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Abstract. Classification with rejection is well understood for classi-
fiers which provide explicit class probabilities. The situation is more
complicated for popular deterministic classifiers such as learning vector
quantisation schemes: albeit reject options using simple distance-based
geometric measures were proposed [4], their local scaling behaviour is
unclear for complex problems. Here, we propose a local threshold selection
strategy which automatically adjusts suitable threshold values for reject
options in prototype-based classifiers from given data. We compare this
local threshold strategy to a global choice on artificial and benchmark
data sets; we show that local thresholds enhance the classification re-
sults in comparison to global ones, and they better approximate optimal
Bayesian rejection in cases where the latter is available.
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1 DMotivation

Learning vector quantisation (LVQ) [9] constitutes a powerful and efficient meth-
od for multi-class classification tasks which, due to its representation of models
in terms of prototypes, is particularly suited for on-line scenarios or lifelong
learning [8]. While classical LVQ models have been introduced on heuristic
grounds, modern variants are based on cost-function models like generalized LVQ
(GLVQ) [12], or robust soft LVQ (RSLVQ) [15] with guarantees on generalization
performance and learning dynamics [2, 13]. One particular success story links
LVQ classifiers to simultaneous metric learners which enrich the classifier with
interpretable feature weighting terms or a direct classifier visualisation [13, 14].
Still, LVQ classifiers face the problem that real world data do not necessarily
allow an unambiguous classification: overlap in the data, outliers, noise, or similar
effects can be observed frequently where wrong classifications are unavoidable. A
wrong classification can be more costly than postponing a decision and gathering
new evidence like in medical diagnostics. Mathematically, such settings can be
modelled by introducing a reject option for a classifier: instead of a decision,
rejecting is possible for cases with low certainty. This setting has formally been
analysed by Chow [3], deriving an optimum decision rule depending on the costs
of a reject in comparison to a wrong classification. While this early approach
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addresses the setting that reliable class probabilities are available, the approach [7]
extends this optimum decision by plug-in rules which rely on empirical estimations
of class probabilities only, providing guarantees of the quality in case of a reliable
estimator and a suitably low density of data at the reject thresholds.

Still, these schemes rely on the assumption that conditional class probabilities
or reliable estimations thereof are available. Albeit there exist few approaches
which model LVQ classifiers by means of class probabilities such as RSLVQ
[15], it is unclear whether such discriminative models converge to the correct
underlying class distributions, and most popular LVQ schemes are based on
deterministic decision models only instead of a reference to class probabilities
[5,12,17]. Recently [4, 5] it has been analysed if alternative real-valued outputs
correlated to the deterministic classification model can take the role of a certainty
value for a reject option: examples include the distance of a data vector to the
closest decision boundary, prototype. Interestingly, using simple thresholds, these
measures offer classification schemes with a reject option with the quality close
to optimum Bayesian decisions in simple model cases [4, 5].

One drawback of these techniques is that they are based on one global
threshold for a reject option, thus relying on the assumption that the considered
measures scale independently of the data region. This is usually not the case:
measures such as distances, unlike a certainty, are not normalized and scaling
varies within a given data set. Hence reject options with a global threshold are
restricted to simple models only. In cases where the classes or parts of classes
have not the same compactness or where the scaling of the values is unclear, this
approach is limited, and it can be an advantage to use local thresholds [6,17].

For prototype-based classification there exists an intuitive strategy to define
regions for the local thresholds: Use the Voronoi-tessellation of the input space
provided by the prototypes. Here we present a greedy optimization method to
adaptively determine local thresholds for an LVQ classifier based on given data.
We compare the resulting local rejection strategies to the global counterparts
as proposed in [4, 5] using several benchmarks and one artificial data set. We
show that local thresholds outperform their global counterpart, approximating
the optimal reject option of Chow [3] in cases where the latter is available.

2 Learning Vector Quantization

Assume N training samples € R™ with attached class labels y € {1,..., L}, if
L classes are considered. An LVQ classifier is represented by a set of prototypes
W = {w; € R"}¥_,| which are equipped with class labels c(w) € {1,...,L}.
Classification takes place by a winner takes all scheme: A data vector x is mapped
to the class label ¢(x) = ¢(w;) of the closest prototype w; according to a distance
measure d. Here, we use the squared Euclidean distance d(x,w) = ||z — w||?.

For a GLVQ model [12], the position of the prototypes W are determined by
a stochastic gradient decent on the following cost function:

B = Y0 ) — ) /(0 ) + (@) 1)
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&(-) is a monotonic increasing function, e.g. the identity. The distances of a
data vector & to the closest prototypes with the same/different label are de-
noted as d*/d~. Replacing the distance measure by a general quadratic form
(x — w;)T A(x — w;) with positive semi-definite matrix A results in a generaliza-
tion of GLVQ, generalised matrix LVQ (GMLVQ) [13] whereby matrix parameters
can be adapted coevally to the prototypes according to the given data.

The cost E (1) correlates with the classification error because a data vector
is classified correctly iff the nominator of (1) is below zero. The nominator
can be connected to the hypothesis margin of the classifier which relates to its
generalisation ability [13]. Note that the argument of &(-) ranges in [—1,1]. A
value near —1 indicates a high certainty of the classification because dt < d~.

3 Reject Option

The aim of a reject option is to identify outliers and data vectors with low
certainty of classification [17]. A rejection measure refers to a real-valued function
r:R"® - R* x +— r(z) indicating the certainty of the classification. We assume
that high values indicate a more certain classification. A vector is rejected iff
r(x) < 0, where 6 > 0 is a threshold. We refer to such strategies as global rejection
strategies if one global threshold 6 is chosen for all inputs © € R".

A local threshold strategy where the input space is partitioned into single
regions enables a finer control of rejection [17]. Following the suggestion in [17],
we use the natural decomposition of the input space into the Voronoi-cells

Vi =A{zild(zi, w;) < d(x;, wi),VE # j}; (2)

as induced by the prototypes of an LVQ classifier. For a local threshold strategy
based on Voronoi-cells (2) a separate threshold §; > 0 is chosen for every cell,
and the reject strategy is given by a threshold vector of the dimension |W| equal
to the number of Vj. A vector x is rejected iff r(x) < 0; for & € Vj. In the case
of one prototype per class, local thresholds realise a class-wise reject option.

After defining local and global threshold strategies, we need to specify the
rejection measure and a method for finding suitable local §;.

Choice of the rejection measure: In our experiments we use the relative
similarity (RelSim) as proposed in [4] as rejection measure:

d~(z) —d*(x)

RelSim(x) = @) td (@) (3)

This measure can be applied for new data vectors after defining their class label
with the winner takes all scheme. RelSim is inspired by the cost function of
GLVQ (1) [12]. Its values are normalised to [0,1] and 1 indicates a high certainty
of the classification with respect to the trained prototypes. It can efficiently be
calculated and it combines a reject option for outliers and ambiguous data vectors
due to its design (Fig. 1, left). As baseline for an artificial data set the maximum
of the class probabilities max, p(y|x) of the Bayes classifier with known densities
[3] is used for rejection (Fig. 1, right).
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Fig. 1. Level curves of RelSim (3) (left) and Bayes (right) for an artificial five-class
problem. The black squares are prototypes. A critical region for a global threshold is
between the third and fourth cluster from left. The third cluster needs a high threshold
because the data vectors are very compact. Applying the same threshold for the fourth
cluster would lead to rejection of the most vectors in this cluster which is undesired.

Adaptation of local thresholds: The baseline case with no rejection is
given when all local thresholds are set to §;=0. We propose the following greedy
strategy: For rejection increase those ¢;, where most wrongly classified vectors
can be rejected while accepting a constant number of rejected correct vectors. We
associate the rejection of a correct vector with a constant cost of 1. Starting from
0, the global cost is increased in steps of 1, and the 0; are adapted accordingly.

We assume that the vectors x; €
V; are sorted according to their |
(RelSim) certainty value r(z;). Let q; &[5 1 1 1 o T3] o=
denote the vector of classification re-
sults for the vectors in V; with ¢;(x;)= Fig. 2. V; with 13 vectors. First row implies
1(+) for correct and g;(x;)=—1(—) the sorted r(z;) values, the second codes if
for wrong classification (cp. Fig. 2). a vector is correct (+)/wrong (—) classified.
Voronoi-cells V; without errors can be The thir.d row implies the.z coding of th.e gain
neglected (i.e. 0; =0), because they 97 of rejection steps during the algorithm.

cannot contribute reasonably to rejection. Let C;=)"

+ - - -1+ -1+ - -+ = = =

0.01 0.02 0.07 0.210.5 0.55/0.57 0.71 0.7910.8 0.83 0.8 0.9‘

ila; (@s)=1 1 be the number
of correct vectors in V; and let Ej:Zﬂqj(mi):fl 1 be the number of errors in Vj.
The aim of the algorithm 3.1 is to return an accuracy reject curve which consists
of two vectors t. and t,. For an iteration step s a single point (¢.(s),t,(s)) reports
the relative size t.(s) of the set of accepted vectors Xy in comparison to |X|
and the accuracy on Xy which is ¢,(s). The original model without rejection
initialises these vectors with ¢.(0)=1 and ¢,(0)=>_, C;/|X|. Respectively we
define EFr and Cr as counter for rejected errors and rejected correct classified
vectors. If z; with maxg, ey, r(x;) is correct classified then a denotes the indexes
of the correct classified vectors in V;. Otherwise the first C'; entries of a contains
indexes of the correct classified vectors and the last entry is given with |V;| + 1
(a=(1,5,7,10,14) for example in Fig. 2). If a;(1) > 1 there exist errors in Vj
which can be rejected with zero cost. We code the wrongly classified vectors for



Local Rejection Strategies for LVQ 5

constant costs in the gain vector g; and the accumulated gains g; as follows:

k
gi(k) = aj(k+1) —a;(k) =1,  g;(k)=> g;(1), k=1,....,C; (4
=1

g; (k) is the local gain for rejecting the next correct vector (cf. Fig. 2) and g;(k)
states the accumulated gains for costs of k in V. An example for g; and g; with
three Voronoi-cells is given in table 1.

Algorithm 3.1: GREEDY OPTIMIZATON(a;,g;,9;VJ)

Cr:=1; Eg:=3 ;(a;(1) — 1) //errors whose rejection is gratis
to(1) = 1 — Bg/[X); ta(1) 1= X, C5/(1X| - Ep)

5:=2; kj:=0Vj

while Er # 3, E;

m := argmax,;{g;(k; + 1)}  //index: most improvement locally

m = argmax;{g;(Cr)} //index: most improvement globally
if max;{g;(Cr)} > max;{g;(k; +1)}
then kj =0, Vj; ks, :==CRp //discard whole solution
Cr:=Cgr+1; Eg:=gn
if 3! maxj{gj(k‘j + 1)
k‘m :km+1, CR Z:CR+1
do then Er:=FEgr + gnL(km)
1 0:=1 //allows increasing > 1 for Cr
eise while —(3'max;{g;(k; + 1))
else do {0:=o0+1; m:=argmax;{g;(k; + o)}
Cr:=Cgr+o; ky,, =k,+o
Er:=FEgr+ 2?21 gm(km + l)
te(s) :==1—(Cr+ ERr)/|X]|
tu(s) = (5, C; — C)/(1X] — (i + En)
si=s5+1
return (t,t,)

The greedy algorithm for the local threshold adap- Table 1. Examples for g;,
tation (Alg. 3.1) operates mainly on g; and g;. Us- g; for three V;.
ing the example (Tab. 1) one obtains the steps in 4 (_’_)‘1 23 4 ‘1 23 4
table 2. First the algorithm checks if errors can be re- -
jected with no cost, then checks for the cell with ‘gj ‘gj
highest gain. E.g. the gains g1(1) = 3, ¢2(1) = 2, Vi 13123346 9
g3(1)=1 are possible and the algorithm picks g1(1)=3 Vo (213 -1236 -
which results in ky =1 (§;(1) = ¢;(1),Vj). Then Vi (11810121020
91(2) =1, g2(1) =2, g3(1) =1 are possible and it
picks g2(1) = 2, raising 6; in this cell because max;{§;(Cr)} is lower. Now
we have 2 correct data vectors and 5 errors rejected. In the next step, g1(2)=1,
92(2)=1, g3(1)=1 are possible and we choose a gain of 1 and 3 correct data
vectors would be rejected. The overall gain of this solution is 3+2+1=6.
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Checking table. 1 we see for 3 correct data vectors the gains §;(3)=6, §2(3)=6,
§3(3)=10. Then it is better to discard the previous solution and reject only in V3
because of a gain of 10 instead of 6. An exception rule comes into operation when
there are more than one optima in the gains and discarding the whole solution is
no option. This means there is no single maximum in g; and g. In this case the
algorithm increases the costs till one local optimum remains.

4 Experiments

We evaluate the benefit of a local threshold strategy Table 2. Iterations of the
as compared to the global counterpart in a variety algorithm. Shows how the
of experiments. Thereby, we train all models using costs are split to V.
GLVQ and GMLVQ with one prototype per class. (ogtg ‘1 234568910
Evaluations are obtained as results of a repeated 10-
fold cross-validation with ten repetitions. For one
artificial data set, an optimum Bayesian reject option V2:k201000133 3
based on the quantity max, p(y|x) can be evaluated V3:hk300344444 4
as proposed in [3]. We will use this ground truth as baseline where it is possible.
The data sets which we will consider include the following:

Vi:k1)11001112 3

— Pearl necklace: This data set consists of five artificially generated Gaussian
clusters in two dimensions with overlap. (parameters: p,, = 3 Vi, u, =
(2,44,85,100,136), 0, = (1,20,0.5,7,11), 0, = 0y)

— Image Segmentation: The image segmentation data set consists of 2310 data
vectors which contain 19 real-valued image descriptors. The data vectors
represent small patches from outdoor images with 7 different classes with
equal distribution such as grass, cement, etc. [1].

— Tecator data: The Tecator data set [16] consists of 215 spectra of meat probes.
The 100 spectral bands ranging from 850nm to 1050 nm. The task is to
predict the fat content (high/low) of the probes, which is turned into a two
class classification problem. Both classes have the same size.

— Haberman: The Haberman survival data set includes 306 instances from two
classes indicating being alive for more than 5 years after breast cancer surgery
[1]. One instance is represented by three attributes linked to the age, the
year, and the number of positive axillary nodes detected.

— Coil: The Columbia Object Image Database Library (COIL-20) contains
gray scaled images of twenty objects [11]. Each object is rotated in 5° steps,
resulting in 72 images per object. The data set contains 1440 vectors with a
dimension of 16384. We reduce the dimensionality to 30 with PCA.

Figure 3 displays the classification accuracy obtained by local and global
reject options for these data sets and the GLVQ and GMLVQ classifier on the set
of classified vectors versus the percentage of vectors which are not rejected for a
given threshold [10]. More precisely, assume Xy denotes the set of data vectors
which are not rejected using the respective threshold strategy. Then the graphs



display the relative size
| Xo]/]X | against the clas-
sification accuracy on Xjy.
The local thresholds are
determined with algo-
rithm 3.1 on the train
sets and then applied
on the test sets. Fig-
ure 3 shows that local
thresholds are slightly
better than a global
threshold in almost all
cases. The local thresh-
olds seem to be more effi-
cient for GLVQ than for
GMLVQ (Image Segmen-
tation, Coil). The biggest
improvement of the local
strategy can be seen for
the pearl necklace data
set which was designed
to show its advantage.
Because of the huge dif-
ferences in the standard
deviations of the sin-
gle classes/clusters one
global threshold would
be very ineffective. For
low standard deviations
a higher threshold than
for a cluster with a
huge standard deviation
is needed. In most cases
it is obvious that one
needs a very high thresh-
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Fig. 3. Results of the global and local reject option with
RelSim when applied to G(M)LVQ models trained for
different data sets (test sets). We report accuracy reject
curves [10]. The averaged curve is plotted, where at least

80 % of the single runs deliver a value.

old for the global strategy to reject all errors. For the local strategy all errors can
be rejected without rejecting all correctly classified data vectors in some cases
(both models GLVQ and GMLVQ: Pearl necklace, Image Segmentation).

5 Conclusion

We analysed the performance of a global and a local threshold strategy of a
reject option. The results of artificial and benchmark data sets show that the
local strategy delivers better accuracy values than the global counterpart in most
cases. We showed a way of evaluating the local threshold strategy for different
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rejection rates obtaining also the local thresholds. Applying a local threshold
strategy costs a bit more than a global one but it has the advantage that one can
fit the local thresholds to the data. This improves the accuracy and enhances the
classification model especially for simple models like GLVQ.
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