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Abstract

Particle Swarm Optimization (PSO) is a popular nature-inspired meta-heuristic for solving
continuous optimization problems. Although this technique is widely used, the understanding of
the mechanisms that make swarms so successful is still limited. We present the first substantial
experimental investigation of the influence of the local attractor on the quality of exploration
and exploitation. We compare in detail classical PSO with the social-only variant where local
attractors are ignored. To measure the exploration capabilities, we determine how frequently
both variants return results in the neighborhood of the global optimum. We measure the qual-
ity of exploitation by considering only function values from runs that reached a search point
sufficiently close to the global optimum and then comparing in how many digits such values still
deviate from the global minimum value. It turns out that the local attractor significantly im-
proves the exploration, but sometimes reduces the quality of the exploitation. As a compromise,
we propose and evaluate a hybrid PSO which switches off its local attractors at a certain point
in time. The effects mentioned can also be observed by measuring the potential of the swarm.

1 Introduction

The Particle Swarm Optimization Algorithm. Particle Swarm Optimization (PSO) is a
popular metaheuristic designed for solving optimization problems on continuous domains. It has
been introduced by Kennedy and Eberhart [8, 2]. In contrast to evolutionary algorithms, the
particles of a swarm cooperate and share information about the search space rather than competing
against each other. PSO has been applied successfully to a wide range of optimization problems, e. g.
in Biomedical Image Processing [18], Geosciences [10], Mechanical Engineering [3], and Materials
Science [13]. The popularity of the PSO framework in these scientific communities is due to the fact
that it on the one hand can be realized and, if necessary, adapted to further needs easily, but on the
other hand empirically shows good performance results with respect to the quality of the solution
found and the speed needed to obtain it. By adapting its parameters, users may in real-world
applications easily and successfully control the swarm’s behavior with respect to “exploration”
(“searching where no one has searched before”) and “exploitation” (“searching around a good
position”). A thorough discussion of PSO can be found in [11]. To be precise, let a fitness function
(also called objective function) f : RD → R on a D-dimensional domain be given that (w. l. o. g.)

1

ar
X

iv
:1

40
6.

16
91

v1
  [

cs
.N

E
] 

 6
 J

un
 2

01
4



has to be minimized. A population of particles, each consisting of a position (the candidate for
a solution), a velocity and a local attractor (also referred to as private guide), moves through the
search space RD. The local attractor of a particle is the best position with respect to f this particle
has encountered so far. Additionally, the swarm has a common memory, the global attractor (also
referred to as local guide), which is the best position any particle has found so far. The movement
is governed by the so-called movement equations.

Many variants of PSO have been developed and empirically proven to be efficient. Most of them
extend the classical PSO algorithm by additional operations. As just one example out of many, van
den Bergh/Engelbrecht [17] substantially modify the movement equations, enabling the particles
to count the number of times they improve the global attractor and use this information.

Although the efficiency of PSO is widely known, the understanding of the mechanisms that
make the swarm so successful is still limited. A theoretical analysis of the particles’ trajectories can
be found in [1]. Parameter selection guidelines guaranteeing the convergence of the swarm under
the assumption of fixed attractors have been developed in [5]. Additional guidelines, for which the
classical swarm in the 1-dimensional case and a slightly modified PSO in the D-dimensional case
finds provably at least a local optimum of any sufficiently smooth function can be found in [14].
In [14], also the notion of the potential of a particle swarm has been introduced. The potential,
which we will use also in this paper, is a measure for the swarm’s capability to reach search points
far away from the current global attractor.

In this paper, we investigate the influence of the local attractor on the speed of convergence
and the quality of the found solution.

In [9], the authors prove that a swarm consisting of only a single particle does, with positive
probability, not converge towards a local optimum. Therefore, the importance of the global attractor
is beyond doubt since without it, the swarm would act like many completely independent 1-particle
swarms. But to the best of our knowledge, the exact influence of the local attractor has not yet
been formally addressed. Closest to that direction, Kennedy [7] applied, among other simplified
versions of PSO, the so-called “social-only model,” which consists of a particle swarm without
local attractors, to an artificial neuronal network learning problem. He already noticed a “slight
susceptibility to be captured by local optima.” Pedersen and Chipperfield [12] proposed a Meta-
Optimizer for finding good parameter choices of both classical PSO and again the variant with
disabled local attractors, which they call Many Optimizing Liaisons. However, the question of the
benefit from using the local attractor remains unsolved. That is why this paper is dedicated to the
particles’ local attractors.

Our contribution. Our main goal is to better understand the influence of the local attractor
on the swarm’s behavior. In order to measure the benefit of the local attractor, we compare
classical PSO with social-only PSO where we ignore the local attractors. We explain, why the local
attractor is important for exploration and for improving the chances of finding not only an arbitrary
local optimum, but often the global optimum of the fitness function (it helps to leave ‘traps’ of
local optima). Additionally, we give empirical evidence that the influence of the local attractors is
significant. However, sometimes the price of this improved exploration is a delay in the convergence.
Here, we only consider those runs of both variants that actually (after some fixed time has been
expired) come close to the global optimum and compare which results come closer to this optimum.
The experiments show that on some fitness functions and with fixed time budget, classical PSO
performs worse than social-only PSO. That means: The local attractor directs ‘in general’ the
swarm to better regions, and without the local attractor the swarm finds better solutions in such a
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region. Hence, we propose a hybrid method, applying the swarm with the local attractors for the
first half of the iterations and disabling them afterwards. Indeed, both the quality of the obtained
solution and the frequency of runs finding the global optimum are in between the respective values
of the classical and the social-only PSO. Finally, measuring the course of the potential of the hybrid
algorithm illustrates the increase in convergence speed by switching off the local attractors.

The paper is organized as follows: In Section 2, we state the relevant definitions of the PSO
algorithm and the notion of potential we use for our experiments. In Section 3, the general setting
of the performed experiments is described. In Section 4, the results of the comparison between
the classical and the social-only PSO are presented. Finally, in Section 5, one can find our results
regarding the hybrid PSO.

2 Preliminaries

Let D be the dimension of the fitness function f that should be (w. l. o. g.) minimized. A particle
swarm consists of N particles. At every time, each particle i has a position ~xi ∈ RD, representing a
point in the search space (being a possible solution) and a velocity ~vi ∈ RD. Additionally, particle
i has a local attractor ~pi ∈ RD, the best point it has visited so far. Finally, the swarm shares the
global attractor ~pglob ∈ RD, the best point any particle has visited so far. Algorithm 1 provides an
overview over the classical PSO algorithm. In particular, the movement of the swarm is governed
by the so called movement equations in lines 6 and 7. Here, � denotes entrywise multiplication
(Hadamard product), and ~rglob and ~rloc are random vectors with entries chosen u. a. r. from [0, 1]
at each occurrence. Moreover, a, bglob and bloc are constant weights, the so-called PSO parameters.
As recommended in [1], we choose a = 0.72984 and bloc = bglob = 1.496172.

Algorithm 1: Classical PSO

input : f : RD → R, number N of particles, maxiter
output: ~pglob ∈ RD

1 for i = 1→ N do
2 Initialize ~xi randomly; Initialize ~vi := 0; Initialize ~pi := ~xi;

3 Initialize ~pglob := argmin{f(~pi) | i = 1 . . . N};
4 for k = 1→ maxiter do
5 for i = 1→ N do
6 ~vi := a · ~vi + bglob · ~rglob � (~pglob − ~xi) + bloc · ~rloc � (~pi − ~xi);
7 ~xi := ~xi + ~vi;

8 for i = 1→ N do
9 if f(~xi) ≤ f(~pi) then ~pi := ~xi;

10 if f(~xi) ≤ f(~pglob) then ~pglob := ~xi;

Since we are interested in the benefit the local attractor has for the algorithm, we also study
a version that has been called the social-only PSO ([7]) and is obtained by setting bloc = 0 and
therefore making the particles ignore their personal memory. For a fair comparison, since a lot of
effort has been put into finding good parameters for the classical PSO, we tested several parameter
settings for the social-only PSO. Experiments have shown that using a = 0.72984, bglob = 1.496172
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is continuing to be reasonable.
For our investigations, we will also use the notion of the so-called potential ~Φ of the swarm as

a measure for its movement in the different dimensions d ∈ {1, . . . , D} as introduced in [14]. Since
there are different ways to measure the potential, we use the following formulation:

(~Φ)d :=

√√√√ N∑
i=1

2.5 · |(~vi)d|+ |(~pglob)d − (~xi)d| ,

where (.)d means the dth entry of the vector. Additionally, to measure the potential of a single
particle i instead of the potential of the complete swarm, we use

(~Ψi)
d := a · |(~vi)d|+ bglob · |(~pglob)d − (~xi)

d|+ bloc · |(~pi)d − (~xi)
d|.

3 Setting

Our experiments were performed with the following setting:

• The swarm size was set to N = 100, the number of iterations to maxiter = 500.

• We investigated the functions Ackley, Griewank, Rastrigin, Rosenbrock, Schwefel,
Sphere (for a description of these functions, see, e. g., [4, p. 94ff]), and the non-shifted,
non-rotated High Conditioned Elliptic [16].

• For all functions, we tested all dimensionalities D ∈ {1, 2, 3, 4, 5, 10}.

• Since every considered function has a bounded search space I, we used the bound handling
method Random ([19]), i. e., if in dimension d a particle leaves the search space, the dth entry
of its position is set randomly to a value inside the search boundaries.

• The particles’ postitons were initialized u. a. r. over I, the velocities were initialized with 0.

• Every run of Algorithm 1 was repeated 50 times.

Note that the actual global optimum of every of the considered fitness functions was at 0, where the
double numbers have the highest precision. The reasen for the comparatively high swarm size for
the rather low search space dimensions is that finding the global optimum for highly multi-modal
functions is difficult. For smaller swarm sizes or higher search space dimensions, none of the studied
PSO variants would have found the global optimum, preventing any meaningful comparison. We
used the following criteria to classify the obtained solution on the benchmark functions as a ‘local
optimum’ or even the ‘global optimum.’ Note that the exact values of the global optima are known.

Global Optimum (G). For all functions except for Schwefel and Rosenbrock, we categorize
a result as ‘global optimum’ if each dimension differs by at most 0.0015 · |I| from the position of
the global minimum. This value guarantees that no other local optimum than the global optimum
itself is detected as the global minimum even for the highly multi-modal functions.

For Schwefel and Rosenbrock, the value was set to 0.005 · |I| instead, since with the value
above too many results were falsely classified ‘O’ (see below).

Local Optimum (L). A result is classified as a ‘local minimum’ if it is not classified as the global
optimum and the absolute value of the derivative of the function is ≤ 0.1 in each dimension. Tests
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Table 1: Comparison of the classification results from the classical and the social-only PSO process-
ing various 3-dimensional and a 4-dimensional function. For Griewank, Rastrigin and Schwe-
fel, classical PSO shows a significantly better exploration.

Classical PSO Social-only PSO

Function G L O G L O

Ackley 50 0 0 50 0 0

Griewank 25 25 0 2 48 0

H. C. Elliptic 50 0 0 50 0 0

Rastrigin (3-dim.) 50 0 0 28 22 0

Rosenbrock 47 0 3 50 0 0

Schwefel 50 0 0 36 3 11

Sphere 50 0 0 50 0 0

Rastrigin (4-dim.) 50 0 0 10 40 0

showed that only the low-dimensional (D ≤ 3) Rosenbrock function has regions flat enough
to lead to a wrong classification. Therefore, here the classification explicitly uses the fact that
Rosenbrock has only one local optimum for D ≤ 3 ([15]).

Otherwise (O). The obtained solution is classified ‘O’ otherwise because it is still far away from
the global and any local optimum.

This classification serves as a measure for the exploration capability of the swarm, i. e., the better
the swarm explores, the more results should be classified as (G). Additionally to the classification,
we collected for each fitness function f all fitness values of the results that were classified as global
optimum and calculated their average in order to measure the quality of the exploitation on f . The
obtained value will be referred to as precision.

4 Results of the Social-Only PSO Algorithm

We examined our results under two different aspects. First, we focused on the exploration behavior
of the PSO and measured, how frequently the obtained result could be classified as the global
optimum. Afterwards, we studied the exploitation capabilities by comparing how close the results
that were categorized as global optimum came to the actual global minimum.

4.1 Impact of the Local Attractor on Exploration

We wanted to examine the influence of the local attractor on the capability of the PSO to converge
towards the global optimum of our benchmark functions.

Table 1 shows the results for 50 runs with D = 3 and, for reasons to be stated later in this
section, also for the 4-dimensional Rastrigin. As one can see, with respect to the behavior of the
PSOs, two essentially different classes among the fitness functions can be distinguished.
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Table 2: Comparison of the classification results for the classical PSO and the social-only PSO
processing the 5-dimensional Griewank function with different weights µ of its Sphere part.

Classical PSO Social-only PSO

Griewank’s µ G L O G L O

1/4000 3 47 0 0 50 0

1/2000 16 34 0 1 49 0

1/1000 20 30 0 1 49 0

1/500 34 16 0 7 43 0

1/100 50 0 0 38 12 0

1/10 50 0 0 50 0 0

Within the first group, consisting of Ackley, High Conditioned Elliptic, Rosenbrock and
Sphere, the global optimum was easily found. The social-only as well as the unmodified PSO
algorithm brought good results, finding the global minimum in every or almost every run. Since
the High Conditioned Elliptic, the (3-dimensional) Rosenbrock and the Sphere function are
unimodal, the importance of exploring the search space and therefore of the local attractor itself is
comparatively small. Although the Ackley function is not unimodal, there are major differences
in location and function value between the global optimum and the other local optima. Therefore,
even the limited exploration capability of social-only PSO is still sufficient. Manual checks on the
Rosenbrock runs revealed that the results classified as ‘O’ usually were close to the bound for
being classified as global optimum, but had a precision slightly too poor. Therefore, these results
are not caused by a weakness in exploration but in exploitation.

In the second group, consisting of Griewank, Rastrigin and Schwefel, the outputs of social-
only PSO were considerably worse. While the unmodified, i. e., classical PSO algorithm could still
solve the optimization problems in most cases, the social-only algorithm often failed to find the
global optimum. As a matter of fact, these functions all have a large number of local optima around
the global optimum, some of them with values close to the global minimum. Therefore, exploring
the search space is vital for finding the global optimum and without the local attractors, social-only
PSO gets trapped into local optima more easily.

The Griewank function was picked for further investigation because here the difference between
the two PSO versions was already visible in the 2-dimensional case. The function itself has the
form f(~x) = µ ·

∑D
d=1 x

2
d−

∏D
d=1 cos(xd/

√
d) + 1, i. e., it consists of Sphere multiplied with a small

factor µ, set to 1/4000 in the original problem formulation, and is covered with “noise” in form of
cosine oscillations. Our idea was to increase the weight µ of the sphere part in order to strengthen
its influence and to increase the difference between the values of neighboring local minima. The
results are presented in Table 2. As one can see, for both PSO versions, the more Sphere gained
influence, the more reliably was the global minimum found.

For an explanation of the much better success rate of unmodified PSO in finding the best among
many similar local optima, consider a function with unique global optimum ~x∗ and many local
optima with function values close to f(~x∗) around ~x∗. This is the case, e. g., on the Griewank
function. Since the particles are uniformly distributed over the search space, there is a certain
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probability for the global attractor ~pglob to be closer to a local optimum ~xL than to ~x∗. On the
other hand, there is a good chance for some particle i to have at least its local attractor ~pi close to

Figure 1: Pathological situation of a particle with local at-
tractor near the global optimum and global attractor near
a non-global but local optimum; in order to convince the
swarm for the global optimum, the particle must hit A∗.

~x∗. Figure 1 presents such a situa-
tion. While the probability for such
a configuration to occur does not de-
pend much on the use of the local at-
tractor, we will see that the proba-
bility for the global attractor to enter
the valley of the global optimum af-
ter the occurrence of such a situation
indeed does. Let A∗ denote the re-
gion around ~x∗ consisting of all points
better than ~pglob, and let AL denote
the region of all points around ~xL bet-
ter than ~pi. One can think of A∗ as
the region that after entering allows
particle i to update the global attrac-
tor and therefore convince the whole
swarm to start searching in this re-
gion. Similarly, AL can be thought
of as the region which upon entering
makes particle i update its local at-
tractor and consequently forget about
the valley of the global minimum. For
social-only PSO, i. e., when the swarm is not influenced by the local attractor, for hitting A∗ a par-
ticle needs in every dimension d potential (~Ψ)d of order |(~x∗)d − (~pi)

d| to overcome the distance
between ~pi and ~x∗. Consequently, even with sufficiently high potential, the probability of hitting A∗
is of order at most ≈ |A∗|/(|Q(~x∗, ~xL)|) where Q(~a,~b) = [(~a)1, (~b)1]×. . .×[(~a)D, (~b)D] is the smallest
paraxial box containing ~a and ~b. Under the assumption that meanwhile the global attractor is not
altered substantially by the remaining swarm, the potential drops and after some iterations it falls
below a certain bound. Then ~x∗ is out of reach and particle i has no chance to lure the swarm
towards ~x∗ anymore.

On the other hand, if the local attractor is present, the chance of the particle hitting A∗ is also
of order ≈ |A∗|/(|Q(~x∗, ~xL)|), but since the distance of both attractors maintains the necessary
potential level and therefore prevents ~x∗ from getting out of reach, the probability for hitting A∗
does not vanish until particle i updates its local attractor by hitting AL. The overall chance of
hitting A∗ before hitting AL is of order |A∗|/(|A∗|+ |AL|). For small values of |A∗| and |AL|, this
success probability is considerably larger than |A∗|/|Q(~x∗, ~xL)|. Furthermore, even if the unmodified
particle hits AL before A∗, then in the next iteration after the respective local attractor update,
particle i is likely to have still a sufficient potential to reach x∗ and is therefore in a situation not
worse than the situation of the social-only particle.

4.2 Impact of the Local Attractor on Exploitation

After having analyzed how often the global optimum was found by the social-only PSO algorithm,
we now focus on the precision of the results. We calculated the arithmetic mean of the function
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Table 3: Comparison of the precision of the classical PSO and the social-only PSO processing
various 3-dimensional and a 4-dimensional function. For Griewank, Rosenbrock and Rastrigin
(4-dim.), classical PSO shows a significantly worse precision.

Classical PSO Social-only PSO

Function Precision Precision

Ackley 4.4409e-16 1.2967e-15

Griewank 3.6068e-12 0.0

H. C. Elliptic 4.0877e-37 8.2328e-40

Rastrigin (3-dim.) 0.0 0.0

Rosenbrock 0.0011 8.5184e-20

Schwefel 0.0776 0.8312

Sphere 6.0717e-42 7.2010e-44

Rastrigin (4-dim.) 4.6544e-07 0.0

values of the PSOs’ results subtracted by the known function value of the global minimum, taking
only the runs into account which actually found the global optimum. The calculations were done
using Java 1.7 and Python 2.7.3 which work with double precision on the chosen architecture. For
our examination this was sufficiently precise. The results are shown in Table 3.

Since both PSO versions reached the limit of double precision when processing the 3-dimensional
Rastrigin, we added the results of the 4-dimensional Rastrigin to make the differences in pre-
cision visible. One can see that the precision of the results the social-only PSO algorithm returned
was often better and never extremely worse than the precision of the unmodified algorithm. It is
noticeable that sometimes (Griewank, Rosenbrock, Rastrigin for at least 4 dimensions) the
precision was even significantly better. Manual checks confirmed that this significance is not an
artifact of the functions’ shapes but that the obtained positions were significantly closer to the
optimum. Since the presence of the local attractor improves exploration, it is natural to assume
that it harms exploitation by a certain amount, so disabling the local attractors might result in a
higher precision of the result.

In order to further illustrate that the local attractor indeed improves exploration at the cost of
exploitation and that there is indeed a measurable effect, we analyzed the potential of the swarm. If
the potential of a swarm tends toward zero, the swarm converges ([14]). We measured the course of
the potential for both algorithms over the iterations. The obtained measurements have in common
that the swarms of the social-only PSO algorithm lost their potential faster. The difference to the
unmodified swarm was sometimes very close, but in many cases clearly visible or even considerably
big. For example, Figure 2 shows the course of the potential obtained from a sample run of both
classical and social-only PSO, processing 1-dimensional Rastrigin.
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Figure 2: Course of the potential of the first 200 iterations obtained from a sample run for both
the classical and the social-only PSO, processing the 1-dimensional Rastrigin function.

5 Hybrid Approach

According to the results in the previous section, the social-only PSO algorithm often (as seen in
Section 4.1) fails in finding the global optimum of strongly multi-modal functions. On the other
hand, we have empirical evidence from Section 4.2 that for certain settings the precision of the
output is better in comparison to the precision of the output found by the classical PSO algorithm.
Due to these observations the idea is to build a hybrid PSO algorithm that preferably balances out
the disadvantages and can still rely on the mentioned advantages.

5.1 Development of the Hybrid PSO Algorithm

We can assume that in a typical run, at a certain stage the swarm has made its definitive choice
for one local optimum and spends the remaining time on exploitation in order to increase the
precision. From that point on, the local attractor appears to be a drawback. Therefore, in our
hybrid approach, after, say, half of the iterations we switch bloc from its initial value to 0 to increase
the convergence rate of the swarm. Note that this is a somewhat arbitrary choice made to further
emphasize the influence of the local attractor. For a competetive new PSO variant, future work
will have to include more refined parameter tunings. Other combinations of social-only PSO and
classical PSO are also possible, e. g., one could use a heterogenous swarm consisting of particles
that utilize their local attractors and others that do not.

5.2 Results of the Hybrid PSO Algorithm

The test results once again document our assumptions about the local attractor. In Table 4, one can
see that the hybrid PSO found the global optimum considerably more frequently than the social-
only version, while its success rate is not too far behind the classical PSO. Additionally, as Table 4
shows, the precision benefit of the hybrid PSO over the classical PSO was sometimes slightly worse
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(a) Overview over the complete run. (b) Magnified extract between iteration 200 and
350.

Figure 3: Course of the potentials from a sample run for both the classical and the hybrid PSO
processing the 2-dimensional Rosenbrock function.

than the benefit of the social-only PSO. The potential analysis of the hybrid PSO revealed a faster
decrease of potential than in the case of the classical PSO. In Figure 3, one can see the course of the
potentials from a sample run for both the classical and the hybrid PSO processing the 2-dimensional
Rosenbrock function. The figure shows the potential curves for each algorithm and each of the
two problem dimensions. Note that both runs used the same random seed, therefore the curves do
not deviate before iteration 250, when the local attractors of the hybrid PSO were disabled. After
iteration 250, one can clearly see a sharp bend in the curve, caused by the accelerated convergence
of the hybrid PSO that is now the social-only PSO.

6 Concluding Remarks

From our experiments, it is clearly evident that the local attractor supports exploration and to a
certain degree helps to avoid being trapped in a local optimum. The price of the local attractor is
a sometimes reduced quality of the exploitation due to a slower convergence rate. For future work,
one can form a more refined hybrid PSO variant between the social-only PSO and the classical PSO.
Instead of simply switching from classical to social-only PSO after one half of the iterations, one
could test different times for switching, or different forms of hybridization, e. g., a heterogeneous
swarm with some particles that utilize their local attractor and other that do not.
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Table 4: Number of results classified as ‘G’ and their precision obtained by the classical PSO, the
hybrid PSO and the social-only PSO processing various 3-dimensional and a 4-dimensional function.
For Griewank, Rosenbrock and Rastrigin (4-dim.), the hybrid PSO shows a significantly
higher precision than the classical PSO. Additionally, for Griewank, Rastrigin and Schwefel,
it shows a clearly better exploration than the social-only PSO.

Classical PSO Hybrid PSO Social-only PSO

Function G Precision G Precision G Precision

Ackley 50 4.4409e-16 50 1.2257e-15 50 1.2967e-15

Griewank 25 3.6068e-12 19 0.0 2 0.0

H. C. Elliptic 50 4.0877e-37 50 3.6318e-38 50 8.2328e-40

Rastrigin (3-dim.) 50 0.0 50 0.0 28 0.0

Rosenbrock 47 0.0011 50 3.1236e-16 50 8.5184e-20

Schwefel 50 0.0776 50 0.0502 36 0.8312

Sphere 50 6.0717e-42 50 5.1757e-43 50 7.2010e-44

Rastrigin (4-dim.) 50 4.6544e-07 47 0.0 10 0.0
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