Skip to main content

Robust Control of Robot Arms via Quasi Sliding Modes and Neural Networks

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

Abstract

This chapter presents a control approach for robotic manipulators based on a discrete-time sliding mode control which has received much less coverage in the literature with respect to continuous time sliding-mode strategies. This is due to its major drawback, consisting in the presence of a sector, of width depending on the available bound on system uncertainties, where robustness is lost because the sliding mode condition cannot be exactly imposed. For this reason, only ultimate boundedness of trajectories can be guaranteed, and the larger the uncertainties affecting the system are, the wider is the bound on trajectories which can be guaranteed. As a possible solution to this problem, in this chapter a discontinuous control law has been proposed, employing a controller inside the sector based on an estimation, as accurate as possible, of the overall effect of uncertainties affecting the system. Different solutions for obtaining this estimate have been considered and the achievable performances have be compared using experimental data. The first approach consists in estimating the uncertain terms by a well established method which is an adaptive on-line procedure for autoregressive modeling of non-stationary multivariable time series by means of a Kalman filtering. In the second solution, radial basis neural networks are used to perform the estimation of the uncertainties affecting the system. The proposed control system is evaluated on the ERICC robot arm. Experimental evidence shows satisfactory trajectory tracking performances and noticeable robustness in the presence of model inaccuracies and payload perturbations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)

    Article  Google Scholar 

  • Antonini, P., Ippoliti, G., Longhi, S.: Learning control of mobile robots using a multiprocessor system. Control Eng. Pract. 14(11), 1279–1295 (2006)

    Article  Google Scholar 

  • Arnold, M., Milner, X., Witte, H., Bauer, R., Braun, C.: Adaptive AR modeling of nonstationary time series by means of kalman filtering. IEEE Trans. Biomed. Eng. 45(5), 553–562 (1998)

    Article  Google Scholar 

  • Åström, K.J., Eykhoff, P.: System identification—a survey. Automatica 7, 123–162 (1971)

    Article  MATH  Google Scholar 

  • Box, G., Jenkins, G.M., Reinsel, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1994)

    MATH  Google Scholar 

  • Capisani, L., Ferrara, A.: Trajectory planning and second-order sliding mode motion/interaction control for robot manipulators in unknown environments. IEEE Trans. Ind. Electron. 59(8), 3189–3198 (2012)

    Article  Google Scholar 

  • Capisani, L., Ferrara, A., Magnani, L.: Second order sliding mode motion control of rigid robot manipulators. In Decision and Control, 2007 46th IEEE Conference on, pp. 3691–3696 (2007)

    Google Scholar 

  • Chaoui, H., Sicard, P.: Adaptive neural network control of flexible-joint robotic manipulators with friction and disturbance. In: IECON 2012–38th Annual Conference on IEEE Industrial Electronics Society, pp. 2644–2649 (2012)

    Google Scholar 

  • Chen, C.-S.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55(9), 3402–3414 (2008)

    Article  Google Scholar 

  • Chen, S., Cowan, C., Grant, P.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Net. 2(2), 302–309 (1991)

    Article  Google Scholar 

  • Ciabattoni, L., Corradini, M., Grisostomi, M., Ippoliti, G., Longhi, S., Orlando, G.: A discrete-time vs controller based on rbf neural networks for pmsm drives. Asian J. Control 16(2), 396–408 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ciabattoni, L., Ippoliti, G., Longhi, S., Cavalletti, M., Rocchetti, M.: Solar irradiation forecasting using rbf networks for pv systems with storage. In: 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings, pp. 699–704 (2012)

    Google Scholar 

  • Cimini, G., Corradini, M., Ippoliti, G., Malerba, N., Orlando, G.: Control of variable speed wind energy conversion systems by a discrete-time sliding mode approach. In: 2013 IEEE International Conference on Mechatronics, ICM 2013, pp. 736–741 (2013)

    Google Scholar 

  • Copot, C., Lazar, C., Burlacu, A.: Predictive control of nonlinear visual servoing systems using image moments. IET Control Theory Appl. 6(10), 1486–1496 (2012)

    Article  Google Scholar 

  • Corradini, M., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Minimal resource allocating networks for discrete time sliding mode control of robotic manipulators. IEEE Trans. Ind. Inform. 8(4), 733–745 (2012a)

    Article  Google Scholar 

  • Corradini, M., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Discrete time variable structure control of robotic manipulators based on fully tuned rbf neural networks. In: IEEE International Symposium on Industrial Electronics, pp. 1840–1845 (2010)

    Google Scholar 

  • Corradini, M., Ippoliti, G., Longhi, S., Marchei, D., Orlando, G.: A quasi-sliding mode observer-based controller for pmsm drives. Asian J. Control 15(2), 380–390 (2013)

    Article  MathSciNet  Google Scholar 

  • Corradini, M., Ippoliti, G., Longhi, S., Orlando, G.: A quasi-sliding mode approach for robust control and speed estimation of pm synchronous motors. IEEE Trans. Ind. Electron. 59(2), 1096–1104 (2012b)

    Article  Google Scholar 

  • Corradini, M., Ippoliti, G., Longhi, S., Orlando, G., Signorini, R.: Neural-network-based discrete-time variable structure control of robotic manipulators. In: International Conference on Advanced Robotics, 2009. ICAR 2009, pp. 1–6, (2009)

    Google Scholar 

  • Corradini, M.L., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Discrete time sliding mode control of robotic manipulators: development and experimental validation. Control Eng. Pract. 20(8), 816–822 (2012c)

    Article  Google Scholar 

  • D’Amico, A., Ippoliti, G., Longhi, S.: A radial basis function networks approach for the tracking problem of mobile robots. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. AIM 1, 498–503 (2001)

    Google Scholar 

  • Dixon, W.: Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 52(3), 488–493 (2007)

    Article  Google Scholar 

  • Furuta, K.: Vss type self-tuning control. IEEE Trans. Ind. Electron. 40(1), 37–44 (1993)

    Article  Google Scholar 

  • Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42, 117–122 (1995)

    Article  Google Scholar 

  • Ge, S., Lee, T., Harris, C.: Adaptive Neural Network Control of Robotic Manipulators. World Scientific, Singapore (1998)

    Book  Google Scholar 

  • Ge, S. S., He, W., Xiao, S.: Adaptive neural network control for a robotic manipulator with unknown deadzone. In: 2013 32nd Chinese Control Conference (CCC), pp. 2997–3002, (2013)

    Google Scholar 

  • Giantomassi, A.: Modeling Estimation and Identification of Complex System Dynamics. LAP Lambert Academic Publishing, Germany (2012)

    Google Scholar 

  • Giantomassi, A., Ippoliti, G., Longhi, S., Bertini, I., Pizzuti, S.: On-line steam production prediction for a municipal solid waste incinerator by fully tuned minimal RBF neural networks. J. Process Control 21(1), 164–172 (2011)

    Article  Google Scholar 

  • Guidorzi, R.: Multivariable System Identification. Bononia University Press, Italy (2003)

    Google Scholar 

  • Han, S., Lee, J.: Precise positioning of nonsmooth dynamic systems using fuzzy wavelet echo state networks and dynamic surface sliding mode control. IEEE Trans. Ind. Electron. 60(11), 5124–5136 (2013)

    Article  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, London (1999)

    MATH  Google Scholar 

  • http://www.dspaceinc.com (2011)

  • Ignaciuk, P., Bartoszewicz, A.: Discrete-time sliding-mode congestion control in multisource communication networks with time-varying delay. IEEE Trans. Control Syst. Technol. 19(4), 852–867 (2011)

    Article  MathSciNet  Google Scholar 

  • Ishiguro, A., Furuhashi, T., Okuma, S., Uchikawa, Y.: A neural network compensator for uncertainties of robotics manipulators. IEEE Trans. Ind. Electron. 39(6), 565–570 (1992)

    Article  Google Scholar 

  • Islam, S., Liu, P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  • Ko, C.-N.: Identification of non-linear systems using radial basis function neural networks with time-varying learning algorithm. IET Signal Process. 6(2), 91–98 (2012)

    Article  MathSciNet  Google Scholar 

  • Lewis, F., Jagannathan, S., Yeşildirek, A.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor & Francis, Abingdon (1999)

    Google Scholar 

  • Li, Z., Su, C.-Y.: Neural-adaptive control of single-mastermultiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1400–1413 (2013)

    Article  Google Scholar 

  • Lin, Y., Shi, Y., Burton, R.: Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans. Mechatron. 18(1), 1–10 (2013)

    Article  Google Scholar 

  • Ljung, L.: System Identification, Theory for the User. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  • Marton, L., Lantos, B.: Control of robotic systems with unknown friction and payload. IEEE Trans. Control Syst. Technol. 19(6), 1534–1539 (2011)

    Article  Google Scholar 

  • Melhem, K., Wang, W.: Global output tracking control of flexible joint robots via factorization of the manipulator mass matrix. IEEE Trans. Robot. 25(2), 428–437 (2009)

    Article  Google Scholar 

  • Milosavljevic, C., Perunicic-Drazenovic, B., Veselic, B.: Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation. IEEE Trans. Ind. Inform. 9(2), 920–927 (2013)

    Article  Google Scholar 

  • Nicosia, S., Tomei, P.: Robot control by using only joint position measurements. IEEE Trans. Autom. Control 35(9), 1058–1061 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Nikdel, N., Nikdel, P., Badamchizadeh, M., Hassanzadeh, I.: Using neural network model predictive control for controlling shape memory alloy-based manipulator. IEEE Trans. Ind. Electron. 61(3), 1394–1401 (2014)

    Article  Google Scholar 

  • Ozaki, T., Suzuki, T., Furuhashi, T., Okuma, S., Uchikawa, Y.: Trajectory control of robotic manipulators using neural networks. IEEE Trans. Ind. Electron. 38(3), 195–202 (1991)

    Article  Google Scholar 

  • Raspa, P., Benetazzo, F., Ippoliti, G., Longhi, S., Srensen, A.: Experimental results of discrete time variable structure control for dynamic positioning of marine surface vessels. In: 9th IFAC Conference on Control Applications in Marine Systems, pp. 55–60 (2013)

    Google Scholar 

  • Sanner, R.M., Slotine, J.-J.E.: Stable adaptive control of robot manipulator using neural networks. Neural Comput. 7(3), 753–790 (1995)

    Article  Google Scholar 

  • Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer, Heidelberg (2009)

    Google Scholar 

  • Sun, F., Sun, Z., Woo, P.: Neural network-based adaptive controller design of robotic manipulators with an observer. IEEE Trans. Neural Netw. 12(1), 54–67 (2001)

    Article  Google Scholar 

  • Sundararajan, N., Saratchandraw, P., Li, Y.: Fully Tuned Radial Basis Function Neural Networks for Flight Control. Kluwer Academic Publishers, Norwell (2002)

    Book  MATH  Google Scholar 

  • Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  • Veselic, B., Perunicic-Drazenovic, B., Milosavljevic, C.: Improved discrete-time sliding-mode position control using euler velocity estimation. IEEE Trans. Ind. Electron. 57(11), 3840–3847 (2010)

    Article  Google Scholar 

  • Wai, R.-J., Muthusamy, R.: Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 274–287 (2013)

    Article  Google Scholar 

  • Wang, B., Yu, X., Chen, G.: ZOH discretization effect on single-input sliding mode control systems with matched uncertainties. Automatica 45, 118–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, B., Yu, X., Li, X.: Zoh discretization effect on higher-order sliding-mode control systems. IEEE Trans. Ind. Electron. 55(11), 4055–4064 (2008)

    Article  Google Scholar 

  • Wang, B., Yu, X., Wang, L.: Convergence accuracy analysis of discretized sliding mode control systems. In: Proceedings of the 11th International Conference on Control, Autom., Robotics and Vision, pp. 1370–1374 (2010)

    Google Scholar 

  • Xu, Q.: Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control. IET Control Theory Appl. 7(18), 2153–2163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Yassin, I., Taib, M., Abdul Aziz, M., Rahim, N., Tahir, N., Johari, A.: Identification of DC motor drive system model using radial basis function (RBF) neural network. In: Industrial Electronics and Applications (ISIEA), 2011 IEEE Symposium on, pp. 13–18 (2011)

    Google Scholar 

  • Young, K., Utkin, V., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Contr. Syst. Technol. 7, 328–342 (1999)

    Article  Google Scholar 

  • Zinober, A.: Variable Structure and Lyapunov Control. Springer-Verlag New York Inc, Secaucus, NJ, USA (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Ippoliti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Corradini, M.L., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G. (2015). Robust Control of Robot Arms via Quasi Sliding Modes and Neural Networks. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics