Skip to main content

The Computational Capability of Chemical Reaction Automata

  • Conference paper
Book cover DNA Computing and Molecular Programming (DNA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8727))

Included in the following conference series:

Abstract

We propose a new computing model called chemical reaction automata (CRAs) as a simplified variant of reaction automata (RAs) studied in recent literature ([7-9]).

We show that CRAs in maximally parallel manner are computationally equivalent to Turing machines, while the computational power of CRAs in sequential manner coincides with that of the class of Petri nets, which is in marked contrast to the result that RAs (in both maximally parallel and sequential manners) have the computing power of Turing universality ([7-9]). Intuitively, CRAs are defined as RAs without inhibitor functioning in each reaction, providing an offline model of computing by chemical reaction networks (CRNs).

Thus, the main results in this paper not only strengthen the previous result on Turing computability of RAs but also clarify the computing powers of inhibitors in RA computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing. LNCS, vol. 2235. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Csuhaj-Varju, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. Natural Computing 5, 109–126 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Csuhaj-Varju, E., Vaszil, G.: P automata. In: The Oxford Handbook of Membrane Computing, pp. 145–167 (2010)

    Google Scholar 

  4. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Fischer, P.C.: Turing Machines with Restricted Memory Access. Inform. and Contr. 9(4), 364–379 (1966)

    Article  MATH  Google Scholar 

  6. Hopcroft, J.E., Motwani, T., Ullman, J.D.: Introduction to automata theory, language and computation, 2nd edn. Addison-Wesley (2003)

    Google Scholar 

  7. Okubo, F.: Reaction automata working in sequential manner. RAIRO Theoretical Informatics and Applications 48, 23–38 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Okubo, F., Kobayashi, S., Yokomori, T.: Reaction automata. Theoretical Computer Science 429, 247–257 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Okubo, F., Kobayashi, S., Yokomori, T.: On the properties of language classes defined by bounded reaction automata. Theoretical Computer Science 454, 206–221 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  11. Qian, L., Soloveichik, D., Winfree, E.: Efficient Turing-Universal Computation with DNA Polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H.: Artificial Life Applications of a Class of P Systems: Abstract Rewriting Systems on Multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 299–346. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 18. LNCS, vol. 7433, pp. 135–149. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Okubo, F., Yokomori, T. (2014). The Computational Capability of Chemical Reaction Automata. In: Murata, S., Kobayashi, S. (eds) DNA Computing and Molecular Programming. DNA 2014. Lecture Notes in Computer Science, vol 8727. Springer, Cham. https://doi.org/10.1007/978-3-319-11295-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11295-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11294-7

  • Online ISBN: 978-3-319-11295-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics