Skip to main content

DTW-Based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance

  • Conference paper
Computer Vision and Graphics (ICCVG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Included in the following conference series:

Abstract

We present a view independent approach for 3D human gait recognition. The identification of the person is done on the basis of motion estimated by our marker-less 3D motion tracking algorithm. We show tracking performance using ground-truth data acquired by Vicon motion capture system. The identification is achieved by dynamic time warping using both joint angles and inter-joint distances. We show how to calculate approximate Euclidean distance metric between two sets of Euler angles. We compare the correctly classified ratio obtained by DTW built on unit quaternion distance metric and such an Euler angle distance metric. We then show that combining the rotation distances with inter-ankle distances and other person attributes like height leads to considerably better correctly classified ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areblad, M., Nigg, B., Ekstrand, J., Olsson, K., Ekström, H.: Three-dimensional measurement of rearfoot motion during running. J. Biom. 23(9), 933–940 (1990)

    Article  Google Scholar 

  2. Boulgouris, N., Hatzinakos, D., Plataniotis, K.: Gait recognition: a challenging signal processing technology for biometric identification. Signal Proc. Magazine, 78–90 (2005)

    Google Scholar 

  3. Gu, J., Ding, X., Wang, S., Wu, Y.: Action and gait recognition from recovered 3-D human joints. IEEE Trans. Sys. Man Cyber. Part B 40(4), 1021–1033 (2010)

    Article  Google Scholar 

  4. Jean, F., Albu, A.B., Bergevin, R.: Towards view-invariant gait modeling: Computing view-normalized body part trajectories. Pattern Recogn 42(11) (November 2009)

    Google Scholar 

  5. Krzeszowski, T., Kwolek, B., Wojciechowski, K., Josinski, H.: Markerless articulated human body tracking for gait analysis and recognition. Machine Graphics & Vision 20(3), 267–281 (2011)

    Google Scholar 

  6. Krzeszowski, T., Kwolek, B., Michalczuk, A., Świtoński, A., Josiński, H.: View independent human gait recognition using markerless 3D human motion capture. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 491–500. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Kulbacki, M., Bak, A.: Unsupervised learning motion models using dynamic time warping. In: Intelligent Information Systems. Advances in Soft Computing, vol. 17, pp. 217–226. Physica-Verlag HD (2002)

    Google Scholar 

  8. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24(3), 677–685 (2005)

    Article  Google Scholar 

  9. Nixon, M.S., Carter, J.: Automatic recognition by gait. Proc. of the IEEE 94(11), 2013–2024 (2006)

    Article  Google Scholar 

  10. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  11. Switonski, A., Polanski, A., Wojciechowski, K.: Human identification based on the reduced kinematic data of the gait. Int. Sym. Sig. Pr. Anal., 650–655 (2011)

    Google Scholar 

  12. Tanawongsuwan, R., Bobick, A.: Gait recognition from time-normalized joint-angle trajectories in the walking plane. In: CVPR, vol. 2, pp. 726–731 (2001)

    Google Scholar 

  13. Urtasun, R., Fua, P.: 3D tracking for gait characterization and recognition. In: Proc. of IEEE Int. Conf. on Automatic Face and Gesture Rec., pp. 17–22 (2004)

    Google Scholar 

  14. Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Rec. 37(5), 1057–1072 (2004)

    Article  Google Scholar 

  15. Yu, S., Tan, D., Tan, T.: Modelling the effect of view angle variation on appearance-based gait recognition. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 807–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Krzeszowski, T., Switonski, A., Kwolek, B., Josinski, H., Wojciechowski, K. (2014). DTW-Based Gait Recognition from Recovered 3-D Joint Angles and Inter-ankle Distance. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics