M., Vadirajacharya, K.: Performance verification of PID controller in an interconnected power system using particle swarm optimization. Energy Procedia 14, 2075–2080 (2012)

    Article  Google Scholar 

  • Javadi-Moghaddam, J., Bagheri, A.: An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst. Appl. 37(1), 647–660 (2010)

    Article  Google Scholar 

  • Jia, D., Zheng, G., Qu, B., Khurram Khan, M.: A hybrid particle swarm optimization algorithm for high-dimensional problems. Comput. Ind. Eng. 61(4), 1117–1122 (2011)

    Article  Google Scholar 

  • Jing, J., Wuan, Q.H.: Intelligent sliding mode control algorithm for position tracking servo system. Int. J. Inf. Technol. 12(7), 57–62 (2006)

    Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, 27 Nov–01 Dec 1995, pp. 1942–1948. doi:10.1109/ICNN.1995.488968

  • Ker-Wei, Y., Shang-Chang, H.: An application of AC servo motor using particle swarm optimization based sliding mode controller. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Taipei 8–11, 4146–4150 (2006). doi:10.1109/ICSMC.2006.384784

  • Kim, B.-I., Son, S.-J.: A probability matrix based particle swarm optimization for the capacitated vehicle routing problem. J. Intell. Manuf. 23(4), 1119–1126 (2012)

    Article  Google Scholar 

  • Kuo, R.J., Syu, Y.J., Chen, Z.-Y., Tien, F.C.: Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inf. Sci. 195, 124–140 (2012)

    Article  Google Scholar 

  • Lari, A., Khosravi, A., Rajabi, F.: Controller design based on \(\mu \) analysis and PSO algorithm. ISA Trans. 53(2), 517–523 (2014)

    Article  Google Scholar 

  • Lee, J.H., Okamoto, S., Koike, H., Tani, K.: Development and motion control of a biped walking robot based on passive walking theory. Artif. Life Rob. 19(1), 68–75 (2014)

    Article  Google Scholar 

  • Li, J., Li, W., Li, Q.: Sliding mode control for uncertain chaotic systems with input nonlinearity. Commun. Nonlinear Sci. Simul. 17(1), 341–348 (2012)

    Article  MATH  Google Scholar 

  • Lin, C., Chen, L., Chen, C.: RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology. IEEE Trans. Neural Netw. 18(3), 708–720 (2007)

    Article  Google Scholar 

  • Lin, T.C., Lee, T.Y., Balas, V.E.: Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons Fractals 44(10), 791–801 (2011)

    Article  MATH  Google Scholar 

  • Lin, C.J., Lin, P.T.: Particle swarm optimization based feedforward controller for a XY PZT positioning stage. Mechatronics 22(5), 614–628 (2012)

    Article  Google Scholar 

  • Liu, C.-S., et al.: A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2012–2038 (2014)

    Article  MathSciNet  Google Scholar 

  • Lu, C.H., Hwang, Y.R., Shen, Y.T.: Backstepping sliding mode tracking control of a vane-type air motor X-Y table motion system. ISA Trans. 50(2), 278–286 (2011)

    Article  Google Scholar 

  • Mahmoodabadi, M.J., Arabani Mostaghim, S., Bagheri, A., Nariman-zadeh, N.:http://www.sciencedirect.com/science/article/pii/S0895717712001641 Pareto optimal design of the decoupled sliding mode controller for an inverted pendulum system and its stability simulation via Java programming. Math. Comput. Model. 57(5–6), 1070–1082 (2013)

  • Mahmoodabadi, M.J., Bagheri, A., Nariman-zadeh, N., Jamali, A., Abedzadeh Maafi, R.: Pareto design of decoupled sliding-mode controllers for nonlinear systems based on a multiobjective genetic algorithm. J. Appl. Math. Article ID 639014, pp. 22 (2012b)

    Google Scholar 

  • Mahmoodabadi, M.J., Taherkhorsandi, M., Bagheri, A.: Pareto design of state feedback tracking control of a biped robot via multi-objective PSO in comparison with sigma method and genetic algorithms: modified NSGAII and MATLAB’s toolbox. Sci. World J. 2014, p. 8 (2014b)

    Google Scholar 

  • Mahmoodabadi, M.J., Bagheri, A., Arabani-Mostaghim, S., Bisheban, M.: Simulation of stability using Java application for Pareto design of controllers based on a new multi-objective particle swarm optimization. Math. Comput. Model. 54(5–6), 1584–1607 (2011)

    Article  MATH  Google Scholar 

  • Mahmoodabadi, M.J., Bagheri, A., Nariman-zadeh, N., Jamali, A.: A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems. Eng. Optim. 44(10), 1167–1186 (2012a)

    Article  MathSciNet  Google Scholar 

  • Mahmoodabadi, M.J., Taherkhorsandi, M., Bagheri, A.: Optimal robust sliding mode tracking control of a biped robot based on ingenious multi-objective PSO. Neurocomputing 124, 194–209 (2014a)

    Article  Google Scholar 

  • Mahmoodabadi, M.J., Momennejad, S., Bagheri, A.: Online optimal decoupled sliding mode control based on moving least squares and particle swarm optimization. Inf. Sci. 268, 342–356 (2014c)

    Article  MathSciNet  Google Scholar 

  • Martínez-Soto, R., Castillo, O., Aguilar, L.T., Rodriguez, A.: A hybrid optimization method with PSO and GA to automatically design type-1 and type-2 fuzzy logic controllers. Int. J. Mach. Learn. Cybern. (2013). doi:10.1007/s13042-013-0170-8

  • Mondal, S., Mahanta, C.: Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty. ISA Trans. 52(3), 335–341 (2013a)

    Article  Google Scholar 

  • Mondal, S., Mahanta, C.: Adaptive integral higher order sliding mode controller for uncertain systems. J. Control Theory Appl. 11(1), 61–68 (2013b)

    Article  MathSciNet  MATH  Google Scholar 

  • Moosavian, S.A.A., Alghooneh, M., Takhmar, A.: Stable trajectory planning, dynamics modeling and fuzzy regulated sliding mode control of a biped robot. In: Proceedings of 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, Nov. 29–Dec. 1 2007, pp. 471–476. doi:10.1109/ICHR.2007.4813912

  • Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi- objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 24–26 April 2003, pp. 26–33. doi:10.1109/SIS.2003.1202243

  • Mousa, A.A., El-Shorbagy, M.A., Abd-El-Wahed, W.F.: Local search based hybrid particle swarm optimization algorithm for multi objective optimization. Swarm Evol. Comput. 3, 1–14 (2012)

    Article  Google Scholar 

  • Nejat, A., Mirzabeygi, P., Shariat Panahi, M.: Airfoil shape optimization using improved multiobjective territorial particle swarm algorithm with the objective of improving stall characteristics. Struct. Multi. Optim. 49(6), 953–967 (2014)

    MathSciNet  Google Scholar 

  • Nery Júnior, G.A., Martins, M.A.F., Kalid, R.: A PSO-based optimal tuning strategy for constrained multivariable predictive controllers with model uncertainty. ISA Trans. 53(2), 560–567 (2014)

    Article  Google Scholar 

  • Nikkhah, M., Ashrafiuon, H., Fahimi, F.: Robust control of under actuated bipeds using sliding modes. Robatica 25(3), 367–374 (2007)

    Article  Google Scholar 

  • Nizar, A., Mansour Houda, B., Ahmed Said, N.: A new sliding function for discrete predictive sliding mode control of time delay systems. Int. J. Autom. Comput. 10(4), 288–295 (2013)

    Article  Google Scholar 

  • Nwankwor, E., Nagar, A.K., Reid, D.C.: Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci. 17(2), 249–268 (2013)

    Article  Google Scholar 

  • Pan, I., Korre, A., Das, S., Durucan, S.: Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn. 70(4), 2445–2461 (2012)

    Article  MathSciNet  Google Scholar 

  • Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.: Multi-objective optimization using parallel vector evaluated particle swarm optimization. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications. vol. 2, 823–828 (2004)

    Google Scholar 

  • Pourmahmood Aghababa, M., Akbari, M.E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances. Appl. Math. Comput. 218(9), 5757–5768 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiao, W., Venayagamoorthy, G., Harley, R.: Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, 2006, pp. 1982–1987. doi:10.1109/IJCNN.2006.246944

  • Ramos, R., Biel, D., Fossas, E., Griño, R.: Sliding mode controlled multiphase buck converter with interleaving and current equalization. Control Eng. Pract. 21(5), 737–746 (2013)

    Article  Google Scholar 

  • Ratnaweera, A., Halgamuge, S.K.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  • Sanchez, G., Villasana, M., Strefezza, M.: Multi-objective pole placement with evolutionary algorithms. Lect. Notes Comput. Sci. 4403, 417–427 (2007)

    Article  Google Scholar 

  • Shahriari kahkeshi, M., Sheikholeslam, F., Zekri, M.: Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems. ISA Trans. 52(3), 342–350 (2013)

    Article  Google Scholar 

  • Singla, M., Shieh, L.-S., Song, G., Xie, L., Zhang, Y.: A new optimal sliding mode controller design using scalar sign function. ISA Trans. 53(2), 267–279 (2014)

    Article  Google Scholar 

  • Sira-Ramirez, H., Luviano-Juarez, A., Cortes-Romero, J.: Robust input-output sliding mode control of the buck converter. Control Eng. Pract. 21(5), 671–678 (2013)

    Article  Google Scholar 

  • Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)

    Article  Google Scholar 

  • Tang, Y., Wang, Z., Fang, J.: Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO. Inf. Sci. 181(20), 4715–4732 (2011)

    Article  Google Scholar 

  • Toscana, R.: A simple robust PI/PID controller design via numerical optimization approach. J. Process Control 15(1), 81–88 (2005)

    Article  Google Scholar 

  • Utkin, V.I.: Sliding Modes and their Application in Variable Structure Systems. Central Books Ltd, London (1978)

    Google Scholar 

  • Wai, R.J., Chuang, K.L., Lee, J.D.: Total sliding-model-based particle swarm optimization controller design for linear induction motor, In: Proceedings of IEEE Congress on Evolutionary Computation, 25–28 Sept. 2007, Singapore. pp. 4729–4734

    Google Scholar 

  • Wang, K., Jun Zheng, Y.: A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Appl. Intell. 37(4), 520–526 (2012)

    Article  Google Scholar 

  • Wang, X., Tang, L.: A discrete particle swarm optimization algorithm with self-adaptive diversity control for the permutation flowshop problem with blocking. Appl. Soft Comput. 12(2), 652–662 (2012)

    Article  Google Scholar 

  • Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (1990)

    Google Scholar 

  • Wolovich, W.A.: Automatic Control Systems: Basic Analysis and Design. Saunders College Publishing, USA (1994)

    Google Scholar 

  • Xiuping, M., Qiong, W.: Dynaimc modeling and sliding mode control of a five-link biped during the double support phase. In the Proceedings of the 2004 American Control Conference, vol. 3, pp. 2609-2614 (2004)

    Google Scholar 

  • Yakut, O.: Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput. Appl. 24(6), 1369–1379 (2014)

    Article  Google Scholar 

  • Yildiz, A.R., Solanki, K.N.: Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int. J. Adv. Manuf. Technol. 59(1–4), 367–376 (2012)

    Article  Google Scholar 

  • Yin, C., Zhong, S.M., Chen, W.F.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Simul. 17(1), 356–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida, H., Kawata, K., Fukuyama, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000)

    Article  Google Scholar 

  • Zhang, R., Sun, C., Zhang, J., Zhou, Y.: Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J. Control Theory Appl. 11(2), 299–305 (2013)

    Article  Google Scholar 

  • Zhang, Y., Yao, F., Iu Ho-Ching, H., Fernando, T., Po Wong, K.: Sequential quadratic programming particle swarm optimization for wind power system operations considering emissions. J. Mod. Power Syst. Clean Energy 1(3), 231–240 (2013)

    Article  Google Scholar 

  • Zheng, Z., Wu, C.: Power optimization of gas pipelines via an improved particle swarm optimization algorithm. Petrol. Sci. 9(1), 89–92 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions that enhance the technical and scientific quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taherkhorsandi .

Editor information

Editors and Affiliations

Appendix

Appendix

The equivalent sliding mode control inputs for the biped robot are as follows

$$\begin{aligned} {\text {u}}_{{{\text {eq}}1}}&= - 0.2260855175\,{{\dot{\uptheta }}}_{2} - 5.376931543\,{{\uptheta }}_{3} + 0.5609845516{\text {t}}^{3} - 24.77733929{\text {t}} \\&\quad + 11.04563973 + 0.3042022263{{\dot{\uptheta }}}_{3} - 52.53069026{{\uptheta }}_{1} \\&\quad - 23.33466928{{\lambda }}_{2} {{\dot{\uptheta }}}_{2} - 2.116394625{{\lambda }}_{3} {{\dot{\uptheta }}}_{3} - 61.09883670{{\lambda }}_{1} {{\dot{\uptheta }}}_{1} \\&\quad + 1.093385806{{\dot{\uptheta }}}_{1} - 2.335441469{{\lambda }}_{3} - 5.878003190{{\lambda }}_{2} \\&\quad - 16.56389463{{\lambda }}_{1} - 14.61433450{{\uptheta }}_{2} - 1.029058915{{\lambda }}_{2} {\text {t}}^{2} \\&\quad + 5.282969124{{~~\lambda }}_{2} {\text {t}} + 11.12677748{\text {t}}^{2} - 0.3123798467{{\lambda }}_{3} {\text {t}}^{2} \\&\quad + 1.744755729{{\lambda }}_{3} {\text {t}} - 3.024392417{{\lambda }}_{1} {\text {t}}^{2} + 15.22583011{{\lambda }}_{1} {\text {t}} \end{aligned}$$
$$\begin{aligned} {\text {u}}_{{{\text {eq}}2}}&= 2.127074613 \left( {10^{{ - 10}} } \right) {{\dot{\uptheta }}}_{2} + 3.014817654{{\uptheta }}_{3} - 0.1832721690{\text {t}}^{3} \\&\quad - 7.435154298{\text {t}} + 0.06684314392{{\dot{\uptheta }}}_{3} + 0.6081082555{{\uptheta }}_{1} \\&\quad - 12.97075008{{\lambda }}_{2} {{\dot{\uptheta }}}_{2} - 2.116394625{{\lambda }}_{3} {{\dot{\uptheta }}}_{3} - 6.759058956{{\lambda }}_{1} {{\dot{\uptheta }}}_{1} \\&\quad + 1.093385810{{\dot{\uptheta }}}_{1} - 2.335441469{{\lambda }}_{3} - 3.267331946{{\lambda }}_{2} \\&\quad - 1.832380883{{\lambda }}_{1} - 14.19340124{{\uptheta }}_{2} - 0.5720100787{{\lambda }}_{2} {\text {t}}^{2} \\&\quad + 2.936577819{{\lambda }}_{2} {\text {t}} + 3.182845520{\text {t}}^{2} + 9.317127676 \\&\quad - 0.3123798467{{\lambda }}_{3} {\text {t}}^{2} + 1.744755729{{\lambda }}_{3} {\text {t}} - 0.3345734183{{\lambda }}_{1} {\text {t}}^{2} \\&\quad + 1.684357492{{\lambda }}_{1} {\text {t}} \end{aligned}$$
$$\begin{aligned} {\text {u}}_{{{\text {eq}}3}}&= - 3.400956231\left( {10^{{ - 11}} } \right) {{\dot{\uptheta }}}_{2} + 3.029347274{{\uptheta }}_{3} - 0.2748341166{\text {t}}^{3} \\&\quad - 3.658549547{\text {t}} + 11.95619521 + 1.750512761\left( {10^{{ - 10}} } \right) {{\dot{\uptheta }}}_{3} \\&\quad + 0.1293520741{{\uptheta }}_{1} - 2.497500599{{\lambda }}_{2} {{\dot{\uptheta }}}_{2} - 3.630907800{{\lambda }}_{3} {{\dot{\uptheta }}}_{3} \\&\quad + 3.604860241{{\lambda }}_{1} {{\dot{\uptheta }}}_{1} + 0.2233967865\dot{{{\uptheta }}}_{1} - 4.006706757{{~~\lambda }}_{3} \\&\quad - 0.6291204009{{~\lambda }}_{2} + 0.9772776114{{\lambda }}_{1} + 1.33021167{\text {t}}^{2} \\&\quad - 0.01647731197{{\uptheta }}_{2} - 0.1101397764{{~~\lambda }}_{2} {\text {t}}^{2} + 0.5654341356{{\lambda }}_{2} {\text {t}} \\&\quad - 0.8983311722{{~\lambda }}_{1} {\text {t}} - 0.5359219913{{~\lambda }}_{3} {\text {t}}^{2} + 2.993320390{{~\lambda }}_{3} {\text {t}} \\&\quad + 0.1784405819{{\lambda }}_{1} {\text {t}}^{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taherkhorsandi, M., Castillo-Villar, K.K., Mahmoodabadi, M.J., Janaghaei, F., Mortazavi Yazdi, S.M. (2015). Optimal Sliding and Decoupled Sliding Mode Tracking Control by Multi-objective Particle Swarm Optimization and Genetic Algorithms. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics