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Abstract. Recently, a dual reinforcement process to contextual dis-
counting was introduced. However, it lacked a clear interpretation. In
this paper, we propose a new perspective on contextual discounting: it
can be seen as successive corrections corresponding to simple contextual
lies. Most interestingly, a similar interpretation is provided for the re-
inforcement process. Two new contextual correction mechanisms, which
are similar yet complementary to the two existing ones, are also intro-
duced.
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1 Introduction

Information correction has received quite a lot of attention in recent years in
belief function theory (see, e.g., [9, 11]). It is an important question that deals
with how an agent should interpret a piece of information received from a source
about a parameter x defined on a finite domain X = {x1, . . . , xK}. Classically,
the agent has some knowledge regarding the reliability of the source and, using
the discounting operation [12], he is able to take into account that knowledge
and to modify, or correct, the initial piece of information accordingly.

Since its inception, the discounting operation has been extended in differ-
ent ways. Notably, Mercier et al. [10, 9] consider the case where one has some
knowledge about the reliability of the source, conditionally on different subsets
(contexts) A of X , leading to the so-called contextual discounting operation. One
may also refine the discounting operation in order to take into account knowledge
about the source truthfulness [11]. Of particular interest for the present work
is the dual reinforcement operation to contextual discounting introduced in [9].
Mercier et al. [9] show that this correction mechanism amounts to the negation
[6] of the contextual discounting of the negation of the initial information, but
unfortunately they do not go further in providing a clear interpretation for this
interesting operation.

In this paper, we study further contextual correction mechanisms. We present
(Section 3) a new framework for handling detailed meta-knowledge about source
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truthfulness. Using this framework, we then derive the contextual discounting
operation (Section 4.1) and its dual (Section 4.2), leading to a new perspective on
the former and an interpretation for the latter. We proceed (Section 4.3) with the
introduction of two new contextual correction mechanisms, whose interpretations
are similar yet complementary to the two existing ones. Background material on
belief function theory is first recalled in Section 2.

2 Belief function theory: necessary notions

In this section, we first recall basic concepts of belief function theory. Then, we
present existing correction mechanisms that are of interest for this paper.

2.1 Basic concepts

In this paper, we adopt Smets’ Transferable Belief Model (TBM) [14], where the
beliefs held by an agent Ag regarding the actual value taken by x are modeled
using a belief function [12] and represented using an associated mass function.
A mass function (MF) on X is defined as a mapping m : 2X → [0, 1] verifying∑
A⊆X m (A) = 1. Subsets A of X such that m(A) > 0 are called focal sets of

m. A MF having focal sets X and A ⊂ X , with respective masses w and 1− w,
w ∈ [0, 1], may be denoted by Aw. A MF having focal sets ∅ and A 6= ∅, with
respective masses v and 1 − v, v ∈ [0, 1], may be denoted by Av. The negation
m of a MF m is defined as m(A) = m(A), ∀A ⊆ X , where A denotes the
complement of A [6].

Beliefs can be aggregated using so-called combination rules. In particular,
the conjunctive rule, which is the unnormalized version of Dempster’s rule [5], is
defined as follows. Let m1 and m2 be two MFs, and let m1 ∩©2 be the MF resulting
from their combination by the conjunctive rule denoted by ∩©. We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ X . (1)

Other combination rules of interest for this paper are the disjunctive rule
∪© [6], the exclusive disjunctive rule ∪© and the equivalence rule ∩© [13]. Their
definitions are similar to that of the conjunctive rule: one merely needs to replace
∩ in (1) by, respectively, ∪, ∪ and ∩, where ∪ (exclusive OR) and ∩ (logical
equality) are defined respectively by B∪C =

(
B ∩ C

)
∪
(
B ∩ C

)
and B∩C =

(B ∩ C) ∪ (B ∩ C) for all B,C ⊆ X . The interpretations of these four rules are
discussed in detail in [11].

2.2 Correction mechanisms

Knowledge about a source reliability is classically taken into account in the
TBM through the discounting operation. Suppose a source S providing a piece
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of information represented by a MF mS . Let β, with β ∈ [0, 1], be Ag’s degree
of belief that the source is reliable. Ag’s belief m on X is then defined by [12]:

m(X ) = β mS(X ) + (1− β), m(A) = β mS(A),∀A ⊂ X . (2)

Mercier et al. [9] consider the case where Ag has some knowledge about the
source reliability, conditionally on different subsets A of X . Precisely, let βA, with
βA ∈ [0, 1], be Ag’s degree of belief that the source is reliable in context A ⊆ X
and let A be the set of contexts for which Ag possesses such contextual meta-
knowledge. Ag’s belief m on X is then defined by the following equation known
as contextual discounting that subsumes discounting (recovered for A = {X}):

m = mS ∪©A∈AAβA
. (3)

In addition, a dual reinforcement process to contextual discounting, called
contextual reinforcement hereafter, is introduced in [9]. LetmS be a MF provided
by a source S. The contextual reinforcement of mS is the MF m defined by:

m = mS ∩©A∈AA
βA , (4)

with βA ∈ [0, 1], A ∈ A. Mercier et al. [9] show that this correction amounts to
the negation of the contextual discounting of the negation of mS . However, they
do not go further in providing a clear explanation as to what meta-knowledge
on the source this correction of mS corresponds. One of the main results of this
paper is to provide such an interpretation.

3 A refined model of source truthfulness

In the correction schemes recalled in Section 2.2, the reliability of a source is
assimilated to its relevance as explained in [11]. In [11], Pichon et al. assume that
the reliability of a source involves in addition another dimension: its truthfulness.
Pichon et al. [11] note that there exists various forms of lack of truthfulness for
a source. For instance, for a sensor, it may take the form of a systematic bias.
However, Pichon et al. [11] study only the crudest description of the lack of
truthfulness, where a non truthful source is a source that declares the contrary
of what it knows. According to this definition, from a piece of information of
the form x ∈ B for some B ⊆ X provided by a relevant source S, one must
conclude that x ∈ B or x ∈ B, depending on whether the source S is assumed
to be truthful or not.

In this section, we propose a new and refined model of source truthfulness
that allows the integration of more detailed meta-knowledge about the lack of
truthfulness of an information source.

3.1 Elementary truthfulness

Assume that a relevant source provides a piece of information on the value taken
by x of the form x ∈ B, for some B ⊆ X . Let us now consider a particular value
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x ∈ X . Either x ∈ B or x 6∈ B, that is, the source may tell that x is possibly the
actual value of x or it may tell that x is not a possibility for the actual value of
x. Furthermore, for each of those two possible declarations by the source about
the value x, one may have some knowledge on whether the source is truthful or
not. For instance, one may believe that the source is truthful when it tells that
x is a possibility – in which case one must conclude that x is possibly the actual
value of x if the source does tell that x is a possibility for x – and that it lies
when it tells that x is not a possibility – in which case one must conclude that x
is possibly the actual value of x if the source does tell that x is not a possibility
for x.

To account for such detailed knowledge about the behavior of the source,
let us introduce two binary variables px and nx, with respective frames Px =
{px,¬px} and Nx = {nx,¬nx}: px (resp. ¬px) corresponds to the state where
the source is truthful (resp. not truthful) when it tells that x is possibly the
actual value for x; nx (resp. ¬nx) corresponds to the state where the source is
truthful (resp. not truthful) when it tells that x is not a possibility for the actual
value of x.

Now, we can define a variable tx with associated frame Tx = Px × Nx,
which contains four states tx = (px, nx), ¬tnx = (px,¬nx), ¬tpx = (¬px, nx) and
¬tx = (¬px,¬nx) allowing us to model the global truthfulness of the source with
respect to the value x: tx corresponds to the case where the source tells the truth
whatever it says about the value x, in short the source is said to be truthful for
x; ¬tnx corresponds to the case of a source that lies only when it tells that x is
not a possibility for x, which will be called a negative liar for x; ¬tpx corresponds
to the case of a source that lies only when it says that x is a possibility for x,
which will be called a positive liar for x; ¬tx corresponds to the case where the
source lies whatever it says about the value x, in short the source is said to be
non truthful for x.

There are thus four possible cases:

1. Suppose the source tells x is possibly the actual value of x, i.e., the infor-
mation x ∈ B provided by the source is such that x ∈ B.

(a) If the source is assumed to be truthful (tx) or a negative liar (¬tnx), then
one must conclude that x is possibly the actual value of x;

(b) If the source is assumed to be a positive liar (¬tpx) or non truthful (¬tx),
then one must conclude that x is not a possibility for the actual value of
x;

2. Suppose the source tells x is not a possibility for the actual value of x, i.e.,
x 6∈ B.

(a) If the source is assumed to be in state tx or in state ¬tpx, then one must
conclude that x is not a possibility for the actual value of x;

(b) If the source is assumed to be in state ¬tnx or in state ¬tx, then one must
conclude that x is possibly the actual value of x;
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3.2 Contextual truthfulness

Let T denote the possible states of S with respect to its truthfulness for all
x ∈ X. By definition, T = ×x∈XTx. T is clearly a big space, however we will be
interested in this paper only by a smaller subspace of T , which we define below.

Let ht1,t2A ∈ T , A ⊆ X , t1, t2 ∈ Tx, denote the state where the source is
in state t1 for all x ∈ A, and in state t2 for all x 6∈ A. For instance, let X =

{x1, x2, x3, x4}, A = {x3, x4}, t1 = ¬tpx and t2 = tx, then ht1,t2A = h
¬tpx,tx
{x3,x4} =(

tx1
, tx2

,¬tpx3
,¬tpx4

)
, i.e., the source is a positive liar for x3 and x4, and is truthful

for x1 and x2.

Consider now the following question: what must one conclude about x when
the source tells x ∈ B and is assumed to be in some state ht1,t2A ? To answer this
question, one merely needs to look in turn at each x ∈ X and to consider 4 cases
for each of those x ∈ X : 1) x 6∈ B and x 6∈ A; 2) x 6∈ B and x ∈ A; 3) x ∈ B
and x 6∈ A; 4) x ∈ B and x ∈ A. Table 1 lists, for each of the 4 cases and for all
states ht1,t2A , t1, t2 ∈ Tx, whether one should deduce that a given value x ∈ X is
possibly the actual value of x or not – the former is indicated by a 1 and the
latter by a 0 in columns ht1,t2A , t1, t2 ∈ Tx.

Table 1. Interpretations of the source testimony according to its contextual truthful-
ness.

x ∈ Bx ∈ A ¬tpx,¬tpx tx,¬tpx¬tpx, tx tx, tx¬tx,¬tpx¬tnx ,¬tpx¬tx, tx¬tnx , tx¬tpx,¬tx tx,¬tx¬tpx,¬tnx tx,¬tnx ¬tx,¬tx¬tnx ,¬tx¬tx,¬tnx ¬tnx ,¬tnx
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

According to Table 1, when the source is assumed to be in, e.g., state h
tx,¬tpx
A ,

i.e., the source is truthful for all x ∈ A and a positive liar for all x ∈ A, then
one should deduce that x ∈ X is a possible value for x iff x ∈ B and x ∈ A, and
therefore, since this holds for all x ∈ X , one should deduce that x ∈ B ∩A. For

instance, consider state h
tx,¬tpx
{x3,x4} and testimony x ∈ {x1, x3}, then one should

deduce {x1, x3}
⋂
{x3, x4} = {x3}.

Another interesting state is h
¬tnx ,tx
A , i.e., the source is a negative liar for all

x ∈ A and truthful for all x ∈ A, in which case x ∈ X is a possible value for x iff
x ∈ B or x ∈ A, and thus one should conclude that x ∈ B ∪ A. More generally,
as can be seen from Table 1, the couples (t1, t2) ∈ T 2

x yields all possible binary
Boolean connectives.

Of particular interest in this paper are the states h
tx,¬tpx
A and h

¬tnx ,tx
A , which

have already been discussed, and the states htx,¬txA (the source is truthful for all

x ∈ A and non truthful for all x ∈ A) and h¬tx,txA (the source is non truthful
for all x ∈ A and truthful for all x ∈ A), which yield respectively x ∈ B∩A and
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x ∈ B∪A. Accordingly, we will consider in the sequel only the following subspace
H ⊆ T : H =

{
ht1,t2A |A ⊆ X , (t1, t2) ∈ {(tx,¬tpx), (¬tnx , tx), (tx,¬tx), (¬tx, tx)}

}
.

Following [11], we can encode the above reasoning by a multivalued mapping
ΓB : H → X indicating how to interpret the information x ∈ B in each state
h ∈ H; we have for all A ⊆ X :

ΓB(h
tx,¬tpx
A ) = B∩A,ΓB(h

¬tnx ,tx
A ) = B∪A,ΓB(htx,¬txA ) = B∩A,ΓB(h¬tx,txA ) = B∪A.

If the knowledge about the source state is imprecise and given by H ⊆ H,
then one should deduce the image ΓB(H) :=

⋃
h∈H ΓB(h) of H by ΓB .

3.3 Uncertain testimony and meta-knowledge

More generally, both the testimony provided by the source and the knowledge
of Ag about the source truthfulness may be uncertain. Let mS be the uncertain
testimony and mH the uncertain meta-knowledge. In such case, the Behavior-
Based Correction (BBC) procedure introduced by Pichon et al. [11], can be used
to derive Ag knowledge on X . It is represented by the MF m defined by [11]:

m(C) =
∑
H⊆H

mH(H)
∑

B:ΓB(H)=C

mS(B), ∀C ⊆ X . (5)

For convenience, we may denote by fmH(mS) the BBC of mS according to meta-
knowledge mH, i.e., we have m = fmH(mS) with m defined by (5).

4 Interpretation of contextual corrections

In this section, we propose a new perspective on contextual discounting by re-
covering it using the framework introduced in Section 3. Then, using a similar
reasoning, we provide an interpretation for contextual reinforcement. Finally, we
introduce two new contextual correction schemes that are complementary to the
two existing ones.

4.1 Contextual discounting in terms of BBCs

Let us consider a particular contextual lie among those introduced in Section 3.2:

the states h
¬tnx ,tx
A , A ⊆ X , corresponding to the assumptions that the source is a

negative liar for all x ∈ A and truthful for all x ∈ A. Among these states, h
¬tnx ,tx
∅

admits a simpler interpretation: it corresponds to assuming that the source is
truthful ∀x ∈ X .

Theorem 1. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∪©A∈AAβA
= (◦A∈A fmH

A,∪
)(mS), (6)

where ◦ denotes function composition ( i.e., (g ◦ f)(x) = g(f(x))) and where

mHA,∪ is defined by mHA,∪({h¬t
n
x ,tx

∅ }) = βA, m
H
A,∪({h¬t

n
x ,tx

A }) = 1− βA, ∀A ∈ A.
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Proof. This theorem can be shown by applying for each A ∈ A, A being finite,
the following property:

fmH
A,∪

(mS) = mS ∪©AβA
, ∀A ∈ A, (7)

which is shown as follows.

From (5) and the definition of mHA,∪, ∀C ⊆ X :

fmH
A,∪

(mS)(C) = βA
∑

B:B=C

mS(B) + (1− βA)
∑

B:B∪A=C

mS(B) . (8)

Which means:

fmH
A,∪

(mS) = βAmS + (1− βA)(mS ∪©mA) , (9)

with mA a MF defined by mA(A) = 1.

On the other hand, ∀A ∈ A:

mS ∪©AβA
= mS ∪©

{
A 7→1− βA
∅ 7→βA

= βAmS + (1− βA)(mS ∪©mA) . (10)

ut

In other words, contextual discounting, which appears on the left side of
(6), corresponds to successive behavior-based corrections – one for each context
A ∈ A – where for each context A, we have the following meta-knowledge: with
mass βA the source is truthful for all x ∈ X , and with mass 1− βA the source is
a negative liar for all x ∈ A and truthful for all x ∈ A.

Successive corrections of an initial piece of information is a process that
may be encountered when considering a chain of sources, where the information
provided by an initial source may be iteratively corrected by the sources down
the chain according to the knowledge each source has on the behavior of the
preceding source. The chain of sources problem is an important and complex
one, which has received different treatments in logic [4], possibility theory [1]
and belief function theory [2, 3]: in particular a solution involving successive
corrections, precisely successive discountings, was proposed in [1]. The fact that
contextual discounting may be relevant for this problem had not been remarked
yet.

4.2 Contextual reinforcement in terms of BBCs

Let us consider another kind of contextual lie: the states h
tx,¬tpx
A , A ⊆ X , cor-

responding to the assumptions that the source is truthful for all x ∈ A and

a positive liar for all x ∈ A. Among these states, h
tx,¬tpx
X has the same simple

interpretation as h
¬tnx ,tx
∅ .
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Theorem 2. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (11)

where mHA,∩ is defined by mHA,∩({htx,¬t
p
x

X }) = βA, m
H
A,∩({htx,¬t

p
x

A }) = 1 − βA,
∀A ∈ A.

Proof. The proof is similar to that of Theorem 1. ut

Theorem 2 is important as it constitutes the first known interpretation for
contextual reinforcement. It shows that, similarly to contextual discounting, con-
textual reinforcement (left side of (11)) corresponds to successive behavior-based
corrections – one for each context. The only difference between the two correc-
tion mechanisms is what is assumed with mass 1− βA: with the former that the
source is a negative liar for all x ∈ A and truthful for all x ∈ A, whereas with the
latter that the source is truthful for all x ∈ A and a positive liar for all x ∈ A.

Example 1. Let us consider a series of three agents: agent 1 reports to agent
2, who reports in turn to agent 3. Let mi denote the beliefs of agent i on X =
{x1, x2, x3} and let mHi , i > 1, denote the meta-knowledge of agent i about agent

i−1. Furthermore, assume that mH2 ({htx,¬t
p
x

X }) = 0.6 and mH2 ({htx,¬t
p
x

{x1,x2}}) = 0.4,

that is, agent 2 believes with mass 0.6 that agent 1 is truthful for all x ∈ X ,
and with mass 0.4 that agent 1 is truthful for x1 and x2 and a positive liar for
x3. Suppose further that mH3 ({htx,t¬x

X }) = 0.8 and mH3 ({htx,t¬x

{x2,x3}}) = 0.2. From

Theorem 2, we have

m2 = m1 ∩©{x1, x2}0.6,
m3 = m2 ∩©{x2, x3}0.8,
m3 = m1 ∩©{x1, x2}0.6 ∩©{x2, x3}0.8.

4.3 Two new contextual correction mechanisms

Contextual discounting and contextual reinforcement are based on corrections
induced by simple pieces of meta-knowledge mHA,∪ and mHA,∩ respectively. In
practice, those pieces of meta-knowledge transform a testimony x ∈ B as follows:
they both allocate mass βA to B, and mass 1 − βA to B ∪ A and to B ∩ A,
respectively.

Now, as we have seen in Section 3.2, there exist states ht1,t2A ∈ T that lead to
other binary Boolean connectives than the disjunction and the conjunction. This
suggests a way to extend contextual discounting and contextual reinforcement.
Of particular interest are states htx,¬txA (the source is truthful for all x ∈ A and

non truthful for all x ∈ A) and h¬tx,txA (the source is non truthful for all x ∈ A and
truthful for all x ∈ A), which yield respectively x ∈ B∩A and x ∈ B∪A. Indeed,
the properties satisfied by connectives ∩ and ∪ allow us to obtain similar relations
as those obtained for contextual discounting and contextual reinforcement:
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Theorem 3. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (12)

mS ∪©A∈AAβA
= (◦A∈A fmH

A,∪
)(mS), (13)

where mHA,∩ and mHA,∪ are defined by mHA,∩({htx,¬txX }) = mHA,∪({h¬tx,tx∅ }) = βA,

and mHA,∩({htx,¬txA }) = mHA,∪({h¬tx,txA }) = 1− βA, ∀A ∈ A.

Proof. The proof is similar to that of Theorem 1. ut

Eqs. (12) and (13) are the ∩ and ∪ counterparts to Eqs. (6) and (11), which
are based on connectives ∪ and ∩. Hence, if contextual discounting and con-
textual reinforcement are renamed as ∪-contextual correction and ∩-contextual
correction, then Eqs. (12) and (13) may be called ∩-contextual correction and
∪-contextual correction. Let us also stress that although the ∩ and ∪-contextual
correction mechanisms are based on less classical combination rules than con-
textual discounting and contextual reinforcement, these two new contextual cor-
rection schemes seem to be as reasonable from the point of view of the meta-
knowledge that they correspond to. Actually, their interpretations are even sim-
pler since they rely on the classical assumptions of truthfulness and non truth-
fulness, whereas contextual discounting and contextual reinforcement involve
negative and positive lies, which are less conventional. Finally, we note that the
computational complexity of the ∩ and ∪-contextual correction mechanisms is
similar to that of ∪ and ∩-contextual correction mechanisms: it merely corre-
sponds to the complexity of applying |A| combinations by the rules ∩© and ∪©,
respectively, where |A| denotes the cardinality of A.

5 Conclusion

Using a new framework for handling detailed meta-knowledge about source
truthfulness, a new view on contextual discounting and an interpretation for
contextual reinforcement were proposed. In addition, two similar yet comple-
mentary contextual correction mechanisms were introduced.

Future work will be dedicated to the application of contextual correction
mechanisms. Similarly as contextual discounting [7, 10], their parameters βA,A ∈
A, could be obtained from a confusion matrix or learnt from training data, and
then they could be used in classification problems. Other potential applications
include those involving chain of sources communicating pieces of information
between themselves, as is the case in vehicular ad-hoc networks [8].
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