Skip to main content

Environment-Adaptive Learning: How Clustering Helps to Obtain Good Training Data

  • Conference paper
Book cover KI 2014: Advances in Artificial Intelligence (KI 2014)

Abstract

In this paper, we propose a method to combine unsupervised and semi-supervised learning (SSL) into a system that is able to adaptively learn objects in a given environment with very little user interaction. The main idea of our approach is that clustering methods can help to reduce the number of required label queries from user interaction, and at the same time provide the potential to select useful data to learn from. In contrast to standard methods, we train our classifier only on data from the actual environment and only if the clustering gives enough evidence that the data is relevant. We apply our method to the problem of object detection in indoor environments, for which we use a region-of-interest detector before learning. In experiments we show that our adaptive SSL method can outperform the standard non-adaptive supervised approach on an indoor office data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu, X.: Semi-supervised learning literature survey. Computer Sciences, University of Wisconsin-Madison, Tech. Rep. 1530 (2005)

    Google Scholar 

  2. Zhu, X.: Semi-supervised learning with graphs. Ph.D. dissertation, Carnegie Mellon University (2005)

    Google Scholar 

  3. Lawrence, N.D., Platt, J.C., Jordan, M.I.: Extensions of the informative vector machine. In: Winkler, J.R., Niranjan, M., Lawrence, N.D. (eds.) Machine Learning Workshop. LNCS (LNAI), vol. 3635, pp. 56–87. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Saffari, A., Leistner, C., Bischof, H.: Regularized multi-class semi-supervised boosting. In: Conf. on Comp. Vision & Patt. Recog., CVPR (2009)

    Google Scholar 

  5. Joachims, T.: Transductive inference for text classification using support vector machines, pp. 200–209 (1999)

    Google Scholar 

  6. Triebel, R., Paul, R., Rus, D., Newman, P.: Parsing outdoor scenes from streamed 3D laser data using online clustering and incremental belief updates. In: Robotics Track of AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  7. Guillaumin, M., Verbeek, J., Schmid, C.: Multimodal semi-supervised learning for image classification. In: Conf. on Comp. Vision & Patt. Recog., CVPR (2010)

    Google Scholar 

  8. Ebert, S., Larlus, D., Schiele, B.: Extracting structures in image collections for object recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 720–733. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Budvytis, I., Badrinarayanan, V., Cipolla, R.: Semi-supervised video segmentation using tree structured graphical models. Trans. on Pattern Analysis and Machine Intelligence 35(11), 2751–2764 (2013)

    Article  Google Scholar 

  10. Settles, B.: Active learning literature survey. Tech. Rep. (2010)

    Google Scholar 

  11. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. Intern. Journal of Computer Vision 88(2), 169–188 (2010)

    Article  Google Scholar 

  12. Triebel, R., Grimmett, H., Paul, R., Posner, I.: Driven learning for driving: How introspection improves semantic mapping. In: The International Symposium on Robotics Research, ISRR (2013)

    Google Scholar 

  13. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the Intern. Conf. on Computer Vision (ICCV), pp. 1150–1157 (1999)

    Google Scholar 

  14. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. Trans. on Pattern Analysis and Machine Intelligence 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  15. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Proc. of the Joint Conf. on Empirical Methods in Natural Language Proc. and Comp. Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

    Google Scholar 

  16. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  17. Bo, L., Ren, X., Fox, D.: Hierarchical matching pursuit for image classification: Architecture and fast algorithms. In: NIPS (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Debnath, S., Baishya, S.S., Triebel, R., Dutt, V., Cremers, D. (2014). Environment-Adaptive Learning: How Clustering Helps to Obtain Good Training Data. In: Lutz, C., Thielscher, M. (eds) KI 2014: Advances in Artificial Intelligence. KI 2014. Lecture Notes in Computer Science(), vol 8736. Springer, Cham. https://doi.org/10.1007/978-3-319-11206-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11206-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11205-3

  • Online ISBN: 978-3-319-11206-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics