Skip to main content

Towards Secure and Practical Location Privacy through Private Equality Testing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8744))

Abstract

In this paper, we propose a practical, privacy-preserving equality testing primitive which allows two users to learn if they share the same encrypted input data. Our protocol assumes no trust on a third party and/or other peers, and it is specifically suited for low-min entropy data (i.e., data that can be exhaustively searched by an attacker), such as encrypted users locations. We demonstrate that our primitive is secure and efficient: Two public-key exponentiations are required, per each user, for each equality testing. We give implementation results, showing that our primitive is practical in a multiple users scenario. Finally, we describe how we could use our primitive as a building block for a proximity testing buddy-finder service for social networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in gps traces via uncertainty-aware path cloaking. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 161–171. ACM (2007)

    Google Scholar 

  3. Olumofin, F., Tysowski, P.K., Goldberg, I., Hengartner, U.: Achieving efficient query privacy for location based services. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 93–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Shin, K.G., Ju, X., Chen, Z., Hu, X.: Privacy protection for users of location-based services. IEEE Wireless Communications 19, 30–39 (2012)

    Article  Google Scholar 

  5. Chow, C.Y., Mokbel, M.F.: Privacy in location-based services: a system architecture perspective. Sigspatial Special 1, 23–27 (2009)

    Article  Google Scholar 

  6. Magkos, E.: Cryptographic approaches for privacy preservation in location-based services: A survey. International Journal of Information Technologies and Systems Approach (IJITSA) 4, 48–69 (2011)

    Article  Google Scholar 

  7. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

    Google Scholar 

  8. Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized anonymization model. In: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, ICDCS 2005, pp. 620–629. IEEE (2005)

    Google Scholar 

  9. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for location services without compromising privacy. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 763–774. VLDB Endowment (2006)

    Google Scholar 

  11. Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neighbor queries using space transformation to preserve location privacy. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Chow, C.-Y., Mokbel, M.F.: Enabling private continuous queries for revealed user locations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 258–275. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Ku, W.S., Chen, Y., Zimmermann, R.: Privacy protected spatial query processing for advanced location based services. Wireless Personal Communications 51, 53–65 (2009)

    Article  Google Scholar 

  15. Xu, J., Tang, X., Hu, H., Du, J.: Privacy-conscious location-based queries in mobile environments. IEEE Transactions on Parallel and Distributed Systems 21, 313–326 (2010)

    Article  Google Scholar 

  16. Sioutas, S., Magkos, E., Karydis, I., Verykios, V.S.: Uncertainty for privacy and 2-dimensional range query distortion. Journal of Computing Science and Engineering 5, 210–222 (2011)

    Article  Google Scholar 

  17. Chow, C.Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for anonymous location-based service. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 171–178. ACM (2006)

    Google Scholar 

  18. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Prive: anonymous location-based queries in distributed mobile systems. In: Proceedings of the 16th International Conference on World Wide Web, pp. 371–380. ACM (2007)

    Google Scholar 

  19. Ghinita, G., Kalnis, P., Skiadopoulos, S.: mobiHide: A mobilea peer-to-peer system for anonymous location-based queries. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 221–238. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries in location based services: anonymizers are not necessary. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 121–132. ACM (2008)

    Google Scholar 

  21. Solanas, A., Martínez-Ballesté, A.: A ttp-free protocol for location privacy in location-based services. Computer Communications 31, 1181–1191 (2008)

    Article  Google Scholar 

  22. Zhong, G., Hengartner, U.: A distributed k-anonymity protocol for location privacy. In: IEEE International Conference on Pervasive Computing and Communications, PerCom 2009, pp. 1–10. IEEE (2009)

    Google Scholar 

  23. Jaiswal, S., Nandi, A.: Trust no one: a decentralized matching service for privacy in location based services. In: Proceedings of the Second ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds, pp. 51–56. ACM (2010)

    Google Scholar 

  24. Hashem, T., Kulik, L., Zhang, R.: Privacy preserving group nearest neighbor queries. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 489–500. ACM (2010)

    Google Scholar 

  25. Hashem, T., Kulik, L.: “Don’t trust anyone”: Privacy protection for location-based services. Pervasive and Mobile Computing 7, 44–59 (2011)

    Article  Google Scholar 

  26. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: NDSS. The Internet Society (2011)

    Google Scholar 

  27. Priya, E.M., Mani, G.: Privacy for location based system in mobile p2p environment. Procedia Engineering 38, 2179–2185 (2012)

    Article  Google Scholar 

  28. Solanas, A., Martínez-Ballesté, A.: Privacy protection in location-based services through a public-key privacy homomorphism. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS, vol. 4582, pp. 362–368. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy, S&P 2000, pp. 44–55. IEEE (2000)

    Google Scholar 

  30. Furukawa, J., Isshiki, T.: Controlled joining on encrypted relational database. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 46–64. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. IACR Cryptology ePrint Archive 2013, 169 (2013)

    Google Scholar 

  34. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–348. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  38. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. European Transactions on Telecommunications 8, 481–490 (1997)

    Article  Google Scholar 

  39. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  40. Tang, Q.: Towards public key encryption scheme supporting equality test with fine-grained authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 389–406. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  41. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. Journal of Privacy and Confidentiality 1, 5 (2009)

    Google Scholar 

  42. SECG: Standards for efficient cryptography group. SEC 1: Elliptic curve cryptography (2005), http://www.secg.org/download/aid-385/sec1_final.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Magkos, E., Kotzanikolaou, P., Magioladitis, M., Sioutas, S., Verykios, V.S. (2014). Towards Secure and Practical Location Privacy through Private Equality Testing. In: Domingo-Ferrer, J. (eds) Privacy in Statistical Databases. PSD 2014. Lecture Notes in Computer Science, vol 8744. Springer, Cham. https://doi.org/10.1007/978-3-319-11257-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11257-2_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11256-5

  • Online ISBN: 978-3-319-11257-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics