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Abstract. There are several new emerging environments, generating
data spatially spread and interrelated. These applications reinforce the
importance of the development of analytical systems capable to sense
the environment and receive data from different locations. In this study
we explore collaborative methodologies in a real-world problem: wind
power prediction. Wind power is considered one of the most rapidly
growing sources of electricity generation all over the world. The prob-
lem consists of monitoring a network of wind farms that collaborate
by sharing information in a very short-term forecasting problem. We
use an auto-regressive integrated moving average (ARIMA) model. The
Symbolic Aggregate Approximation (SAX) is used in the selection of
the set of neighbours. We propose two collaborative methods. The first
one, based on a centralized management, exchange data-points between
nodes. In the second approach, correlated wind farms share their own
ARIMA models. In the experimental work we use 1 year data from 16
wind farms. The goal is to predict the energy produced at each farm ev-
ery hour in the next 6 hours. We compare the proposed methods against
ARIMA models trained with data of each one of the farms and with
the persistence model at each farm. We observe a small but consistent
reduction of the root mean square error (RMSE) of the predictions.

Keywords: Wind Power, Time Series Analysis, Collaborative Forecast,
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1 Introduction

Emerging environments generate data spatially spread and interrelated. These
applications reinforce the importance of the development of analysis systems ca-
pable to sense the environment and receive data from different locations [1]. The
capability to integrate the overall set of information available can be meaningful
and can be used in the development of proper adaptive data analysis algorithms.

Wind power is considered one of the most rapidly growing sources of electric-
ity generation all over the world [2]. The main problems remain on the modelling
of the wind turbine output [3] and on the development of accurate wind power
forecast methodologies, capable to deal with the uncertain and variability of this
resource. The suitability of a forecasting model is determined by the forecast-
ing horizon which is the time ahead for which the forecast is made [4], being
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mainly separated into very short-term (30min-6hrs), short term (up to 72hrs
ahead) and long term forecasting (several days ahead) [2, 5]. Statistical methods
are commonly used for short-term wind forecast, taking as input the past values
from the forecast variable. The most popular models are auto-regressive mov-
ing average (ARMA) models and their variants, e.g., Auto-Regressive Integrated
Moving Average (ARIMA), seasonal- and fractional-ARIMA and ARIMA with
exogenous input (ARMAX or ARX). The development of prediction tools is not
a new subject, and there is a considerable number of important contributions
on this topic [6, 7].

Motif discovery commonly used to reveal trends, relationships, and anomalies
can provide some guidance on the analysis of correlations between wind farms.
This subject was studied by Kamath and Fan (2012) [8] using the Symbolic
Aggregation Algorithm (SAX) [9]. In this work, it was discussed the role of
motifs in scheduling operations.

The evolution of weather fronts over an extended area generates dependencies
between power generations at different locations that can be useful to improve
forecast methodologies. It was demonstrated that the combination of Numeri-
cal Weather Predictions (NWP) from different stations leads to the error de-
crease [10]. Berdugo et al. [11] described a collaborative short term forecasting
methodology for photovoltaic problem. The results indicate the improvement of
the forecast error when collaboration among sites is employed, comparatively to
standard reference methods. A similar methodology for short-term wind speed
prediction using both temporal and spatial characteristics also demonstrated
the relevance of the spatio-temporal prediction tasks [12]. The forecasting task
for geo-referenced time series also demonstrates the effectiveness of spatial and
temporal ARIMA modelling with respect to univariate time series [13].

Although ARIMA is broadly used in time series analysis, there are few few
studies considering the spatially correlation among data from different locations.
This paper proposes a collaborative approach where wind-farms share data. We
start by identifying correlations, trends, and patterns between farms, and ex-
ploit these correlations for optimizing predictions. The main contribution is the
development of a collaborative wind power forecast approach, considering the
interrelation among neighbour farms. The preliminary selection of potentially
correlated farms consisted on the search for motifs using the SAX.

The organization of the paper is as follows. In Section 2 the collaborative
forecast methodology is described. Experimental validation on real wind power
dataset is presented in Section 3. The final section concludes the paper, including
foreseen future work.

2 Collaborative Forecast for Network Data

A collaborative prediction approach applied to wind power forecast is proposed.
However, this approach is no dependent on this particular application and can
be seen as a general approach to other real world domains that have similar fore-
casting problems with the same type of network data. The application to sensor
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network problems lead us to consider the computational power a problem, even
being aware that for this specific application be a less important requirement.

The goal consists of monitor a network of N synchronized sites (wind farms),
numbered i=1,2,...,N. Each site has a set (NGi) of correlated neighbour sites
that collaborate to optimally fit the wind power forecast, at a 6-hours ahead
horizon. The expected output is to minimize the forecast error of a site i, sharing
relevant information but using minimum communication costs.

2.1 Finding Motifs

The preliminary selection of the potentially correlated neighbours to include in
collaborative wind power model was performed searching for recurring motifs
in historical data. A subsequence that repeats at least once is a motif. For the
evaluation of the relationship between two subsequences, a distance measure
must be used, as well as a match threshold. It is important to consider that a
re-occurrence of the subsequence needs not to be exact for it to be considered
as a motif. To map into a lower dimensional space, the SAX algorithm proposed
by Lin et al. [14] was adopted.

The relation of patterns for different wind farms with different installed ca-
pabilities is a difficult task. So, before to apply SAX, data was scaled to maxi-
mum installed capacity, assuring the minimization of the distance between sub-
sequences. This task is essential for the definition of the similarity threshold
value.

2.2 Computation from Correlation Matrices

The computation of spatial and temporal correlation plays an important role in
distributed environments [15], being possible to determine the strength of the in-
fluence of the distributed data. Along this work, different types of networks (and
thus correlation measures) describing interactions between nodes are considered.
The Pearson correlation is used in centralized management, while distributed ap-
proaches use the dot-product analysis.

Pearson correlation measures the linear correlation (dependence) between
two variables x and y, giving a value between +1 and −1 inclusive, where 1 is
total positive correlation, 0 is no correlation, and −1 is total negative correlation.

The dot product is also considered as a correlation metric, allowing to mea-
sure how closely two feature vectors are related. It is defined as the cosine of
the angle of a paired data represented as vectors, x.y = |x| |y| cos(θ). For each
single site, we compute the inner product between consecutive subsequences of
fixed length (6-hours in this case). Both methods require the determination of a
minimum threshold for the correlation coefficient.

2.3 Persistence

The persistence is a common used baseline prediction model. It considers that
the wind power in the next time step is the same as occurred in the present time.



4 Vânia Almeida and João Gama

A known generalization was used, considering the prevision at time instant t for
a look-ahead time t+k (p̂t+k|t) the average value of the last n observations (n = 6
hours in this case), being defined as follows:

p̂t+k|t =
1

n

n−1∑
i=0

pt−i

2.4 ARIMA Modelling

The ARIMA modelling approach was introduced by Box and Jenkins (1976) [16]
to analyse stationary univariate time series, taking as input the past values from
the forecast variable. Along this work all models were implementation in R using
the forecast package.

Three models were implemented, a ARIMA reference model (RefARIMA)
comprised the train for the historical observations of each one of the farms, using
the auto.arima function, and two collaborative models. The collaborative models
were denominated CentARIMA and DistARIMA. CentARIMA is a model based
on centralized management that employs exchange of the values of time series
between nodes. The another one, DistARIMA, takes into account the limited
computational power associated to the sensor network topologies. In this case,
the correlated wind farms share their own ARIMA models.

Centralized Approach The first idea to solve the forecast problem consisted
on the combination of correlated subsequences from the network data. The Pear-
son correlation is used to search for correlated sequences, considering the NG set.
A threshold thd is defined to considerate a correlation (thd > 0.7). Wind power
production at a given site i is a weighted linear combination of past production
values at a set of neighbour sites. The auto.arima model is performed for the
weighted time series (wi) at each site. From the analysis of the correlation value,
it is clear that a high correlation value could arise from data at different am-
plitude scales. The prediction values need to be adjusted to the correct baseline
level. The adjustment consists in the removal of the difference observed between
the past 6-values (mean value) and the first prediction value. This algorithm is
described in Alg. 1.

Distributed Approach For each wind farm, the past 2 subsequences of length
k are used to compute the dot product. If the dot value is higher that the
established threshold (thd > 0.97), the predicted values are computed normally,
using the auto.arima function. Otherwise, being the dot product value lower than
the acceptable, the correlated set of wind farms share their own ARIMA models.
The final prediction is the weighted sum at each hour of the predicted values
obtained for the N considered models. This methodology intends to avoid higher
prediction errors that may occur when the actual situation is not correlated
with the past, using information from the other farms that experienced similar
conditions previously. This procedure is described in Alg. 2.
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Algorithm 1: CentARIMA: Centralized ARIMA.

input : Si: Stream of wind power values for farm i
NGi: Set of correlated neighbour sites
k: Length of sequences used in correlation
j: Identification of past values
n: Number of observations used to ARIMA train
thd: Correlation threshold

output: 6-hours ahead wind power forecast
begin

foreach farm i do
foreach t ∈ Si do

si ← Set of sequences (< xi(t− k − j), ..., xi(t− j) >) from NGi

Compute Pearson correlation A for the sequences in si
if correlation > thd then

Ai,j ← 1
countc ← countc +1

else
Ai,j ← 0

wi(t) ← 1
countc

∑
j∈si

xi(t− j).Ai,j

if t >n then
Fit auto.arima for < wi(t− n), ..., wi(t) >
x̂i(t + 1), ..., x̂i(t + 6) ← predicted data
x̂′
i(t + 1), ..., x̂′

i(t + 6) ← adjust predictions to amplitude scale

3 Experimental Setup

3.1 Data

For the experiments, we took data from 16 wind farms, distributed at different
geographical sites. Data from one year of power production at a hourly-step are
available. The set of neighbour farms was chosen based on the number of pairs
and motifs occurrence at different lengths, using the SAX representation. The
maximum time horizon was set up to 720 hrs (30 days).

3.2 Error Measure

The accuracy of the models is measured by the root mean squared error (RMSE),
expressed as a percentage between x̂t (the forecast at time t) and xt (the observed
value). The analysis was performed in a hour-ahead step until to 6-hours (eq.
below).

RMSE =

√√√√1

6

6∑
t=1

(x̂t − xt)2
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Algorithm 2: DistARIMA: Distributed ARIMA.

input : Si: Stream of wind power values for farm i
k: Length of correlated sequences
n: Number of observations used to ARIMA train
NGi: Set of correlated neighbour sites
N : Length of NG set
thd: Correlation threshold

output: 6-hours ahead wind power forecast
begin

foreach farm i do
foreach t ∈ Si do

Collect last 2 consecutive sensed data sequences of length k:
(x1, ..., xk and y1, ..., yk)
Compute DOT=< x1, ..., xk >.< y1, ..., yk >
if DOT > thd then

Run auto.arima function for the last n observations
(x̂t+1, ..., x̂t+6)← predicted data

else
Receive ARIMA model parameters from the NGi set
Fit N ARIMA models for the last n observations
( 1
N

∑
i∈NGi

x̂i(t + 1), ..., 1
N

∑
i∈NGi

x̂i(t + 6))← predicted data

3.3 Evaluation of the Predicted Methods

The evaluation was performed for the entire dataset (1 year) in a hourly-step,
being the first n observations required to initialize the models.

Centralized Model The data analysis consisted on the training of an ARIMA
model with 100 observations. The evaluation results are presented in Figure 1,
using the RefARIMA with the same number of observations, as comparison. For
all the farms, we observe lower prediction errors associated to the CentARIMA.
The average decrease value is 0.56%. Using the Wilcoxon test, and considering
a p-value< 0.01, the differences between models are significant for all the farms
excluding the WF15 with p = 0.37.

We consider that the exchange of 100 observations for a large network is a
number not acceptable in sensor networks. Several experiments for different data
length were performed. Figure 2 shows that the historical data length is prepon-
derant on the ARIMA model error. Large historical data length are associated
to lower errors but implies more computation cycles and memory usage. The
collaborative model, CentARIMA is more stable compared to the traditional
univariate model RefARIMA. In this case, the number of historical observations
has no prominent influence on the error value, up to less than 100 observations.
On the other hand, the historical data length has a preponderant effect on the
accuracy of RefARIMA that increases for the models using fewer historical data.
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Fig. 1. RMSE values (8600 experiments) from RefARIMA (black bars) and Cen-
tARIMA (grey bars), trained with 100 observations for a horizon of 6-hours.

It is possible to conclude that the collaborative model presents competitive ad-
vantages, if the historical data length is a requirement, without compromising
the error value and avoiding computation cycles and memory usage.

Distributed Model Some textbooks provide rules to minimum sample sizes
for various time series models. In the case of ARIMA, 30 observations is often
refereed as the minimum acceptable number. So, the DistARIMA model was im-
plemented using 30 observations, being the results compared to the RefARIMA.

Fig. 2. RMSE error for different historical data length used on the ARIMA model
train, at black the RefARIMA and at grey the CentARIMA simulations.
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Fig. 3. a) RMSE values when dot < 0.97 for the RefARIMA (black) and DistARIMA
(grey) models, being visible the lower error distribution for the DistARIMA. b) RMSE
difference, being visible the improvement of the DistModel for higher RMSE values.

Results are presented in Figure 3, at the left panel is represented the RMSE
error distribution for both models, and at the right the observed differences are
plotted. It was observed an average decrease of 3.24% for the DistARIMA, con-
sidering the zones where dot product <0.97 (the predefined threshold). It is also
visible at the right panel that the error associated to the DistARIMA decreases
for zones where the absolute error is higher, such as expected. The Wilcoxon
test was applied and results indicate significant differences between the models
for all of the farms.

Comparison of the Models The comparison included persistence and ARIMA
models trained with 100 points. Firstly, the RMSE is compared at each hour
ahead. The performance of three of the farms is presented in Figure 4. The
relevance of the collaborative approaches is exposed, with lower error values
comparatively to the persistence that only outperforms (average for all farms)

Fig. 4. Hour-ahead forecast for the persistence (black), RefARIMA (grey), Cen-
tARIMA (blue), DistARIMA (red) models for the WF1, WF7 and WF16.
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Fig. 5. Hour-ahead error measure for the persistence (black), CentARIMA (blue), Dis-
tARIMA (red) models for 1h, 3h and 6h.

one of the collaborative models (DistARIMA) for forecast horizons between 4−6
hours. Comparing the ARIMA models with persistence, the improvement of
DistARIMA is not so good comparatively to CentARIMA (average improvement
of 0.38% vs. 2.46%, respectively).

We also present the analysis of the error distribution. Figure 5 points-out
that no bias is present, considering all the models. For the persistence model
in 1 − hour horizon is visible a wider dispersion comparatively to the ARIMA
models. However, the difference is attenuated for 6 − hour horizon. Although,
these numbers may seem relatively small, they have an interesting impact on
the production costs.

4 Conclusions and Future Work

This paper discusses the advantages of a collaborative approach in short term
wind power forecast. Two scenarios were tested, a centralized approach sharing
time series between nodes and a distributed version that exchanges only the
model parameters between nodes. It was observed RMSE decrease by 2.46%
for the centralized and 0.38% for the distributed approach comparatively to the
persistence values. These values result from 8600 experiments. In overall, a small
but consistent RMSE reduction of the predictions was observed.

The work reported in this paper opens several directions of future research.
The most obvious direction lies on the challenge of selecting the correlation
threshold for that the forecast error is minimized. Further studies include the
analysis of the influence of several parameters on the quality of results, such
as k, NGi, N, thd. Finally, research on other domains where data are network
distributed is being planned.
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