Skip to main content

Formation of Awareness

  • Chapter
  • First Online:
Book cover Cyber Defense and Situational Awareness

Part of the book series: Advances in Information Security ((ADIS,volume 62))

Abstract

Having discussed the importance and key features of CSA, both in general and in comparison with a better known Kinetic Situational Awareness, we now proceed to explore how and from where the CSA emerges. Formation of Cyber Situational Awareness is a complex process that goes through a number of distinct phases and produces a number of distinct outputs. Humans with widely different roles drive this process while using diverse procedures and computerized tools. This chapter explores how situational awareness forms within the different phases of the cyber defense process, and describes the different roles that are involved in the lifecycle of situational awareness. The chapter presents an overview of the overall process of cyber defense and then identifies several distinct facets of situational awareness in the context of cyber defense. An overview of the state of the art is followed by a detailed description of a comprehensive framework for Cyber Situational Awareness developed by the authors of this chapter. We highlight the significance of five key functions within CSA: learning from attacks, prioritization, metrics, continuous diagnostics and mitigation, and automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese, M., Jajodia, S., Pugliese, A., and Subrahmanian, V. S. “Scalable Analysis of Attack Scenarios”. In Proceedings of the 16th European Symposium on Research in Computer Security (ESORICS 2011), pages 416-433, Leuven, Belgium, September 12-14, 2011.

    Google Scholar 

  • Albanese, M., Jajodia, S., and Noel, S. “Time-Efficient and Cost-Effective Network Hardening Using Attack Graphs”. In Proceedings of the 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012), Boston, Massachusetts, USA, June 25-28, 2012

    Google Scholar 

  • Albanese, M., Jajodia, S., Singhal, A., and Wang, L. “An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities”. In Proceedings of the 10th International Conference on Security and Cryptography, Reykjavík, Iceland, July 29-31, 2013. Best paper award

    Google Scholar 

  • Albanese, M., Pugliese, A., and Subrahmanian, V. S. “Fast Activity Detection: Indexing for Temporal Stochastic Automaton based Activity Models”. In IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 2, pages 360-373, February 2013.

    Google Scholar 

  • Albanese, M., Molinaro, C., Persia, F., Picariello, A., and Subrahmanian, V. S. “Discovering the Top-k "Unexplained" Sequences in Time-Stamped Observation Data”. IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 3, pages 577-594, March 2014.

    Google Scholar 

  • Ammann, P., Wijesekera, D., and Kaushik, S. “Scalable, graph-based network vulnerability analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS 2002), pp. 217–224, Washington, DC, USA, November 2002.

    Google Scholar 

  • Cloud Security Alliance (CSA). “Cloud Controls Matrix Version 3.0”, https://cloudsecurityalliance.org/research/ccm/

  • Cousins, D., Partridge, C., Bongiovanni, K., Jackson, A. W., Krishnan, R., Saxena, T., and Strayer, W. T. “Understanding Encrypted Networks Through Signal and Systems Analysis of Traffic Timing”, 2003.

    Google Scholar 

  • Gardner, H. “The Mind’s New Science: A History of the Cognitive Revolution”, Basic Books, 1987.

    Google Scholar 

  • Jajodia, S., Liu, P., Swarup, V., and Wang, C. (Eds.) “Cyber Situational Awareness: Issues and Research” , Vol. 46 of Advances in Information Security, Springer, 2010.

    Google Scholar 

  • Jajodia, S., Noel, S., Kalapa, P., Albanese, M., and Williams, J. “Cauldron: Mission-Centric Cyber Situational Awareness with Defense in Depth”. In Proceedings of the Military Communications Conference (MILCOM 2011), Baltimore, Maryland, USA, November 7-10, 2011.

    Google Scholar 

  • Johnson-Laird, P. “How We Reason”, Oxford University Press, 2006.

    Google Scholar 

  • Leversage, D. J., Byres, E. J. “Estimating a System's Mean Time-to-Compromise,” IEEE Security & Privacy, vol. 6, no. 1, pp. 52-60, January-February 2008.

    Google Scholar 

  • Mandiant, “APT1: Exposing One of China’s Cyber Espionage Units”, 2013

    Google Scholar 

  • MITRE. “Common Vulnerabilities and Exposures (CVE)”, http://cve.mitre.org/.

  • NIST. “National Vulnerability Database (NVD)”, http://nvd.nist.gov/.

  • NIST. “Guide for Applying the Risk Management Framework to Federal Information Systems”, Special Publication 800-37, Revision 1, http://dx.doi.org/10.6028/NIST.SP.800-37r1, February 2010.

    Google Scholar 

  • NIST. “Security and Privacy Controls for Federal Information Systems and Organizations”, Special Publication 800-53, Revision 4, http://dx.doi.org/10.6028/NIST.SP.800-53r4, April 2013.

    Google Scholar 

  • Partridge, C., Cousins, D., Jackson, A.W., Krishnan, R., Saxena, T., and Strayer, W. T. “Using signal processing to analyze wireless data traffic”, In Proceedings of the 1st ACM workshop on Wireless Security (WiSE 2002), ACM, pages 67-76, 2002.

    Google Scholar 

  • Phillips, C., and Swiler, L. P. “A graph-based system for network-vulnerability analysis,” in Proceedings of the New Security Paradigms Workshop (NSPW 1998), pp. 71–79, Charlottesville, VA, USA, September 1998.

    Google Scholar 

  • Symantec Corporation. “Internet Security Threat Report 2014”, Volume 19, April 2014.

    Google Scholar 

  • Wang, L., Liu, A., and Jajodia, S. “Using attack graphs for correlating, hypothesizing, and predicting intrusion alerts,” Computer Communications, vol. 29, no. 15, pp. 2917–2933, September 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Jajodia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albanese, M., Jajodia, S. (2014). Formation of Awareness. In: Kott, A., Wang, C., Erbacher, R. (eds) Cyber Defense and Situational Awareness. Advances in Information Security, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-11391-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11391-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11390-6

  • Online ISBN: 978-3-319-11391-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics