Skip to main content

Energy Prediction for EVs Using Support Vector Regression Methods

  • Conference paper
Intelligent Systems'2014

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 323))

Abstract

This paper presents the application of machine learning algorithms for an accurate estimation of the energy consumption of electric vehicles (EVs). Normalised energy consumption values and speed profiles are collected from various EVs for a cloud-based prediction approach. We predict the necessary energy for each road segment on the basis of crowd-sourced data. Support vector machines, which are trained by the collected historical data of the driver, predict the deviation from the average energy consumption on each road segment. As a result, the prediction of propulsion energy consumption for EVs before the start of a trip has a relative mean error of less than 6.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dorrer, C.: Effizienzbestimmung von Fahrweisen und Fahrerassistenz zur Reduzierung des Kraftstoffverbrauchs unter Nutzung telematischer Informationen. Ph.D. dissertation, Universitaet Stuttgart (2004)

    Google Scholar 

  2. Olivia, J., Weihrauch, C., Bertram, T.: A Model-Based Approach for Predicting the Remaining Driving Range in Electric Vehicles. In: Proc. of the Annual Conference of the Prognostics and Health Management Society, New Orleans (2013)

    Google Scholar 

  3. Yu, H., Tseng, F., McGee, R.: Driving pattern identification for EV range estimation. In: IEEE International Electric Vehicle Conference (IEVC), pp. 1–7 (2012)

    Google Scholar 

  4. Karbowski, D., Smis-Michel, V., Vermeulen, V.: Using Trip Information for PHEV Fuel Consumption Minimization. In: Proc. of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona (2013)

    Google Scholar 

  5. Rodgers, L., Frey, D., Wilhelm, E.: Conventional and novel methods for estimating an electric vehicle’s “distance to empty”. In: Proc. of the ASME 2013 International Conference on Advanced Vehicle Technologies, Portland (2013)

    Google Scholar 

  6. Boriboonsomisn, K., Barth, M., Zhu, W., Vu, A.: Eco-Routing Navigation System Based on Multisource Historical and Real-Time Traffic Information. IEEE Transactions on Intelligent Transportation Systems 13(4), 1694–1704 (2012)

    Article  Google Scholar 

  7. Ferreira, J., Monteiro, V., Afonso, J.: Dynamic Range Prediction for an Electric Vehicle. In: Proc. of EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Barcelona (2013)

    Google Scholar 

  8. Masikos, M., Demestichas, K., Adamopoulou, E., Theologou, M.: Mesoscopic forecasting of vehicular consumption using neural networks. Journal Soft Computing, 1–12 (2014)

    Google Scholar 

  9. Ericsson, E.: Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. In: Transportation Research Part D: Transport and Environment, part. 6, pp. 325-345 (2001)

    Google Scholar 

  10. Grubwinkler, S., Kugler, M., Lienkamp, M.: A system for cloud-based deviation prediction of propulsion energy consumption for EVs. In: IEEE International Conference on Vehicular Electronics and Safety (ICVES), Dongguan, pp. 99–104 (2013)

    Google Scholar 

  11. Grubwinkler, S., Lienkamp, M.: A modular and dynamic approach for the prediction of the energy consumption of electric vehicles. In: Proc. of CoFAT, Munich (2013)

    Google Scholar 

  12. Grubwinkler, S., Hirschvogel, M., Lienkamp, M.: Driver- and Situation-Specific Impact Factors for the Energy Prediction of EVs based on Crowd-Sourced Speed Profiles. In: IEEE Intelligent Vehicles Symposium (IV), Dearborn, pp. 1069–1076 (2014)

    Google Scholar 

  13. OpenStreetMap, http://www.openstreetmap.org/

  14. Schoelkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

    Google Scholar 

  16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  17. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Grubwinkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grubwinkler, S., Lienkamp, M. (2015). Energy Prediction for EVs Using Support Vector Regression Methods. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11310-4_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11309-8

  • Online ISBN: 978-3-319-11310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics