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Abstract. Sequence labeling has wide applications in natural language
processing and speech processing. Popular sequence labeling models suf-
fer from some known problems. Hidden Markov models (HMMs) are
generative models and they cannot encode transition features; Condi-
tional Markov models (CMMs) suffer from the label bias problem; And
training of conditional random fields (CRFs) can be expensive. In this
paper, we propose Linear Co-occurrence Rate Networks (L-CRNs) for
sequence labeling which avoid the mentioned problems with existing
models. The factors of L-CRNs can be locally normalized and trained
separately, which leads to a simple and efficient training method. Exper-
imental results on real-world natural language processing data sets show
that L-CRNs reduce the training time by orders of magnitudes while
achieve very competitive results to CRFs.

Keywords: Sequence labeling · Co-occurrence rate · HMMs · CRFs

1 Introduction

Sequence labeling is a sub-task of structured prediction. A wide range of fun-
damental applications in natural language processing and speech processing can
be formulated as sequence labeling models, such as named entity recognition,
part-of-speech tagging and speech recognition. A common nature of these appli-
cations is that these applications desire a sequence of labels as output rather
than a single label. This makes sequence labeling stand out from the typical
supervised classification tasks which normally predict a single label as output.
Here we give a simplified example of named entity recognition (NER) to illus-
trate the typical scenario of sequence labeling. Given a sentence, which consists
of a sequence of words, NER systems assign each word of the sentence a label.
These labels indicate the types of named entities, such as location (LOC), person
(PER), organization (ORG), or out of any named entity (O).

[Jimmy]PER [de]PER [Graff]PER [is]O [a]O [member]O [of]O [the]O [Dutch]ORG
[National]ORG [Research]ORG [School]ORG [for]ORG [Knowledge]ORG [Systems]ORG.

Our C++ implementation of L-CRNs and the datasets used in this paper can be
found at https://github.com/zheminzhu/Co-occurrence-Rate-Networks.
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The words in a sentence are observations. From this example, we can see
that intuitively two kinds of information can affect the prediction of the label at
current position:

1. Label dependence. Adjacent labels can affect prediction of the current label.
For example, if the adjacent labels are ORG, the current label is more likely
to be ORG.

2. Observation evidence. The current word observed can affect the current label.
For example, the word Dutch is more likely to be ORG than the word is.

Accordingly, a sequence labeling model should do the following three tasks well.

– Task 1. Modeling label dependence.
– Task 2. Modeling observation evidence.
– Task 3. Combining these two parts to obtain results.

Task 3 has been paid less attention. The two parts should be given relative
weights properly when we combine them. As we will discuss, failure in doing this
will lead to a subtle problem called the label bias problem [11], in which label
dependence is given too much weight and observation evidence is underestimated
or even ignored.

Due to its wide applications, sequence labeling has been heavily studied for a
long history. There exist a rich set of popular models for sequence labeling, such
as hidden Markov models (HMMs) [14], conditional Markov models (CMMs) [13]
and conditional random fields (CRFs) [11].1 The general idea under all of these
models is factorization. That is to decompose a high-dimensional joint proba-
bility into a product of small factors based on some conditional independence
assumptions. A model is characterized by its factorization. Hence we can see the
pros and cons of a model from its factorization.

1.1 Hidden Markov Models (HMMs)

Figure 1 shows a first order HMM. S = [s1, s2, . . . , sn] is the label sequence
and O = [o1, o2, . . . , on] is the observation sequence. In the NER example, S is
the sequence of NER labels and O is the sequence of words. HMMs are directed

Fig. 1. Hidden Markov models

1 Another popular model is structured (structural) SVM [1] which essentially applies
factorization to kernels. Due to its lack of a direct probabilistic interpretation, we
leave it for future work.
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and generative models. Hence HMMs can also be considered as a special Bayesian
network [6]. HMMs factorize a joint probability as follows:

p(S,O) ≈ p(s1)
n∏

i=1

p(oi|si)
n−1∏

j=1

p(sj+1|sj). (1)

The factors of HMM are probabilities which can be locally normalized. There
are two known drawbacks with HMMs [4] which can be observed from Eq. 1.
The first drawback is the label transition probabilities p(sj+1|sj) in HMMs are
not conditioned by observations. That is, HMMs use the universal transition
probabilities p(sj+1|sj) without respect to observations. Hence we cannot use
observation evidence to help predicting label transition probabilities. Transition
features extracted from observation evidence contain valuable information. The
second drawback is called mismatch problem. In training stage, HMMs optimize
a joint probability p(S,O). But in decoding stage, we search for a sequence of
labels which maximizes a conditional probability p(S|O). Klein et al. [9] show
that the mismatch problem can reduce accuracy.

To avoid the mismatch problem, we need to directly factorize the conditional
probability p(S|O). And in order to encode the transition features, we can set
observation evidence to conditions of the transition factors. Conditional Markov
models just implement these ideas.

1.2 Conditional Markov Models (CMMs)

Figure 2 shows a CMM. Maximum entropy markov models (MEMMs) [13] are
typical CMMs which train the model using a maximum entropy framework,
which was later shown to be equivalent to maximum likelihood estimation.
CMMs are discriminative models which factorize a conditional probability:

p(S|O) = p(s1|O)
n−1∏

i=1

p(si+1|si, O). (2)

CMMs avoid the mismatch problem of HMMs because they directly factorize
P (S|O). And probabilities p(si+1|si, O) predicting the next label are conditioned
by previous label si together with the observation O. In this way, the transi-
tion features can be encoded into CMMs. Hence the first drawback of HMMs
is avoided. But this causes a new problem. By putting the previous label si

Fig. 2. Conditional Markov models
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and observations O together in the condition leads to the label bias problem
(LBP). Intuitively, this is because the label dependence (given by si) and obser-
vation evidence (given by O) are mixed together in one factor. One of them may
dominate the factor when its distribution is of low entropy, while the other is
underestimated or even ignored. An extreme case is when si has only one possi-
ble out-going transition si+1

2, then p(si+1|si, O) is always equal to 1 no matter
what O is. That is the observation evidence O is ignored and the label depen-
dence dominates the results. Hence CMMs do not perform the Task 3 perfectly.
See [11,12,19] for more examples and discussions.

To avoid the label bias problem, we need to guarantee that the observation
evidence can always be used in prediction3. This can be done by decoupling the
label dependence and observation evidence into different factors, such that none
of them can dominate the other. Conditional random fields implement this.

1.3 Conditional Random Fields (CRFs)

Figure 3 shows a linear-chain conditional random field. CRFs [11] are discrimi-
native and undirected graphical models. The factorization for undirected models
is based on the Hemmersley-Clifford Theorem [7] which implies a linear-chain
CRF can be factorized as follows:

p(S|O) =
1
ZO

n−1∏

i=1

ψ(si, si+1, O)
n∏

j=1

φ(sj , O),

ZO is a global normalization constant, also called partition function, which
ensures

∑
S p(S|O) = 1. ψ and φ are non-negative factors defined over pair-

wise and unary cliques. The factors of local models, such as HMMs and CMMs,
are probabilities. These factors can be locally normalized. By contrast, CRFs are
globally normalized models. The factors of CRFs, ψ and φ, have no probabilistic
interpretations4 and cannot be locally normalized.

CRFs model the conditional probability P (S|O). Hence they avoid the mis-
match problem of HMMs. Also the bigram factors ψ(si, si+1, O) modeling label

Fig. 3. Conditional random fields

2 In this extreme case, the entropy of p(si+1|si) is the lowest: 0.
3 HMMs do not suffer from the label bias problem, because the factors p(oi|si) in Eq. 1

guarantee that the observation evidence is always used.
4 Sometimes they are intuitively explained as the compatibility of the nodes in cliques.

But the notion compatibility has no mathematical definition.
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dependence include the observations. Hence the transition features can be encoded
into CRFs. Furthermore, CRFs decouple the label dependence (modeled by
ψ(si, si+1, O)) and observation evidence (modeled by φ(sj , O)) into different fac-
tors. This guarantees that none of them can dominate the other. Obviously, uni-
gram factors φ(sj , O) guarantee thatO is always used for prediction. Therefore the
label bias problem is avoided. Nevertheless, training of CRFs can be very expen-
sive [4,16]. This is because we need to re-calculate the global partition function
ZO for each instance in each optimization iteration.

In this paper, we propose a model called Linear Co-occurrence Rate Networks
(L-CRN) for sequence labeling. L-CRNs avoid the problems mentioned above.
More specifically, L-CRNs model a conditional probability. Hence they avoid the
mismatch problem of HMMs. The label dependence is modeled by the quantity
called Co-occurrence Rate (CR), which is conditioned by observations. In this
way, transition features can be easily encoded into L-CRNs. Furthermore, in
the factorization of L-CRNs, the label dependence and observation evidence are
decoupled into difference factors. Thus none of them can dominate the other.
The label bias problem is naturally avoided. Finally, L-CRNs are local models.
The factors of L-CRNs can be locally normalized and trained separately. This
leads to a very efficient maximum likelihood training method. Experiments on
real-world datasets show that L-CRNs reduce the training time by orders of
magnitudes and achieve very competitive, even slightly better, results to CRFs.

The rest of this paper is organized as follows. In Sect. 2, we present the
co-occurrence rate networks and show that this model avoids the problems men-
tioned above. Section 3 describes the details of learning and decoding. Experi-
ments are reported in Sect. 4. Conclusions follow in the last section.

2 Linear Co-occurrence Rate Networks (L-CRN)

Firstly, we define a quantity which is called Co-occurrence Rate (CR) as follows:

CR(X1;X2; . . . ;Xn) :=
p(X1, . . . , Xn)
p(X1). . .p(Xn)

.

For convenience, CR with a single variable is defined to be 1. Intuitively, if
CR > 1, the events are attractive; If CR = 1, the events are independent ;
And if CR < 1, the events are repulsive. CR is the exponential function of
pointwise mutual information [3], and also related to Copulas [21]. Furthermore,
we distinguish the following two notations:

CR(X1;X2;X3) :=
p(X1,X2,X3)

p(X1)p(X2)p(X3)
, CR(X1X2;X3) :=

p(X1,X2,X3)
p(X1,X2)p(X3)

.

The first one is the CR between three variables. By contrast, the second one
is the CR between a joint variable (X1X2) and a single variable (X3). More
comprehensive description of CR can be found in [18,20]. The factorization of
L-CRN consists of steps:
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1. Decouple the conditional probability into two parts:

p(s1, . . . , sn|O) = CR(s1; s2; . . . ; sn|O)
n∏

i=1

p(si|O),

where

CR(s1; s2; . . . ; sn|O) :=
p(s1, . . . , sn|O)∏n

i=1 p(si|O)
.

This step seems trivial. But this is the key to avoid the label bias problem. The
conditional probability is decoupled into two parts: CR(s1; s2; . . . ; sn|O) mod-
els label dependence and

∏n
i=1 p(si|O) models observation evidence. So none

of them can dominate the other.
∏n

i=1 p(si|O) guarantees that the observa-
tion O is always used for prediction. Hence the label bias problem is naturally
avoided. We show this experimentally in [19].

2. Further factorize the joint CR into a product of smaller CRs according to
Theorems 1 and 2. See Sect. 6.2 for their proofs.

Theorem 1 (Partition Operation). CR(X1; . . . ;Xj ;Xj+1; . . . ;Xn) =
CR(X1; ..;Xj)CR(Xj+1; ..;Xn)CR(X1..Xj ;Xj+1..Xn)

Theorem 2 (Reduce Operation). If X ⊥⊥ Y | Z, then CR(X;Y Z) = CR
(X;Z).

X ⊥⊥ Y | Z means X is independent of Y conditioned by Z. Putting two steps
together, the factorization of L-CRN is obtained as follow:

p(s1, s2, . . . , sn |O) = CR(s1; . . . ; sn |O)
n∏

i=1

p(si |O)

= CR(s1|O)CR(s2; . . . ; sn|O)CR(s1; s2. . .sn|O)
n∏

i=1

p(si|O)

= CR(s2; . . . ; sn |O)CR(s1; s2 |O)
n∏

i=1

p(si |O)

. . .

=
n−1∏

j=1

CR(sj ; sj+1 |O)
n∏

i=1

p(si |O).

The second equation is obtained by partitioning s1 out. We obtain the third
equation from the second by CR(s1 |O) = 1 and applying the reduce operation
to the factor CR(s1; s2. . .sn |O) since s1 ⊥⊥ s3. . .sn |s2. By repeating this process,
we can get the final factorization. Hence we obtain a L-CRN factorization on a
chain graph as follows:

p(s1, s2, . . . , sn|O) =
n−1∏

j=1

CR(sj ; sj+1 |O)
n∏

i=1

p(si |O). (3)
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From this factorization, we can see the following facts. L-CRNs model a condi-
tional probability. Hence they avoid the mismatch problem of HMMs. The label
dependence of L-CRNs is modeled by

∏n−1
j=1 CR(sj ; sj+1|O), which is conditioned

by observations. Thus transition features can be easily encoded into L-CRNs.
Furthermore,

∏n
i=1 p(si | O) guarantee the observation is always used for pre-

diction. Therefore the label bias problem is avoided. Finally, L-CRNs are local
models. The factors of L-CRNs can be locally normalized and hence separately
trained. This leads to a very simple and efficient maximum likelihood training
as described in the next section. [2] shows local models can outperform globally
normalized models on some NLP tasks. CR factorization can be extended to
arbitrary graphs (Sect. 6.2 of [18]).

3 Learning and Decoding

Since the factors of L-CRNs can be normalized locally and trained separately, the
learning of L-CRNs becomes very simple and efficient. It is no more than training
a set of regression models for each factor in training stage, and combining them
together to find a maximum sequence probability in decoding stage. Accroding
to Eq. 3, there are two kinds of factors to be trained: unigram factors p(s|O) and
bigram factors CR(s; s′|O). We describe the details as follows. See Sect. 6.1 for
the justification of this training method. In fact, this is the maximum likelihood
estimation of Eq. 3.

3.1 Learning Unigram Factor p(s|O)

For the factors p(s|O) in Eq. 3, where s is a label and O is an observation. As
described in Sect. 6.1, its MLE is just the relative frequency p̂(s|O) = #(s,O)∑

s #(s,O) ,
where #(s,O) is the number of times (s,O) appears in the training dataset. This
relative frequency can be easily obtained from the training dataset by counting.
Let g1(O), g2(O), . . . , gn(O) be feature functions of O, which are called unigram
features with respect to the unigram label s. For each label s in the label space,
we train a regression model φs:

p̂(s|O) = φs : (g1(O), g2(O), . . . , gn(O)) �→ #(s,O)∑
s #(s,O)

.

In decoding, for an observation O, we use φs(g1(O), . . . , gn(O)) as the estimation
of p(s|O). If g1(O), g2(O), . . . , gn(O) has been seen in the training dataset, we
just use #(s,O)∑

s #(s,O) as the estimation of p(s|O). Because this is the MLE of p(s|O)
(see Sect. 6.1). Otherwise, φs is used.
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3.2 Learning Bigram Factor CR(s; s′|O)

Similarly, we train regression models ψs,s′ separately for each bigram label s, s′

for predicting :

ĈR(s; s′|O) = ψs,s′ :(h1(O), h2(O), . . . , hm(O))

�→ #(s, s′, O)∑
s,s′ #(s, s′, O)

/
#(s,O)∑
s #(s,O)

/
#(s′, O)∑
s′ #(s′, O)

.

h1(O), h2(O), . . . , hm(O) are bigram features extracted fromO. Similarly, in deco-
ding, ψs,s′(h1(O), h2(O), . . . , hm(O)) are used as the prediction of CR(s; s′|O). If
h1(O), h2(O), . . . , hm(O) has been observed in the training dataset, we directly
use the empirical value. Otherwise, we use ψs,s′ .

We use the traditional Viterbi algorithm for selecting the label sequence with
maximum probability in decoding stage.

3.3 Support Vector Regression

There exist a rich set of regression models which may be used for modeling φs

and ψs,s′ . In this paper, we adopt the support vector regression (SVR) [15] for
modeling φs and ψs,s′ discussed above. SVR is linear in the high dimensional
transformed space and tolerant to low error points with small residuals. Such
tolerance seems to fit the natural language processing applications well, in which
the input and final output are normally categorical. In text classification, large-
margin methods achieve very good results [8]. And there are good implemen-
tations of SVR which can handle very large number of instances and features
efficiently. These reasons lead us to prefer SVR. In future, we will try other
regression models. To avoid endowing unwanted metric and order structures to
a single categorical variable, we use the dummy coding as the representation of
categorical input variables.

4 Experiments

In this section, we compare L-CRN with CRFs5. We adopt CRF++ version 0.58
[10] as the implementation for CRFs and LIBLINEAR version 1.94 [5] for linear
SVR in L-CRNs. We set the configurations of LIBLINEAR as L2-regularization
L2-loss support vector regression (solving dual). For a fair comparison, we always
use a single thread for training6. We apply CRFs and L-CRNs to an important
natural language processing application: named entity recognition (NER).

5 [11,12] show superiority of CRFs over other models. Hence it is reasonable to com-
pare with CRFs.

6 L-CRNs can be easily parallellized. Obviously, each regression model can be trained
parallely with others.
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4.1 Named Entity Recognition

The English part of the CoNLL-2003 NER dataset7 [17] is used for our NER
experiment. There are three data files in this dataset: ner.train, ner.testa and
ner.testb. The first one is designed for training and the last two are used for
testing. The size of the label space is 8. These three files include 14987, 3466,
3684 sentences and 204567, 51578, 46666 words respectively. We use the same
orthographic features as those used by [11]: “whether a spelling begins with a
number or upper case letter, whether it contains a hyphen, and whether it ends
in one of the following suffixes: −ing, −ogy, −ed, −s, −ly, −ion, −tion, −ity,
−ies”. Additionally, we use the chunk tags and POS tags provided together with
the CoNLL dataset.

Table 1 gives the time taken by CRF and L-CRN. We can see L-CRN reduces
the training time significantly.

Tables 2 and 3 show the quality metrics achieved by CRF and L-CRN on
ner.testa and ner.testb, respectively. The first three columns show the per-word
accuracies (%) on all, known and unknown words8. On all and known words,
L-CRN consistently outperforms CRF slightly. As described in Sect. 3, L-CRN
can directly use empirical values for known word prediction. This may be con-
sidered as an advantage of L-CRN. On unknown words, CRF performs better
on ner.testa, but L-CRN performs slightly better on ner.testb. The last three
columns give the precision, recall and F1 metrics. These metrics were evalu-
ated using the standard CoNLL evaluation tool9. CRF obtains better results in
precision. L-CRN obtains better results in recall and F1.

Table 1. Training time (seconds) on NER

CRF L-CRN

1,666 112

Table 2. Metrics on ner.testa

All Known Unknown Precision Recall F1

CRF 97.00 98.27 85.42 84.66 82.31 83.47

L-CRN 97.44 98.80 85.05 84.21 84.45 84.33

Table 3. Metrics on ner.testb

All Known Unknown Precision Recall F1

CRF 95.00 97.46 80.32 75.61 74.70 75.15

L-CRN 95.55 98.06 80.62 75.78 76.43 76.10

7 http://www.cnts.ua.ac.be/conll2003/ner/
8 Known words are the words that appear in the training data. Unknown words are

the words that have not been seen in the training data. All words include both.
9 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt

http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
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5 Conclusions

We propose the linear co-occurrence rate networks (L-CRN) for sequence label-
ing. This model avoids problems of the existing models, such as mismatching
problems and the label bias problem. The transition features can be encoded
into L-CRN. Furthermore, the factors of L-CRN can be normalized locally and
trained independently, which leads to very efficient training. In this paper, we use
support vector regression as the regression models of factors in L-CRN. Exper-
imental results show L-CRNs reduce the training time by orders of magnitudes
and achieve very competitive results to CRFs on real-world NLP data.

Acknowledgments. We thank SLSP 2014 reviewers for their comments. This work
has been supported by the Dutch national program COMMIT/.

6 Appendix

6.1 Closed-Form MLE Training of L-CRN

We maximize the log likelihood of Eq. 3 over the training dataset D with CR
and p as parameters:

max .
∑

(S,O)∈D

[
n−1∑

i=1

log CR(si; si+1|O) +
n∑

j=1

log p(sj |O)]

s.t.
∑

s,s′
CR(s; s′|O)p(s|O)p(s′|O) = 1,∀s, s′

∑

s

p(s|O) = 1,∀s

CR(s; s′|O) ≥ 0,∀s, s′

p(s|O) ≥ 0,∀s

First we ignore the last two non-negative inequality constraints. Using Lagra-
nge Multiplier, we obtain the unconstrained objective function:

∑

(S,O)∈D

[
n−1∑

i=1

log CR(si; si+1|O) +
n∑

j=1

log p(sj |O)]+

∑

s,s′
[λs,s′(

∑

s,s′
CR(s; s′|O)p(s|O)p(s′|O) − 1)]

+
∑

s

[λs(
∑

s

p(s|O) − 1)].
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Calculate the first derivative for each parameter and set them to zero, we get
the closed form MLE for CR and p:

p̂(s|O) =
#(s,O)∑
s #(s,O)

,

ĈR(s; s′|O) =
#(s, s′, O)∑
s,s′ #(s, s′, O)

/
#(s,O)∑
s #(s,O)

/
#(s′, O)∑
s′ #(s′, O)

.

That is, the MLE of p and CR are just their relative frequencies in the training
dataset. Fortunately the non-negative inequality constraints which were ignored
in optimization are automatically met.

6.2 Theorems of Co-occurrence Rate

Proof of Partition Operation

Proof.

CR(X1; ..;Xj)CR(Xj+1; ..;Xn)CR(X1..Xj ;Xj+1..Xn)

=
p(X1, ..,Xj)
p(X1)..p(Xj)

p(Xj+1, ..,Xn)
p(Xj+1)..p(Xn)

p(X1, ..,Xn)
p(X1, ..,Xj)p(Xj+1, ..,Xn)

=
p(X1, ..,Xn)
p(X1)..p(Xn)

= CR(X1; ..;Xn).

Proof of Reduce Operation

Proof. Since X ⊥⊥ Y | Z, we have p(X,Y |Z) = p(X|Z)p(Y |Z), then p(XY Z) =
p(X,Z)p(Y,Z)

p(Z) . Hence,

CR(X;Y Z) =
p(X,Y,Z)
p(X)p(Y,Z)

=
p(X,Y,Z)
p(X)p(Y,Z)

=
p(X,Z)
p(X)p(Z)

= CR(X;Z).

References

1. Altun, Y., Smola, A.J., Hofmann, T.: Exponential families for conditional random
fields. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelli-
gence, UAI ’04, pp. 2–9. AUAI Press (2004)
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