
GOLDENEYE: Efficiently and Effectively Unveiling
Malware’s Targeted Environment

Zhaoyan Xu1, Jialong Zhang1, Guofei Gu1, and Zhiqiang Lin2

1Texas A&M University, College Station, TX
{z0x0427, jialong, guofei}@cse.tamu.edu

2The University of Texas at Dallas, Richardson, TX
zhiqiang.lin@utdallas.edu

Abstract. A critical challenge when combating malware threat is how to effi-
ciently and effectively identify the targeted victim’s environment, given an un-
known malware sample. Unfortunately, existing malware analysis techniques ei-
ther use a limited, fixed set of analysis environments (not effective) or employ ex-
pensive, time-consuming multi-path exploration (not efficient), making them not
well-suited to solve this challenge. As such, this paper proposes a new dynamic
analysis scheme to deal with this problem by applying the concept of speculative
execution in this new context. Specifically, by providing multiple dynamically
created, parallel, and virtual environment spaces, we speculatively execute a mal-
ware sample and adaptively switch to the right environment during the analysis.
Interestingly, while our approach appears to trade space for speed, we show that it
can actually use less memory space and achieve much higher speed than existing
schemes. We have implemented a prototype system, GOLDENEYE, and evalu-
ated it with a large real-world malware dataset. The experimental results show
that GOLDENEYE outperforms existing solutions and can effectively and effi-
ciently expose malware’s targeted environment, thereby speeding up the analysis
in the critical battle against the emerging targeted malware threat.

Keywords: Dynamic Malware Analysis, Speculative Execution

1 Introduction
In the past few years, we have witnessed a new evolution of malware attacks from
blindly or randomly attacking all of the Internet machines to targeting only specific
systems, with a great deal of diversity among the victims, including government, mil-
itary, business, education, and civil society networks [17,24]. Through querying the
victim environment, such as the version of the operating system, the keyboard layout,
or the existence of vulnerable software, malware can precisely determine whether it
infects the targeted machine or not. Such query-then-infect pattern has been widely em-
ployed by emerging malware attacks. As one representative example, advanced persis-
tent threats (APT), a unique category of targeted attacks that sets its goal at a particular
individual or organization, are consistently increasing and they have caused massive
damage [15]. According to an annual report from Symantec Inc, in 2011 targeted mal-
ware has a steady uptrend of over 70% increasing since 2010 [15], such overgrowth
has never been slow down, especially for the growth of malware binaries involved in
targeted attacks in 2012 [14].

To defeat such massive intrusions, one critical challenge for malware analysis is
how to effectively and efficiently expose these environment-sensitive behaviors and in



further derive the specification of environments, especially when we have to handle a
large volume of malware corpus everyday. Moreover, in the context of defeating tar-
geted attacks, deriving the malware targeted environment is an indispensable analysis
step. If we can derive the environment conditions that trigger malware’s malicious be-
havior, we can promptly send out alerts or patches to the systems that satisfy these
conditions.

In this paper, we focus on environment-targeted malware, i.e., malware that con-
tains query-then-infect features. To analyze such malware and extract the specification
of their targeted environment, we have to refactor our existing malware analysis infras-
tructure, especially for dynamic malware analysis. Because of the limitation of static
analysis [38], dynamic malware analysis is recognized as one of the most effective so-
lutions for exposing malicious behaviors [38,37]. However, existing dynamic analysis
techniques are not effective and efficient enough, and, as mentioned, we are facing two
new challenges: First, we need highly efficient techniques to handle a great number
of environment-targeted malware samples collected every day. Second, we require the
analysis environment to be more adaptive to each individual sample since malware may
only exhibit its malicious intent in its targeted environment. (More details are explained
in Section 2.)

As such, in this paper we attempt to fill the aforementioned gaps. Specifically, we
present a novel dynamic analysis scheme, GOLDENEYE, for agile and effective mal-
ware targeted environment analysis. To serve as an efficient tool for malware analysts,
GOLDENEYE is able to proactively capture malware’s environment-sensitive behaviors
in progressive running, dynamically determine the malware’s possible targeted environ-
ments, and online switch its system environment adaptively for further analysis.

The key idea is that by providing several dynamic, parallel, virtual environment
spaces during a single malware execution, GOLDENEYE proactively determines what
the malware’s targeted environment is through a specially designed speculative execu-
tion engine to observe malware behaviors under alternative environments. Moreover,
GOLDENEYE dynamically, adaptively switches the analysis environment and lets mal-
ware itself expose its target-environment-dependent behaviors. Although GOLDENEYE
trades space for speed, interestingly our experimental results show that GOLDENEYE
could actually use less memory space while achieving much higher speed than existing
multi-path exploration techniques.

In summary, this paper makes the following contributions:
– We present a new scheme for environment-targeted malware analysis that provides

a better trade-off between effectiveness and efficiency, an important and highly de-
manded step beyond existing solutions. As a preliminary effort towards systematic
analysis of targeted malware, we hope it will inspire more future research in tar-
geted and advanced persistent threat defense.

– We design and implement GOLDENEYE, a new lightweight dynamic analysis tool
for discovering malware’s targeted environment by applying novel speculative ex-
ecution in dynamic, parallel, virtual environment spaces. The proposed approach
can facilitate the analysis on new emerging targeted threats to reveal malware’s
possible high-value targets. Meanwhile, it also facilitates conducting large volumes
of malware analysis in a realtime fashion.

– We provide an in-depth evaluation of GOLDENEYE on real-world malware datasets
and show that GOLDENEYE can successfully expose malware’s environment-sensitive
behaviors with much less time or fewer resources, clearly outperforming existing
approaches. We also show that GOLDENEYE can automatically identify and pro-
vide correct running environment for tested well-known targeted malware families.
To further improve the accuracy and efficiency, we also propose a distributed de-
ployment scheme to achieve better parallelization of our analysis.



2 Background and Related Work

2.1 Objectives

The focal point of this paper is on a set of malware families, namely environment-
targeted malware. In our context, we adopt the same definition of environment in related
work [36], i.e., we define an environment as a system configuration, such as the version
of operating system, system language, and the existence of certain system objects, such
as file, registry and devices.

Environment-targeted malware families commonly contain some customized envi-
ronment check logic to identify their targeted victims. Such logic can thus naturally lead
us to find out the malware’s targeted running environment. For instance, Stuxnet [13], an
infamous targeted malware family, embeds a PLC device detection logic to infect ma-
chines that connect to PLC control devices. Banking Trojans, such as Zeus [21], only
steal information from users who have designated bank accounts. Other well-known
examples include Flame [6], Conficker [43] and Duqu [4].

As a result, different from the traditional malware analysis, which mainly focuses
on malware’s behaviors, environment-targeted malware analysis has to answer the fol-
lowing two questions: (1) Given a random malware binary, can we tell whether this
sample is used for environment-targeted attacks? (2) If so, what is its targeted victim or
targeted running environment?

Consequently, the goal of our work is to design techniques that can (1) identify pos-
sible targeted malware; (2) unveil targeted malware’s environment sensitive behaviors;
and (3) provide environment information to describe malware’s targeted victims.

2.2 Related Work
Research on Enforced/Multi-path Exploration. Exposing malicious behaviors is a re-
search topic that has been extensively discussed in existing research [33,30,27,23,36,47,46].

One brute-forced path exploration scheme, forced execution, was proposed in [46].
Instead of providing semantics information for a path’s trigger condition, the technique
was designed for brute-force exhausting path space only. Most recently, X-Force [42]
has made this approach further by designing a crash-free engine. To provide the seman-
tics of the trigger, Brumley et al. [25] proposed an approach that applies taint analysis
and symbolic execution to derive the condition of malware’s hidden behavior. In [34],
Hasten was proposed as an automatic tool to identify malware’s stalling code and de-
viate the execution from it. In [35], Kolbitsch et al. proposed a multipath execution
scheme for Java-script-based malware. Other research [29,46] proposed techniques to
enforce execution of different malware functionalities.

One important work in this domain [37] introduced a snapshot based approach
which could be applied to expose malware’s environment-sensitive behaviors. How-
ever, this approach is not efficient for large-scale analysis of environment-targeted mal-
ware: it is typically very expensive and it may provide too much unwanted information,
thus leaving truly valuable information buried. This approach essentially requires to run
the malware multiple times to explore different paths. After each path exploration, we
need to rewind to a previous point (e.g., a saved snapshot), deduce the trigger condi-
tion of branches and explore unobserved paths by providing a different set of input,
or sometimes enforce the executing of branches in a brute-force way. Obviously this
kind of frequent forward execution and then rolling back is very resource-consuming,
thus making it not very scalable to be applied for analyzing a large volume of malware
samples collected each day. Moreover, this scheme is a typical sequential model which



makes the analysis hard for parallel or distributed deployment, e.g., in a cloud com-
puting setting. Last but not least, the possible path explosion problem [37] is another
important concern for this approach.
Research on Malware’s Environment-Sensitive Behaviors. Another line of research
[27,23,28,36,44,40] discusses malware environment-sensitive behaviors. These studies
fall into three categories: (1) Analyzing malware’s anti-debugging and anti-virtualization
logic [23,28]; (2) Discovering malware’s different behaviors in different system config-
urations [36]; (3) Discovering behaviors in network-contained environment [32]. The
main idea in these studies is to provide possible target environments before applying the
traditional dynamic analysis. The possible target environment could be a running envi-
ronment without debuggers [28], introspection tools [23], or patched vulnerabilities
involved.

In a recent representative study [36], the authors provided several statically-configured
environments to detect malware’s environment sensitive behaviors. While efficient (not
carrying the overhead of multi-path exploration), this approach is not effective, i.e., the
limitation is: we cannot predict and enumerate all possible target environments in ad-
vance. In particular, in the case of targeted malware, we often are not able to predict
malware’s targeted environments before the attack/analysis.

Approach Category I II
Representative Work [25,37,46] [36,23]

Completeness High Low
Flexibility High Low

Prerequisites Low High
Resource Consumption High Low

Analysis Speed Slow Fast
Assisting Techniques Symbolic Execution, Trace Comparison

Tainted Analysis,
Execution Snapshot

Deployment Model Sequential Sequential/Parallel

Table 1: Summary of Existing Techniques

Summary. We summarize the
pros and cons of previous re-
search in Table 1. We analyze
these techniques from several
aspects: Completeness, Flexi-
bility, Prerequisites, Resource
Consumption, Analysis Speed,
Assisting Techniques, and De-
ployment Model.

As illustrated, the first cat-
egory of solution, such as [37,25],
has theoretically full-completeness
but with high resource consumption. It requires the execution to periodically store exe-
cution context and roll back analysis after one-round exploration, thus very slow. Mean-
while, it requires some assisting techniques, such as symbolic execution which is slow
and has some inherent limitations [22]. Last but not least, it is not designed for parallel
deployment, making it not able to leverage modern computing resources such as clouds.

For the second category, such as [23,36], these approaches support both sequential
and parallel deployment. Meanwhile it has less resource consumption and fast analysis
speed. However, all the environments require manual expertise knowledge and need to
be configured statically beforehand. Hence, it is not flexible nor adaptive. More impor-
tantly, it is incomplete, limited to these limited number of preconfigured environments,
and has a low analysis coverage.

3 Overview of GOLDENEYE

An overview of our approach is presented in Figure 1. As illustrated, our scheme con-
sists of three phases. In phase I, we screen malware corpus and identify the possible
targeted malware samples. In phase II, we employ dynamic environment analysis to it-
eratively unveil the malware candidates’ targeted running environments. In phase III, we
summarize the analysis result with detailed reports. The reports contain the information
about malware’s sensitive environments and their corresponding behavior differences.



Targeted Malware 
Candidates

Environment 
Update

Monitoring 
Tool

….

Original 
Environment

Alternative 
Environment I

Alternative 
Environment II

Concrete 
Execution

Speculative 
Execution Engine

Result in I

Result in II

Result 

….

Running 
Environment

Alternative 
Environment I

Environment 
Selection

Filtering

I : Pre-selection

II: Dynamic Environment Analysis

III: Target Reports

Reports

Fig. 1: Overview of GOLDENEYE

In this section we briefly overview the basic idea of our key novel design in GOLD-
ENEYE, i.e., progressive speculative execution in parallel spaces, and leave the rest
system details to Section 4.

The first key design of GOLDENEYE is to dynamically construct parallel spaces to
expose malicious behaviors. To overcome the limitation of previous work [36], which
statically specifies multiple analysis environments beforehand, our design is to dynam-
ically construct multiple environments based on malware’s behaviors, the call of en-
vironment query APIs. In particular, through labeling these APIs beforehand, we can
understand all possible return values of each environment query. For each possible re-
turn value, we construct one environment for that. For example, if we find the malware
queries system call GetKeyboardLayout, we can prepare multiple return values
such as 0x0004 for Chinese and 0x0409 for United States, and simulate two parallel
running environment with Chinese and English keyboards for analyzing malware be-
haviors. As shown in Figure 2, the parallel environments is constructed alongside with
malware’s execution, therefore, it prevents running the same sample by multiple times.
As long as our API labeling (introduced in Section 4) can cover the environment query,
we believe GOLDENEYE can automatically detect/expose all environment-sensitive be-
haviors of samples.

Our second novel design is to apply speculative execution in these parallel environ-
ments. Observing the limitation of existing work [37], which consumes a huge amount
of time and memory on rolling back the analysis on alternative paths, we apply the con-
cept of speculative execution [31], which refers to the situation when a computer system
performs some task that may not be actually needed but to trade off some other opti-
mize needs. The merit of applying speculative execution in our context is to keep the
execution forward as far as possible. Thus, we consider to construct multiple possible
environments online and speculatively execute malware in each environment instance.
Through determining the most possible malicious execution path, we can also deter-
mine what the running environment is in order to reach certain path.

To embrace speculative execution in our new problem domain, we need to solve new
technical challenges. First, since the executed instructions in each environment vary,



it is practically infeasible to predict the execution in an online dynamic fashion. We
solve this challenge by progressively performing the speculative execution at the basic
block level. In particular, we execute each basic block in all alternative environment
settings. Since there is no branch instruction inside each basic block, the instructions
are the same for all environments. When we reach the branch instruction at the end of
a block, we apply several heuristics to determine which is the possible malicious path.
Consequently, we reduce the space by only keeping the settings that most likely lead to
the desired path.

Second, speculative execution is essentially a trade-off scheme between speed and
space (i.e., trading more memory consumption for speedup) [31]. In our design, we also
try to reduce the memory consumption by two novel designs: (1) We only speculatively
execute the instructions that generate different results for different environments. We
choose to employ taint analysis to narrow down the scope to the instructions which
operate on environment-related data. (2) We monitor the memory usage to prevent the
explosion of alternative environments.

In general, we introduce the following speculative execution engine: We conduct
speculative execution at the granularity of code block to emulate the malware’s execu-
tion in multiple parallel environment spaces. We first prefetch a block of instructions.
Next, we apply taint analysis on the pre-fetched instructions and taint each byte of
the API/instruction output (environment element) as the tainted source. The reason to
use taint analysis is to filter those instructions that are not related to the environment,
which can reduce the overhead of full speculative execution. We propagate tainted la-
bels and when we hit one instruction with the tainted operands, we accordingly update
the execution context in all alternative environments. We continue such propagation
until we reach the end of the block, which is a branch instruction. For the branch in-
struction, we determine whether it could be affected by the tainted bytes or not. If it is
an environment-sensitive branch, we continue to the next step, i.e., branch selection and
update. If not, speculative execution will start a new pre-fetch operation.

For environment-sensitive branches, we attempt to prevent the overhead caused by
roll-back operation in [37]. We design our scheme to proactively select the branches
based on the information provided in the speculative execution. The intuition is: if we
can tell which branch is more likely the malware author’s intended branch, we can
dynamically adjust the environment to enforce the malware to only execute some des-
ignated branch. In principle, whenever we find a branch that belongs to a possible mali-
cious path, we will re-examine the alternative environments and only select the environ-
ment that could be used to enforce the desired branch. Our solution to find the possible
malicious branch is to apply similar techniques as branch evaluation [47] to predict the
possible malicious branches. The detail will be presented in Section 4.2.

To differentiate GOLDENEYE with other approaches, we illustrate the high-level
idea of GOLDENEYE in Figure 2 by comparing with an existing multi-path exploration
approach [37]. For the multi-path exploration approach (the left part in Figure 2), the
redundant overhead comes from exploring all the possible paths by depth-first execution
and storing roll-back snapshots for all deviation branches. GOLDENEYE works in a
different way. It applies branch prediction that follows a breath-first execution scheme to
quickly locate possible malicious paths, which saves the effort of exploring all possible
paths. Second, it enumerates all the possible alternative environments, e.g., ABCD in
Figure 2, dynamically. It ensures the analysis continuously keep forward and saves
the roll-back operations. Thus, it is not necessary to store snapshots for every branch.
Lastly, we use taint analysis to skip many non-environment-sensitive branches to further
save the exploration overhead.

Meanwhile, from the figure we can also notice how the speculative execution tech-
nique is performed in parallel environments. Essentially, our speculative execution is



D
BA C D

Speculative Execution in 
Parallel Environments

C

A

BA

A

BA

B

Snapshot

Not Sensitive 
Node

Multi- Path Exploration GoldenEye

Fig. 2: Illustration of Differences between GOLDENEYE (right) and Multi-path
Exploration [37] (left)

periodically progressing for each code block. We need to iterate all the environments
and synchronize their running results for each instruction in the code block. At the end
of a basic block, the parallel space will be curtailed and GOLDENEYE clears all the
environments settings that unlikely lead to targeted paths.

4 Detailed Design

4.1 Phase I: Pre-selection of Malware Corpus

The first phase of GOLDENEYE is to quickly obtain the malware samples which are
candidates of environment-targeted malware. As defined in Section 2.1, our criteria for
the pre-processing is to find any malware that is sensitive to its running environment.

Our scheme of pre-selection is achieved by tainting the return values of certain
environment query API/instructions and tracking whether the tainted bytes affect the
decision on some branch instructions, such as changing CFlag register. If the tested
sample is sensitive to its environment querying, we keep the sample for further steps.
API Labeling. The most common way for malware to query its running environment
is through certain system APIs/instructions. To capture malware’s environment queries,
we need to hook these APIs/instructions. Furthermore, it is important to derive all pos-
sible return values of these APIs/instructions because these return values are used to
define parallel denvironments. In GOLDENEYE, we label three categories of environ-
ment queries:

– Hook system-level environment query APIs. The operating system provides a large
set of system APIs to allow programmers query the running environment. They
have also been commonly used by malware to achieve the similar goal.

– Hook environment-related instructions. Some X86 instructions such as CPUID can
also be thought as a way to query environment information.

– Hook APIs with environment-related parameter(s). Some system files/registries can
be used to store environment configuration. Thus, we also hook file/registry opera-
tion APIs and examine their parameters. If the parameters contain some keywords,
such as version, we also treat as a query attempt.
For each labeled API/instruction, we examine its return value as the reference to ini-

tialize parallel environments. In general, we construct one speculative execution context



for each possible return value. To narrow down the alternative choices of the environ-
ment, we define the following four basic sets of return values.

– BSET(n) defines a two-choice (binary) set. One example for NtOpenFile is BSET(0)
for the return value NTSTATUS, which accepts 0 (success) or other value (failure).

– SET([...]) defines a normal enumeration of values, such as enumeration for LANGID
in the default system language.

– RANGE(A, B) set contains a range of possible return values.
Based on these three sets, we construct the parallel contexts. For example, we sim-

ply construct two parallel contexts for BSET(n) element. Note that a large amount of
system objects, whose querying API returns -1 as non-existence and random value as
the object handle, belong to this type. We consider all these objects as BSET(n) element.

For SET([...]) with n different values, we accordingly initialize n parallel settings
based on the context.

For RANGE(A, B) set, we examine whether the range set can be divided into some
semantically independent sub-ranges. For example, the different range of native call
NtQuerySystemInformation’s return specifies different type of the system in-
formation. For these cases, we construct one context for each semantically-independent
sub-range. Otherwise, we initially construct one context for each possible value.

One current limitation of our labeling is that we cannot provide parallel environ-
ments for API functions whose return values are not enumerable. For example, some
malware logic may depend on the content of certain file. However, it is not possible
for us to construct all possible (correct) file contents in advance. One possible solution
is to combine symbolic execution [22] in the analysis step at the cost of extra analysis
overhead. However, to achieve better balance between efficiency and effectiveness, we
do not adopt such solution at the moment.

4.2 Phase II: Dynamic Environment Analysis

Dynamic environment analysis is the main component of GOLDENEYE. In this section,
we present its detailed design. We use Conficker [43] worm’s logic as a working exam-
ple. As illustrated in Figure 3, in this example, Conficker worm queries the existence of
specific mutex and the version of the running operating system. The malicious logic is
triggered only after the check succeeds.
Initialization of Malware Environment Analysis. After the preprocessing, we first
initialize the analysis by constructing parallel environments when we find malware’s
environment query. We define a running environment with a set of environment ele-
ments as

env = {e1, ..., ei, ...en}
For each ei, it is defined as a tuple:

< identifier,API, type, value >

where identifier uniquely denotes the name of each environment element, such as
the mutex name or the title of GUI windows; API is the invoked API to query the
element; type specifies the type of element, such as system setting (system language,
os version, etc.) or system objects (the existence of files, registries, etc.); and value
states what are possible values of each element, such as true/false or a set of hex values.
Context Maintenance of Speculative Execution. After GOLDENEYE captures mal-
ware’s environment query, a set of initialized environment contexts are maintained
by our speculative execution engine. The main overhead of our speculative execution
comes from continuously maintaining those parallel contexts.



Base Execution Context

EAX:0x00000000

EBX:0x0000001D

……

Alternative Context

EAX:0x7FFFFFFF

Base Execution Context

EAX:0x5FE32EED

EBX:0x0000001D

……

A: Environment Initialization

EIP

+9c pop edi

+9D pop esi

+9E pop ebx

+9F leave

+A0 retn 0Ch

Sub_8E799E

..

+3C call GetModuleFileNameA

..

+69 call GetComputerNameA

..

+89 call CreateThread

Loc_8E7C4D:

+81 call GetVersion

+87 cmp al, 5

+89 jb short loc_8E7C60

Loc_8E7C60:

+8B push [ebp + hModule]

+8E call sub_8E799E

+93 pop ecx

+58 push eax

+59 push 0

+5B push 0

+5D call OpenMutexA

+63 mov esi, eax

+65 test esi, esi

+67 jz short loc_8E7C4D

…
Base Execution Context

EAX:0x00000000

ESI:0x00000000

ZF: 0x0

……

Alternative Context

EAX:0x7FFFFFFF

ESI:0x7FFFFFFF

ZF: 0x1

B: Speculative Execution

High Preference BranchLow Preference Branch

C: Branch Selection

Base Execution Context

EAX:0x7FE34321

ESI:0x7FE34321

ZF: 0x1

……

Create a Global 

Mutex return 

0x7FE34321 

D:Environment Update
EIP

Base Execution 

Context

EAX:0x00000007

ESI:0x7FE34321

ZF: 0x1

……
EIP

EIP

Fig. 3: Working Example of GOLDENEYE

To save space, the key design for context maintenance is based on our progres-
sive execution scheme. Since the execution in parallel can be naturally synchronized
by each instruction (it follows the same code block(s)), we choose to only record the
modification of parallel contexts. As illustrated in Figure 3 Step A and B, we have no
need to maintain the full execution context, such as all general registers value and exe-
cution stack, in each parallel space. We only track the different data, which is EAX and
ESI in the example. We maintain such alternative contexts using a linked list. When
an environment update operation starts, we only update the dirty bytes that have been
modified since the previous block(s). In further, we organize each progressive context
using linked-list to track the modified bytes.
Taint-assisted Speculative Execution. Another key design to prevent redundant over-
head is to applying taint tracking on environment-sensitive data. In particular, we taint
each byte of the environment query’s return and propagate the tainted labels by each
instruction. When we encounter an instruction without tainted operation, we continue
with concrete execution. Otherwise, when we encounter an instruction with the tainted
operands, we accordingly update the execution context in all alternative environments.
We continue such propagation until we reach the end of a basic block. For the branch
instruction, we also determine whether it could be affected by the tainted bytes or not
(whether CFlag has been tainted or not). If it is an environment-sensitive branch, we
continue the branch selection and environment update. If not, speculative execution
starts a new pre-fetch operation to continue analyzing a new code block.

The advantage of using taint analysis is to efficiently assist the analysis in three
ways: (1) Our speculative execution is only conducted on the instructions whose operands
have been tainted. It allows us to skip (majority) untainted instruction for speculative
execution to save analysis effort. (2) Tainted propagation can help us to determine the
environment-sensitive branches. Our environment prediction/selection is based on the
correct identification of these sensitive branches. (3) Tracking the status of the tainted
label helps us to maintain parallel environment spaces and delete/merge untracked en-
vironments.
Heuristics for Branch Selection. Next, we present how we evaluate the branches and
determine which branch is more possible in the targeted environment. In GOLDEN-



EYE, we apply three heuristics to determine what is a possible branch in the targeted
environment:

– If a branch contains a function call that calls some exit or sleep functions, such as
ExitProcess, ExitThread, and sleep, it means this branch may terminate
the program’s execution. We treat another branch as the possible targeted branch.

– If a branch contains function calls that create a new process or thread, such as
CreateProcess and CreateThread, or start network communication, such
as socket and connect, we treat this branch as the possible targeted branch.
Similar function calls could be some representative malicious calls, such as func-
tions for process injection, auto-booting, and kernel hijacking [45].

– If a branch directly interacts with the environment, we treat this branch as the pos-
sible targeted branch. For example, if malware creates a file before the branch, we
treat the branch that directly operates on the created file as the targeted branch. Es-
sentially, if one branch contains instructions intensively operating on tainted data,
we consider it as the targeted branch.
After examining these three heuristics, if we still cannot decide the possible targeted

branch in a given time window or we find some conflicts among different heuristics,
inspired by the multi-path exploration work [37], we will save the snapshot at the branch
point and conduct the concrete execution for both branches. While this may lead to more
overhead (as in [37]), our experimental result shows that such cases are very rare (less
than 5% cases require rolling back).
Determining Targeted Branch. Our scheme of branch evaluation is to foresee k (e.g.,
k = 50) instructions and find whether any of them contains code of our interest. The
foreseeing operation is conducted by statically disassemble the code in the blocks after
the addresses of two branches. It is gradually processed until we have collected enough
evidence for predicting the branch.

In particular, we start with disassembling one code block at a time. We also need
to disassemble all the possible branches after each code block. Then we scan each
instruction to check whether it (1) has a CALL instruction or (2) operates on some
tainted data.

For the first case, we need to examine the destination address of CALL. Beforehand,
we need to maintain two API address lists: the first records the address of possible ma-
licious functions such as CreateProcess and socket, and the second records the
dormant/termination functions such as sleep and ExitProcess. Thus, if CALL’s
destination address belongs to either of the lists, we set the corresponding preference to
the explored branch.

For the second case, we examine each instruction along two alternative paths to
see whether any instruction operates on the tainted data or not. We achieve that by
examining the source operands of each instruction. If the source operand is tainted
before, we consider the instruction operates on tainted data. Then we deduce the path
that contains more instructions using tainted data.

If we cannot make a decision after we examine k instructions, we apply enforced
execution [46] to explore both branches. In this case, we need an extra round of analysis
for each branch (which is very rare in practice, as shown in our evaluation).

In Figure 3 Step C, we illustrate our strategy by evaluating two branches after the JZ
instruction. As shown in the left branch, the execution may direct to leave and retn
while the right branch exhibits possible malicious logic, such as CreateThread.
Then, we choose the right branch and identify the alternative context as our preferred
execution context.
Environment Update. The result of target branch prediction is to decide whether to re-
main in the current running environment or to switch to another alternative environment.



If the environment switching is needed, there are three basic environment switching op-
erations: (1) Creation, (2) Removal, (3) Substitution.

The key requirement of our design is to update the environment online. Hence, our
environment update step is performed directly after the speculative execution engine
has committed its execution context.

Creating an element is a common case for an environment update. Especially when
malware tries to query the existence of certain system object, we would thus create such
an object to ensure that the following malware operation on this object will succeed. To
this end, we create a dummy object in the system, such as creating a blank file with
certain file name or creating a new registry entry. Accordingly, deleting the element is
the opposite operation and we can simply achieve that by deleting the corresponding
existing system object. While the dummy objects may not always work because fun-
damentally we may not have the exact same knowledge as malware and its targeted
environment to fill the actual content, this scheme works quite well in our evaluation.
And we leave a full discussion of GOLDENEYE limitations in Section 7.

The substitution operation usually occurs when malware requires different system
configuration from the current running environment. A main approach to find out the
correct environment setting is through the result of the speculative execution. Since the
speculative execution tells us the condition to ensure the selected branch, we can con-
cretely set up the value to satisfy this requirement. For example, we can modify some
registry entries to modify certain software version. As a more generic solution, we de-
sign an API manipulation scheme. When a substitution occurs, we hook the previously
captured APIs or instructions, and return a manipulated value to malware for every
query.

The environment update for our working example is illustrated in Figure 3 Step
D. The first step is to update the base execution context as the selected context. In the
example, we first update the ESI and ZF register. Secondly, since EAX is the object
handle of the mutex object, we need to create the mutex for current context and bind
EAX to the mutex handle. In our implementation, we do not concretely create the
mutex. Instead, we record the handle value and when any system call operates on the
handle, we enforce the SUCCESS to emulate the existence of the object.
Handling Space Explosion. As one notable problem for parallel space maintenance
in the speculative execution engine, explosion of parallel spaces could dramatically in-
crease the overhead of GOLDENEYE, especially when the combination of multiple en-
vironment elements happens (Cartesian Effect). We solve the problem by periodically
pruning the parallel spaces. More specially, we enforce the space adjustment when cur-
rent memory occupation exceeds some predefined threshold, ρh. During the analysis,
we associate a timestamp T with each environment element. The time stamp denotes
the last instruction that accesses the corresponding taint label of the element. When the
current memory usage overflows ρh, the speculative execution engine fetches the en-
vironment element with the oldest time stamp. Then, the update operation merges all
the parallel spaces which have different values for the pruned elements. This process
is recursively performed till the current memory capacity is below a predefined lower
bound, ρl. In practice, among all of our test cases, the average number of concurrent
parallel spaces is below 200. It means that, with minor memory overhead (below 500B)
for each space, the space pruning rarely occurs in the practical analysis task.

5 Distributed Deployment of GOLDENEYE

While the above scheme works very well in practice (as shown in our experiment),
there are still some concerns: (1) To prevent rolling-back, we adopt branch evaluation



to select the most likely malicious branch, which might not always be accurate. (2) Our
environment update step is conducted online. Thus, some analysis is possibly conducted
on a set of inconsistent environments. (3) The possible environment explosion may
overburden one analysis instance.

To further improve the accuracy and efficiency, we propose a distributed deploy-
ment scheme of GOLDENEYE. The scheme is essentially taking advantage of parallel
environments created by the speculative engine and distributing them to a set of worker
machines for further analysis.

In detail, when the speculative engine detects an environment-sensitive branch, it
can choose to push a request R into a shared task queue and allow an idle worker
(virtual) machine to handle the further exploration. The worker machine monitoring
(WMM) tool pulls each request and updates the environment settings before analyzing
a malware sample. After the booting of a malware sample, the WMM tool will monitor
the execution status and enable the speculative execution if some unobserved malicious
logic has occurred.

There are two tasks for each WMM: (1) Updating analysis environment, which is a
set of operations to update its environment before analaysis, such as create/delete en-
vironment element or modify current environment value. After that, we create one cus-
tomized environment for each analysis task. (2) Starting speculative execution, which is
to conduct a series of EIP and basic context registers comparison before restarting the
speculative execution. By skipping the instructions which have been analyzed before,
we can focus on exploring new malicious behaviors.

The merits of our design are twofold. First, the analysis environment is dynamically
changed and the setting is dynamically generated based on the malware execution and
analysis progress. It is essentially different from the parallel/distributed deployment of
existing analysis techniques [36,23] because their settings are statically preconfigured.
Second, it saves a huge amount of system resources including memory and storage.
Snapshot-based schemes such as [33,37] are mainly used as sequential execution. If
one attempts to parallelize its deployment, a great deal of resources need to be used to
store/transmit/restore the snapshots. In our design, each worker machine just maintains
one initial snapshot locally and consumes little memory to transmit the environment
request. In this sense, our scheme achieves a better balance between effectiveness and
efficiency.

6 Evaluation

We have implemented GOLDENEYE, which consists of over 4,000 lines mixed C and
python code. Our monitoring tool, taint tracking tool, and speculative execution en-
gine are implemented based on the open-source binary instrumentation framework,
DynamoRIO [5] by first translating the X86 instructions into an intermediate language
BIL [26], then performing data and control flow analysis afterwards. We write our se-
mantic rule module as an independent C library, which receives the output of the mon-
itoring tool and parses each instruction. Our environment selector is based on an open
source disassembly library, distorm[3]. We also implement a lightweight emulated ex-
ecution engine inside the module to perform branch evaluation. In addition, our envi-
ronment update module is implemented as an API hook tool based on DynamoRIO and
a set of dummy object creation/deletion scripts, which can be directly invoked by our
environment update module. In this section, we present our evaluation results.



6.1 Experiment Dataset

Our test dataset consists of 1, 439 malware samples, collected from multiple online
malware repositories such as Anubis [1] and other sources [10]. This dataset is ran-
domly collected without any pre-selection involved. We analyze these 1, 439 malware
using a free virus classification tool [20] and classify them into 417 distinct malware
families. Analyzing the classification result, we further categorize these 417 malware
families into four classes: Trojan, Worm, Spyware/Adware, and Downloader. The statis-
tics about our dataset is listed in Table 2. Meanwhile, we also collect a small dataset
that includes some well-known malware samples which are environment-targeted, such
as Conficker [43], Duqu [4], Sality [12], and Zeus [21]. For each malware family, we
collected several variant samples.

Category # Malware Samples Percent Distinct Families
Trojan 627 43.57% 263

Adware/Spyware 284 19.73% 59
Worm/Virus 185 12.85% 27
Downloader 343 23.83% 68

Total 1, 439 100% 417
Table 2: Malware’s Classification from VirusTotal

6.2 Experiment Setup

In our experiment setting, we manually labeled 112 system/library APIs with 122 output
parameters, and hooked them in our analysis. All our experiments are conducted in a
machine with Intel Core Duo 2.53GHz processor and 4GB memory.

6.3 Experiments on General Malware Corpus

We conduct the following experiments to evaluate GOLDENEYE on the larger malware
dataset with 1, 439 samples.

Measurement of Effectiveness First, we study the effectiveness of our approach in
terms of the code coverage in analysis. To measure that, we first collect a baseline trace
by naturally running each malware sample in our virtual environment for 5 minutes.
Then we apply GOLDENEYE to collect a new trace in the adaptively-changing envi-
ronment(s). In our evaluation, we measure the relative increase in the number of native
system calls between the base run and analysis run. The distribution of increased APIs
among all malware samples is shown in Figure 4. As seen in Figure 4, over 500 mal-
ware samples exhibit over 50% more APIs in the new run. It shows that our system
can expose more malware’s environment-sensitive behaviors. From the result, we also
find that over 10% Adware/Spyware exhibits 100% more behaviors. It may imply that
Spyware is more sensitive to the running environment compared with other malware
categories. This is reasonable because Spyware normally exhibits its malicious behav-
ior after it collects enough information about the infected user. This further proves the
usefulness of our system. Examining the quantitative results of other categories, it is
evident that our system can efficiently discover malware’s environment-sensitive func-
tionalities.



0

100

200

300

400

500

600

Trojan Adware/Spyware Worm Downloader Overall

0%-10% 10%-50% 50%-100% >100%

Fig. 4: Relative Increase of Native APIs

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

GoldenEye

Related Work I

Worst Case Average Best Case

min Total Analysis Time 

Fig. 5: Analysis Time Comparison

Comparison with Related Work The last set of our experiment is to compare the ef-
fectiveness and efficiency of GOLDENEYE with other approaches. To this end, we first
implemented the approach presented in the related work [37] (labeled as Related Work
I), which needs to explore multiple possible paths of environment-sensitive branches.
Secondly, we configure four virtual environments according to the descriptions in re-
lated work [36] (labeled as Related Work II). We test malware samples in all four envi-
ronments and choose the best one as the result. Then we randomly select 100 malware
samples from each category of malware and collect the traces generated by GOLDEN-
EYE, Related Work I, and II, respectively. When collecting each execution path trace,
we terminate the analysis if no further system calls are observed for 30 seconds (e.g.,
sample terminates or sleeps), or if it reaches maximum analysis time which we set as
300 seconds (5 minutes) for GOLDENEYE and Related Work II. For Related Work I,
since it needs to explore all possible paths, we have to let it run for a much longer
time. However, it could possibly take forever. Hence, in this experiment we limit its
maximum analysis time to 12 hours.

Approach Malware Percent of Increased APIs # of Rolling Back Memory/Disk Usage
<10% 10%-50% 50%-100% >100% <50 50-500 >500 <1MB 1MB-5MB >5MB

GOLDENEYE Trojan 31% 36% 27% 6% 74% 26% 0% 67% 33% 0%
Adware/Spyware 29% 34% 28% 9% 86% 14% 0% 56% 44% 0%

Worm 39% 47% 11% 3% 84% 16% 0% 24% 76% 0%
Downloader 43% 29% 24% 4% 69% 31% 0% 32% 68% 0%

Related Work I[37] Trojan 21% 34% 29% 16% 0% 2% 98% 0% 0% 100%
Adware/Spyware 16% 32% 33% 19% 0% 1% 99% 0% 0% 100%

Worm 27% 28% 37% 8% 0% 0% 100% 0% 0% 100%
Downloader 19% 41% 23% 17% 0% 2% 98% 0% 0% 100%

Related Work II[36] Trojan 94% 5% 1% 0% - - - - - -
Adware/Spyware 99% 0% 1% 0% - - - - - -

Worm 96% 4% 0% 0% - - - - - -
Downloader 98% 2% 0% 0% - - - - - -

Table 3: Performance comparison with two representative existing approaches

The result is presented in Table 3. We use the following metrics for the comparison:
– Increased APIs. For each of three approaches, we pick the longest trace during

any single run to compare with the normal run. For each approach, we record the
percentage of malware samples whose increased APIs belonging to 0− 10%, 10−
50%, 50−100%, or 100% and above. From the result, we can see that Related Work
I performs the best among all approaches, which is obvious because this approach
blindly explores all possible paths and we select the path with most APIs in the
comparison. Meanwhile, in our test, pre-configured environment (Related Work II)
can seldom expose malware’s hidden behaviors; on average it only increase 5%



more APIs. Thus, even though pre-configured environment has no extra overhead
for the analysis, it cannot effectively analyze targeted malware. It further confirms
that it is impractical to predict malware’s targeted environment beforehand. Our
approach clearly performs significantly better than Related Work II, and very close
to Related Work I.

– Number of Rolling Backs, which is a key factor to slow down analysis. For explor-
ing both branches, Related Work I has to roll back the execution. In theory, for each
environment-sensitive branch, it requires one roll back operation. From the result,
we can see that most of the samples have to roll back over 500 times to finish the
analysis. However, our GOLDENEYE can efficiently control the number of rolling
back because it only occurs when branch prediction cannot determine the right path
to select. The largest number of rolling back in our test is 126 and median number
is 39. It means that we can save more than 90% overhead when compared with
multi-path exploration.

– Memory Usage. According to the description in [37], average snapshot for rolling
back consumes around 3.5MB memory. Considering their approach needs to re-
cursively maintain the context for branches and sub-branches, the memory/disk
overhead should be over 5MB. However, the highest memory/disk usage of GOLD-
ENEYE is only around 1-2MB, which is much less than half of the memory over-
head in Related Work I. Hence, for memory usage, our system also outperforms the
compared solution.
Finally, we also compare the total time to complete analysis for GOLDENEYE and

Related Work I. For each malware, both GOLDENEYE and Related Work I may generate
multiple traces and we sum up all the time as the total time to complete the analysis of
the malware. The result is summarized in Figure 5. As we can see, for GOLDENEYE,
the average analysis time per malware is around 44 minutes, while the average time
for Related Work I is 394 minutes, which is around 9 times slower. Furthermore, the
worst case for GOLDENEYE never exceeds 175 minutes while there are 12% of tested
malware takes longer than 12 hours for Related Work I (note that if we do not set the 12
hour limit, the average for Related Work I will be much longer). This clearly indicates
that GOLDENEYE is much more efficient.

In summary, it is evident that our approach has better performance regarding the
trade-off of effectiveness and efficiency. We believe the main reason that other solu-
tions have a higher overhead or lower effectiveness is because they are not designed to
analyze malware’s targeted environment. In other words, our approach is more proac-
tive and dynamic to achieve the goal of targeted malware analysis.

6.4 Experiment on Known Environment-Targeted Malware Dataset

In this experiment, we aim to verify that our system can extract known targeted environ-
ments for malware samples. We began our experiment from collecting the ground truth
of some malware set. We look up multiple online resources, such as [43], for the doc-
umentation about our collected malware samples. In particular, we first verified that all
of them are environment-targeted malware, which means they all need to check some
environments and then expose their real malicious intention. Secondly, we manually
examine their analysis report and summarize their interested environment elements. We
group them into five categories: System Information, Network Status, Hardware, Cus-
tomized Objects, and Library/Process. For instance, if one sample’s malicious logic de-
pends on some system-wide mutex, we consider it as sensitive to Customized Objects.
We record our manual findings about our test dataset in Table 4(a).

There are several caveats in the test. First, if the documentation does not clearly
mention the sample’s MD5 or the sample with the specific MD5 cannot be found on-



System Network Hardware Customized
Object

Library
Process

Conficker[43]
√ √ √ √

Zeus[21]
√ √ √ √ √

Sality[12]
√ √

Bifrost[2]
√ √ √ √

iBank[7]
√ √ √ √ √

nuclearRAT[9]
√ √ √ √ √

Duqu[4]
√ √ √ √ √

Nitro[16]
√ √ √

Qakbot[11]
√ √ √

System Network Hardware Customized
Object

Library
Process

Conficker
√ √

◦
√

Zeus
√ √ √ √

◦
Sality

√ √

Bifrost
√ √ √

◦
iBank

√ √
× ×

√

nuclearRAT
√

×
√

◦ ◦
Duqu ◦

√ √ √ √

Nitro ◦
√

◦
Qakbot ◦

√ √

(a) Ground Truth (b) GOLDENEYE Environment Extraction Result√
: Correctly Extracted, ◦: Similar Element

×: Not Extracted

Table 4: Test on Targeted Malware

line, it may bring some inaccurate measurement for the result. One example is the Tro-
jan iBank [7] case. We analyze some of its variants and they may not exhibit the same
behaviors as the documented states. Second, we conclude the extraction result in three
types: (a) Correctly Extracted means GOLDENEYE can extract the exact same environ-
ment element. (b) Similar Element means GOLDENEYE finds some element that acts
the similar functionality as mentioned in the document, but such element may have
different name as the document described. We suspect it is probably because the ele-
ment name is dynamically generated based on different information. For this type, we
consider GOLDENEYE successfully extracts the environment information, because the
correct element name could be derived through further manual examination or auto-
matic symbolic execution [22]. (c) Not Extracted means GOLDENEYE fails to extract
the environment element.

From the result, we can see that our GOLDENEYE can correctly detect most of
the targeted environment elements (41 out of 44) within the 5-min analysis time limit.
However, our system fails to extract 3 elements out of 44 cases. After we manually
unpack the code and check the reason of the failures, we find there are two main reasons:
(1) Some hardware query functions are not in our labeled API list (e.g., in the case of
iBank). This could be solved if we improve our labeled API list. (2) Some element
check only occurs after the malware successfully interacts with a remote (C&C) server
(e.g., in the case of nuclearRAT). However, these servers may not be alive during our
test thus we fail to observe such checks.

6.5 Case Studies

Next, we study some cases in our analysis. We list several environment targets which
may trigger malware’s activities.
Targeted Location. For Conficker A, GOLDENEYE successful captures the system call
GetKeyboardLayout and automatically extracts malware’s intention of not infect-
ing the system with Ukrainian keyboard [43]. For some variants of Bifrost[2], GOLDEN-
EYE finds they query the system language to check whether the running OS is Chinese
system or not, which is their targeted victim environment. For these cases, GOLDEN-
EYE can intelligently change the query result of APIs, such as GetKeyboardLayout,
to make malware believe they are running in their targeted machine/location.
User Credentials. We found several malware samples target at user credentials to
conduct their malicious activities. For example, we found that Neloweg[19] will ac-
cess registry at Microsoft/Internet Account Manager/Accounts key,



which stores users’ outlook credentials. Similar examples also include Koobface[8],
which targets at user’s facebook credentials. GOLDENEYE successfully captures these
malicious intentions by providing fake credentials/file/registry to malware and allowing
the malware to continue execution. While the malware’s further execution may fail be-
cause GOLDENEYE may not provide the exact correct content of the credential, GOLD-
ENEYE can still provide enough targeted environment information to malware analysts.
System Invariants. In our test, GOLDENEYE extracted one mutex from Sality [12]
whose name is uxJLpe1m. In the report, we found that the existence of such mutex
may disable Sality’s execution. This turns out to be some common logic for a set of
malware to prevent multiple infections. Similar logic has also been found in Zeus [21]
and Conficker [43]. For these cases, even though the clean environment, which does not
contain the mutex, is the ideal environment for analysis, we can still see that GOLDEN-
EYE’s extracted information is useful, potentially for malware prevention, as discussed
in [48].
Displayed Windows and Installed Library. iBank [7] Trojan is one example that is
sensitive to certain displayed windows and installed library. In particular, GOLDENEYE
detects that IBank tries to find the window " AVP.Root", which belongs to Kasperky
software. Meanwhile, it also detects that IBank accesses avipc.dll in the home path
of Avira Anti-virus software. Our GOLDENEYE further detects if such library or win-
dow exists, the malware exhibits more behaviors by calling the function AvIpcCall
in the library to kill the AV-tools. IBank samples tell us that if our analysis is performed
in an environment without AV tools installed, we will miss these anti-AV behaviors.
Hence, as a side effect, GOLDENEYE could be a good automatic tools for analysts to
detect malware’s anti-AV behaviors.
Others. Last but not least, we always assume exposing more malicious behaviors is bet-
ter. However, detecting some path with less malicious behaviors may be also interesting.
One example we find in our dataset is Qakbot [11]. The malware exhibits some behav-
iors related to some registry entry. This malware tries to write qbothome qbotinj.exe
into a common start up registry key CurrentVersion\Run. The further logic for
Qakbot needs to check the existence of such registry entry and if it fails, malware goes
to sleep routine without directly exhibiting some malicious behaviors. This case is inter-
esting for us because we find that by changing environment setting, we could even ob-
serve some hidden dormant functionality. Discovering such hidden dormant function-
ality may help defenders to make some schemes for slowing down the fast-spreading of
certain malware.

6.6 Experiment on Distributed Deployment of GOLDENEYE

Finally, we evaluate the performance overhead of our distributed deployment of GOLD-
ENEYE. In this experiment, we measure three cases:

– Case I: Generate a parallel task for all environment-sensitive branches.
– Case II: Generate a parallel task only when the branch evaluation cannot decide a

branch after measuring the branch selection heuristics.
– Case III: Do not generate a parallel task and do not conduct rolling back, i.e., using

a single machine instead of distributed deployment (for undetermined paths, we
select the default environment as desired).

We use additional four worker (virtual) machines for this measurement (Case I and
II). Each virtual machine installs original unpatched Windows XP SP1 operating sys-
tem. We randomly select 100 malware samples and run each sample for at most 300



0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Increased Native API Utilization Ratio

Case I Case II Case III

Fig. 6: Measurement of Distributed GOLDENEYE

seconds in each configuration. We compare performance with the baseline case, which
is running each malware in the default environment.

The result is summarized in Figure 6. As seen in the figure, we study the effective-
ness by measuring the increased ratio of native APIs. As expected, Case I and II expose
over 30% more behaviors than Case III. However, the standard deviation of Case I is
higher than Case II. It shows that, with the same analysis time, the first approach may
not outperform the second case because exploring all environment-sensitive paths is
not efficient enough. We also measure the utilization ratio of the analysis machine(s),
which is defined as the percentage of time for an analysis machine to run the analysis
task within the given 300 seconds. The average utilization ratio from VMs in Case I
is over 90%, which is much higher than Case II. In short, we conclude that Case II
configuration of GOLDENEYE, i.e., combining the branch selection scheme with the
distributed deployment, seems to achieve the best balance between effectiveness and
resource consumption among the three cases.

7 Discussion

Exposing malicious behaviors of environment-targeted malware is a challenging re-
search task for the whole malware defense community. As a new step towards system-
atic environment-targeted malware analysis, our solution is not perfect and not targeting
to completely solve the problem. We now discuss limitations/evasions below.
Correctness of Path Selection/Prediction. One limitation of our approach is that the
correctness of our branch evaluation depends on whether malware’s behavior fits our
heuristics. One solution for this problem is to explore all possible branches by multi-
round snapshot-and-recover analysis, as in [37]. However, this scheme may cause much
higher overhead because of the path explosion problem. Hence, to trade off the per-
formance, we choose to apply snapshot-and-recover only when we cannot apply the
heuristics. Other dynamic analysis approaches such as previous work [39,41] can also
be applied to make the analysis more efficient.
Possible Problems of Taint Analysis. In our scheme, we apply taint analysis at the
stages of preprocessing and speculative execution. For preprocessing, taint analysis can
help us filter out the malware which are not sensitive to the environment. For specula-
tive execution, taint analysis helps to save execution overhead from multiple aspects.
However, as discussed in related work [22], taint analysis could have limitations of
over-tainting and under-tainting. Even though it may cause the problem of imprecise



results, for our cases, the limitation can seldom affect our analysis. This is because: (1)
Even though over-tainting costs more overhead for speculative execution, our scheme
is still more lightweight than existing approaches. (2) The under-tainting problem may
mislead our branch prediction. However, by using stricter branch selection criteria, we
could avoid such wrong branch. Meanwhile, conducting more roll-backing operations
on some critical branches can also improve the overall accuracy. (3) Our analysis can be
independently conducted even without taint analysis. In this case, our speculative execu-
tion engine has to be executed at all branches to truncate undesired environments. Even
though it may cause more overhead, we believe it still outperforms other approaches
because it prevents unnecessary rolling-back.
Evasion through Misleading the Analysis. The implementation GOLDENEYE is built
upon on binary instrumentation, and because of the similar limitation as VMM-based
approaches[28], it is possible for malware to detect the existence of GOLDENEYE.

By knowing our heuristics for branch selection, the attacker could mislead our anal-
ysis through injecting some certain APIs in the branches. However, some heuristics
(e.g., environment interaction, process termination) are relatively hard to be evaded be-
cause otherwise they will be against the malware’s execution intention. We note that
even in the worst case (we have to rewind to explore another branch, similar to exist-
ing multi-path solutions), our solution is still better than a blind multi-path exploration
scheme.

Another way to evade the analysis is to query environment information and process
it at a very later time. To handle this issue, we could increase the capacity of parallel
spaces and track the tainted environment elements throughout the whole analysis by
paying a little more analysis overhead.

Malware can insert some dormant functions such as sleep because GOLDENEYE
may not prefer to choose branches in which malware could enter a dormant status.
To handle such cases, GOLDENEYE can examine more code blocks in the foreseeing
operation in order to make a more accurate branch selection or could simply generate a
parallel task for another worker machine.

Last but not least, current implementation of GOLDENEYE does not handle implicit
control flow, a common issue to many dynamic analysis systems. Hence, malware au-
thors may evade the analysis by including implicit control flow. However, this issue
could be partially solved by conducting symbolic execution on indirect branches. We
leave it as our future work.
Environment-Uniqueness Malware. A recent study [27] discussed a novel anti-analysis
technique, which applies environment primitives as the decryption key for the malware
binary. In the real world, flashback [18] malware has exhibited similar interesting at-
tributes. To the best of our knowledge, there is no research or tool can automatically
analyze such kind of malware. Even though our approach cannot provide correct analy-
sis environment for the captured sample, we believe our analysis can still discover more
information than traditional automatic analysis techniques. For example, our approach
can detect malware’s query for system environment and deduce what are likely environ-
ment elements that compose the decryption key. We leave the analysis of such malware
to our future work.

8 Conclusion
In this paper, we have presented a new dynamic analysis system, GOLDENEYE, to fa-
cilitate targeted malware analysis by efficiently and effectively exposing its targeted
environments. To achieve our goal, we design several new dynamic analysis techniques
based on speculative execution, such as parallel environment spaces construction and
branch evaluation, to solve the technical challenges faced by targeted malware analysis.



To further improve the accuracy and efficiency, we deploy GOLDENEYE onto a dis-
tributed computing model. In the evaluation, we show that our scheme can work on a
large real-world malware corpus and achieve a better performance trade-off compared
with existing approaches. While not perfect, we believe this is a right step towards an
interesting new topic, i.e., targeted threat analysis and defense, which needs further
research from the community.

9 Acknowledgments

This material is based upon work supported in part by the National Science Founda-
tion under Grant CNS-0954096 and the Air Force Office of Scientific Research under
Grants FA9550-13-1-0077 and FA-9550-12-1-0077. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of NSF and AFOSR.

References

1. Anubis: Analyzing unknown binaries. http://anubis.iseclab.org/.
2. Bifrost. http://www.symantec.com/security_response/writeup.jsp?

docid=2004-101214-5358-99.
3. Disassembler library for x86/amd64. http://code.google.com/p/distorm/.
4. Duqu. http://www.kaspersky.com/about/press/major_malware_

outbreaks/duqu.
5. DynamoRIO . http://dynamorio.org/.
6. Flame. http://en.wikipedia.org/wiki/Flame_(malware).
7. IBank. http://www.sophos.com/en-us/threat-center/

threat-analyses/viruses-and-spyware/Troj˜IBank-B/
detailed-analysis.aspx.

8. Koobface. http://www.symantec.com/security_response/writeup.jsp?
docid=2008-080315-0217-99&tabid=2.

9. NuclearRAT. http://en.wikipedia.org/wiki/Nuclear_RAT.
10. Offensive Computing. http://www.offensivecomputing.net/.
11. Qakbot. http://www.symantec.com/connect/blogs/

w32qakbot-under-surface.
12. Sality. http://www.symantec.com/security_response/writeup.jsp?

docid=2006-011714-3948-99.
13. Stuxnet. http://en.wikipedia.org/wiki/Stuxnet.
14. Symantec intelligence quarterly. http://www.symantec.com/threatreport/

quarterly.jsp.
15. Symantec: Triage analysis of targeted attacks. http://www.symantec.com/

threatreport/topic.jsp?id=malicious_code_trend.
16. The Nitro Attacks: Stealing Secrets from the Chemical Industry. http://www.

symantec.com/security_response/whitepapers.jsp.
17. Trends in targeted attacks. http://www.trendmicro.com/cloud-content/us.
18. Trojan BackDoor.Flashback. http://en.wikipedia.org/wiki/Trojan_

BackDoor.Flashback.
19. Trojan.Neloweg. http://www.symantec.com/security_response/

writeup.jsp?docid=2012-020609-4221-99.
20. Virustotal. https://www.virustotal.com/.
21. Zeus Trojan horse. http://www.symantec.com/security_response/

writeup.jsp?docid=2010-011016-3514-99.
22. T. Avgerinos, E. Schwartz, and D. Brumley. All you ever wanted to know about dynamic

taint analysis and forward symbolic execution (but might have been afraid to ask). In Proc.
of IEEE S&P’10, 2010.

http://anubis.iseclab.org/
http://www.symantec.com/security_response/writeup.jsp?docid=2004-101214-5358-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-101214-5358-99
http://www.kaspersky.com/about/press/major_malware_outbreaks/duqu
http://www.kaspersky.com/about/press/major_malware_outbreaks/duqu
http://dynamorio.org/
http://en.wikipedia.org/wiki/Flame_(malware)
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~IBank-B/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~IBank-B/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~IBank-B/detailed-analysis.aspx
 http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99&tabid=2
 http://www.symantec.com/security_response/writeup.jsp?docid=2008-080315-0217-99&tabid=2
http://en.wikipedia.org/wiki/Nuclear_RAT
http://www.offensivecomputing.net/
http://www.symantec.com/connect/blogs/w32qakbot-under-surface
http://www.symantec.com/connect/blogs/w32qakbot-under-surface
http://www.symantec.com/security_response/writeup.jsp?docid=2006-011714-3948-99
http://www.symantec.com/security_response/writeup.jsp?docid=2006-011714-3948-99
http://en.wikipedia.org/wiki/Stuxnet
http://www.symantec.com/threatreport/quarterly.jsp
http://www.symantec.com/threatreport/quarterly.jsp
http://www.symantec.com/threatreport/topic.jsp?id=malicious_code_trend
http://www.symantec.com/threatreport/topic.jsp?id=malicious_code_trend
http://www.symantec.com/security_response/whitepapers.jsp
http://www.symantec.com/security_response/whitepapers.jsp
http://www.trendmicro.com/cloud-content/us
http://en.wikipedia.org/wiki/Trojan_BackDoor.Flashback
http://en.wikipedia.org/wiki/Trojan_BackDoor.Flashback
http://www.symantec.com/security_response/writeup.jsp?docid=2012-020609-4221-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-020609-4221-99
https://www.virustotal.com/
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99
http://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99


23. D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna. Efficient detection
of split personalities in malware. In Proc of NDSS’10, 2010.

24. L. Bilge and T. Dumitras. Before we knew it: An empirical study of zero-day attacks in the
real world. In Proc. of CCS’12, 2012.

25. D. Brumley, C. Hartwig, Z. Liang, J. Newsome, P. Poosankam, D. Song, and H. Yin. Auto-
matically identifying trigger-based behavior in malware. In W. Lee, C. Wang, and D. Dagon,
editors, Botnet Analysis and Defense, volume 36, pages 65–88. Springer, 2008.

26. D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary analysis platform. In
Proc. of CAV’11, 2011.

27. P. Royal C. Song and W. Lee. Impeding automated malware analysis with environment-
sensitive malware. In Proc. of HotSec’12, 2012.

28. X. Chen, J. Andersen, M. Mao, M. Bailey, and J. Nazario. Towards an Understanding of
Anti-Virtualization and Anti-Debugging Behavior in Modern Malware. In Proc. of DSN’08,
2008.

29. P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Krugel, and S. Zanero. Identi-
fying dormant functionality in malware programs. In Proc. of S&P’10, 2010.

30. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware virtu-
alization extensions. In Proc of CCS’08, 2008.

31. J. Gonzlez and A. Gonzlez. Speculative execution via address prediction and data prefetch-
ing. In Proc. of ICS’97, 1997.

32. M. Graziano, C. Leita, and D. Balzarotti. Towards network containment in malware analysis
systems. In Proc. of ACSAC’12, December 2012.

33. C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang. Effective
and efficient malware detection at the end host. In Proc. of USENIX Security’09, 2009.

34. C. Kolbitsch, E. Kirda, and C. Kruegel. The power of procrastination: Detection and mitiga-
tion of execution-stalling malicious code. In Proc. of CCS’11, 2011.

35. C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet malware. In
Proc. of S&P’12, 2012.

36. Martina L, Clemens K., and M.Paolo. Detecting Environment-Sensitive Malware. In Proc.
of RAID’11, 2011.

37. A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution Paths for Malware Anal-
ysis. In Proc. of S&P’07, 2007.

38. A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Proc.
of ACSAC’07, 2007.

39. Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee. Understanding the Prevalence and Use
of Alternative Plans in Malware with Network Games. In Proc. of ACSAC’11, 2011.

40. A. Nappa, Z. Xu, M. Z. Rafique, J. Caballero, and G. Gu. Cyberprobe: Towards internet-scale
active detection of malicious servers. In Proc. of NDSS’14, 2014.

41. M. Neugschwandtner, P. M. Comparetti, and C. Platzer. Detecting Malware’s Failover C&C
Strategies with SQUEEZE. In Proc. of ACSAC’11, 2011.

42. Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhendong Su. X-
force: Force-executing binary programs for security applications. In Proceedings of the 2014
USENIX Security Symposium, San Diego, CA, August 2014.

43. P. Porras, H. Saidi, and V. Yegneswaran. An Analysis of Conficker’s Logic and Rendezvous
Points. http://mtc.sri.com/Conficker/, 2009.

44. S. Shin, Z. Xu, and G. Gu. Effort: Efficient and effective bot malware detection. In Proc. of
INFOCOM’12 Mini-Conference, 2012.

45. M. Sikorski. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious
Software. No Starch Press, 2012.

46. J. Wilhelm and T. Chiueh. A forced sampled execution approach to kernel rootkit identifica-
tion. In Proc. of RAID’07, 2007.

47. Z. Xu, L. Chen, G. Gu, and C. Kruegel. PeerPress: Utilizing enemies’ p2p strength against
them. In Proc.of CCS’12, 2012.

48. Z. Xu, J. Zhang, G. Gu, and Z. Lin. AUTOVAC: Towards automatically extracting sys-
tem resource constraints and generating vaccines for malware immunization. In Proc. of
ICDCS’13, 2013.

http://mtc.sri.com/Conficker/

