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Abstract

Mean-payoff games are important quantitative models for open reactive systems. They have been

widely studied as games of full observation. In this paper we investigate the algorithmic properties of

several sub-classes of mean-payoff games where the players have asymmetric information about the state

of the game. These games are in general undecidable and not determined according to the classical

definition. We show that such games are determined under a more general notion of winning strategy.

We also consider mean-payoff games where the winner can be determined by the winner of a finite cycle-

forming game. This yields several decidable classes of mean-payoff games of asymmetric information

that require only finite-memory strategies, including a generalization of full-observation games where

positional strategies are sufficient. We give an exponential time algorithm for determining the winner of

the latter.

1 Introduction

Mean-payoff games (MPGs) are two-player, infinite duration, turn-based games played on finite edge-weighted
graphs. The two players alternately move a token around the graph; and one of the players (Eve) tries to
maximize the (limit) average weight of the edges traversed, whilst the other player (Adam) attempts to min-
imize the average weight. Such games are particularly useful in the field of verification of models of reactive
systems, and the full-observation versions of these games have been extensively studied [10, 4, 7, 8]. One of
the major open questions in the field of verification is whether the following decision problem, known to be
in the intersection of the classes NP and coNP [10]1, can be solved in polynomial time: Given a threshold
ν, does Eve have a strategy to ensure a mean-payoff value of at least ν?

In game theory the concepts of partial and limited observation indicate situations where players are
uncertain about the state of the game. In the context of verification games this partial knowledge is reflected
in one or both players being unable to determine the precise location of the token amongst several equivalent
states, and such games have also been extensively studied [21, 14, 3, 2, 9]. Adding partial observation
to verification games results in an enormous increase in complexity, both algorithmically and in terms of
strategy synthesis. For example, it was shown in [9] that for MPGs with partial observation, when the mean
payoff value is defined using lim sup, the analogue of the above decision problem (i.e. the threshold problem)
is undecidable; and whilst positional strategies suffice for MPGs with full observation, infinite memory may
be required. The first result of this paper is to show that this is also the case when the mean payoff value is
defined using the lim inf operator, closing two open questions posed in [9].

These unfavourable results motivate the main investigation of this paper: identifying classes of MPGs
with partial observation where determining the winner is decidable and where strategies with finite memory,
possibly positional, are sufficient.

∗Work partially supported by ERC Starting grant inVEST (FP7-279499).
†F.R.S.-FNRS Aspirant and FWA post-doc fellow
1From results in [23] and [12] it follows that the problem is also in UP ∩ coUP.
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To simplify our definitions and algorithmic results we initially consider a restriction on the set of obser-
vations which we term limited observation. In games of limited observation the current observation contains
only those states consistent with the observable history, that is the observations are the belief set of Eve
(see, e.g. [6]). This is not too restrictive as any MPG with partial observation can be realized as a game of
limited observation via a subset construction. In Section 9 we consider the extension of our definitions to
MPGs with partial observation via this construction.

Our focus for the paper will be on games at the observation level, in particular we are interested in
observation-based strategies for both players. Whilst observation-based strategies for Eve are usual in the
literature, observation-based strategies for Adam have not, to the best of our knowledge, been considered.
Such strategies are more advantageous for Adam as they encompass several simultaneous concrete strategies.
Further, in games of limited observation there is guaranteed to be at least one concrete strategy consistent
with an observation-based strategy. Our second result is to show that, although MPGs with partial observa-
tion are not determined under the usual definition of (concrete) strategy, they are determined when Adam
can use an observation-based strategy.

In full-observation games, one aspect of MPGs that leads to simple (but not quite efficient) decision proce-
dures is their equivalence to finite cycle-forming games. Such games are played as their infinite counterparts,
however when the token revisits a state the game is stopped. The winner is determined by a finite analogue
of the mean-payoff condition on the cycle now formed; that is, Eve wins if the average weight of the edges
traversed in the cycle exceeds a given threshold. Ehrenfeucht and Mycielski [10] and Björklund et al. [4]2

used this equivalence to show that positional strategies are sufficient to win MPGs with full observation and
this leads to an NP ∩ coNP procedure for determining the winner. Critically, a winning strategy in the
finite game translates directly to a winning strategy in the MPG, so such games are especially useful for
strategy synthesis.

We extend this idea to games of partial observation by introducing a finite, full-observation, cycle-forming
game played at the observation level. That is, the game finishes when an observation is revisited (though not
necessarily the first time). In this reachability game winning strategies can be translated to finite-memory
winning strategies in the MPG. This leads to a large, natural subclass of MPGs with partial observation,
forcibly terminating games, where determining the winner is decidable and finite-memory observation-based
strategies suffice.

Unfortunately, recognizing if an MPG is a member of this class is undecidable, and although determining
the winner is decidable, we show that this problem is complete (under polynomial-time reductions) for the
class of all decidable problems. Motivated by these negative algorithmic results, we investigate two natural
refinements of this class for which winner determination and class membership are decidable. The first,
forcibly first abstract cycle games (forcibly FAC games, for short), is the natural class of games obtained
when our cycle-forming game is restricted to simple cycles. Unlike the full-observation case, we show that
winning strategies in this finite simple cycle-forming game may still require memory, though this memory is
at most exponential in the size of the game. The second refinement, first abstract cycle (FAC) games, is a
further structural refinement that guarantees a winner in the simple cycle-forming game. We show that in
this class of games positional observation-based strategies suffice.

The sub-classes of MPGs with limited observation we study then give rise to sub-classes of MPGs with
partial observation. For the class membership problem we show there is, as expected, an exponential blow-up
in the complexity, however for the problem of determining the winner the algorithmic cost is significantly
better.

Table 1 summarizes the results of this paper. An extended abstract of this work appeared in [11].

2 Preliminaries

Mean-payoff games A mean-payoff game (MPG) with partial observation is a tupleG = (Q, qI ,Σ,∆, w,Obs),
where Q is a finite set of states, qI ∈ Q is the initial state, Σ is a finite set of action symbols, ∆ ⊆ Q×Σ×Q is

2A recent result of Aminof and Rubin [1] corrects some errors in [4].
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Sufficient Class Winner
memory membership determination

Forcibly terminating Finite Undecidable R-c
(Thm. 5) (Thm. 6) (Thm. 7)

Forc. limited obs. Exponential Pspace-c Pspace-c
FAC (Thm. 10) (Thm. 8) (Thm. 9)

partial obs. Doubly NEXPtime-h, EXPtime-c
exponential in EXPspace (Thm. 17)
(Thms. 10, 15) (Thm. 16)

FAC limited obs. Positional coNP-c NP ∩ coNP

(Thm. 11) (Thm. 13) (Thm. 12)
partial obs. Exponential coNEXPtime-c EXPtime-c

(Thms. 11, 15) (Thm. 16) (Thm. 17)

Table 1: Summary of results for the classes of games studied.

the transition relation, w : ∆ → Z is the weight function, and Obs ⊂ 2Q is a partition of Q into observations.
We assume ∆ is total, that is, for every (q, σ) ∈ Q × Σ there exists q′ ∈ Q such that (q, σ, q′) ∈ ∆. We say
that G is a mean-payoff game with limited observation if additionally, Obs satisfies the following:

(1) {qI} ∈ Obs, and
(2) For each (o, σ) ∈ Obs× Σ the set {q′ ∈ Q | ∃q ∈ o and (q, σ, q′) ∈ ∆} is a union of elements of Obs.

Note that condition (2) is equivalent to saying that if q ∈ o, q′ ∈ o′ and (q, σ, q′) ∈ ∆ then for every r′ ∈ o′

there exists r ∈ o such that (r, σ, r′) ∈ ∆. If every element of Obs is a singleton, then we say G is a mean-
payoff game with full observation. For simplicity, we denote by postσ(s) = {q′ ∈ Q | ∃q ∈ s : (q, σ, q′) ∈ ∆}
the set of σ-successors of a set of states s ⊆ Q.

Figure 1 gives an example of an MPG with limited observation, with Σ = {a, b} and Obs = {{q0}, {q1, q2}, {q3}}.
In this work, unless explicitly stated otherwise, we depict states from an MPG with partial observation as
circles and transitions as arrows labelled by an action-weight pair: σ,w. Observations are represented by
dashed boxes.

Abstract & concrete paths A concrete path in an MPG with partial observation is a sequence q0σ0q1σ1 . . .
where for all i ≥ 0 we have qi ∈ Q, σi ∈ Σ and (qi, σi, qi+1) ∈ ∆. An abstract path is a sequence o0σ0o1σ1 . . .
where oi ∈ Obs, σi ∈ Σ and for all i ≥ 0 there exists qi ∈ oi and qi+1 ∈ oi+1 with (qi, σi, qi+1) ∈ ∆. Given
an abstract path ψ, let γ(ψ) be the (possibly empty) set of concrete paths that agree with the observation
and action sequence. In other words γ(ψ) = {q0σ0q1σ1 · · · | ∀i ≥ 0 : qi ∈ oi and (qi, σ, qi+1) ∈ ∆}. Note
that in games of limited observation this set is never empty. Also, given an abstract (respectively concrete)
path ψ, let ψ[..n] represent the prefix of ψ up to the (n+1)-th observation (state), which we express as ψ[n];
similarly, we denote by ψ[ℓ..] the suffix of ψ starting from the (ℓ + 1)-th observation (state) and by ψ[ℓ..n]
the finite sub-sequence starting and ending in the aforementioned locations.

Cycles An abstract (respectively concrete) cycle is an abstract (concrete) path χ = o0σ0 . . . on where
o0 = on. We say χ is simple if oj 6= oi for 0 ≤ i < j < n. Given k ∈ N define χk to be the abstract (concrete)
cycle obtained by traversing k times χ. That is, χk = o′0σ

′
0 . . . o

′
nk where for all 0 ≤ j ≤ nk we have that

o′j = oj (mod n) and σ′
j = σj (mod n). A cyclic permutation of χ is an abstract (concrete) cycle o′0σ

′
0 . . . o

′
n

such that o′j = oj+k (mod n) and σ′
j = σj+k (mod n) for some k ∈ N. If χ′ = o′0σ

′
0 . . . o

′
m is a cycle with o′0 = oi

for some 0 ≤ i < n, the interleaving of χ and χ′ is the cycle o0σ0 . . . oiσ
′
0 . . . o

′
mσi . . . on.
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The mean payoff Given an infinite concrete path π = q0σ0q1σ1 . . . , the payoff up to the (n + 1)-th
element is given by

w(π[..n]) =

n−1
∑

i=0

w(qi, σi, qi+1).

If π is infinite, we define two mean payoff values MP and MP as:

MP(π) = lim inf
n→∞

1

n
w(π[..n]) MP(π) = lim sup

n→∞

1

n
w(π[..n])

Plays & strategies A play in an MPG with partial observation G is an infinite abstract path starting at
oI ∈ Obs where qI ∈ oI . Denote by Plays(G) the set of all plays and by Prefs(G) the set of all finite prefixes
of such plays ending in an observation. Let γ(Plays(G)) be the set of concrete paths of all plays in the game,
and γ(Prefs(G)) be the set of all finite prefixes of all concrete paths.

An observation-based strategy for Eve is a function from finite prefixes of plays to actions, i.e. λ∃ :
Prefs(G) → Σ. A play ψ = o0σ0o1σ1 . . . is consistent with λ∃ if σi = λ∃(ψ[..i]) for all i ≥ 0. An observation-
based strategy for Adam is a function λ∀ : Prefs(G) × Σ → Obs such that for any prefix ̺ = o0σ0 . . . on ∈
Prefs(G) and action σ, λ∀(̺, σ) ∩ postσ(̺[n]) 6= ∅. A play ψ = o0σ0o1σ1 . . . is consistent with λ∀ if
oi+1 = λ∀(ψ[..i], σi) for all i ≥ 0. A concrete strategy for Adam is a function µ∀ : γ(Prefs(G))×Σ → Q such
that for any concrete prefix π = q0σ0 . . . qn ∈ γ(Prefs(G)) and action σ, µ∀(π, σ) ∈ postσ({π[n]}). A play
ψ = o0σ0o1σ1 . . . is consistent with µ∀ if there exists a concrete path π ∈ γ(ψ) such that µ∀(π[..i], σi) = π[i+1]
for all i ≥ 0.

An observation-based strategy for Eve λ∃ can be encoded into a finite Mealy machine if there is a finite
set M , an element m0 ∈ M , and functions αu : M × Obs → M and αo : M × Obs → Σ such that for
any play prefix ψ = o0σ0 . . . on we have σi = λ∃(ψ) = αo(mn, on), where mn is defined inductively by
mi+1 = αu(mi, oi) for i ≥ 0. Similarly, an observation-based strategy for Adam λ∀ can be encoded into a
finite Mealy machine if there is a finite set M , an element m0 ∈ M , and functions αu : M × Obs× Σ → M
and αo : M × Obs × Σ → Obs such that for any play prefix ending in an action ψ = o0σ0 . . . onσn, we have
oi+1 = λ∀(ψ) = αo(mn, on, σn), where mn is defined inductively by mi+1 = αu(mi, oi, σi) for i ≥ 0. In both
cases we say the observation-based strategy has memory |M |. An observation-based strategy (for either
player) with memory 1 is positional.

Remark 1. Note that for any concrete strategy µ for Adam there is a unique observation-based strategy λµ
for him such that all plays consistent with µ are consistent with λµ. Conversely there may be several, but
possibly no, concrete strategies that correspond to a single observation-based strategy. In games of limited
observation there is guaranteed to be at least one concrete strategy for every observation-based strategy.

Winning an MPG Given a threshold ν ∈ R, we say a play ψ is winning for Eve if MP(π) ≥ ν for all
concrete paths π ∈ γ(ψ), otherwise it is winning for Adam. Given ν, one can construct an equivalent game
in which Eve wins if and only if MP(π) ≥ 0 if and only if she wins the original game, so without loss of
generality we will assume ν = 0. A strategy λ is winning for a player if all plays consistent with λ are
winning for that player. We say that a player wins G if (s)he has a winning strategy.

Remark 2. It was shown in [9] that in MPGs with partial observation where finite-memory strategies suffice
Eve wins the MP version of the game if and only if she wins the MP version. As the majority of games
considered in this paper only require finite memory, we can take either definition. For simplicity and
consistency with Section 3 we will use MP.

Non-zero-sum reachability games A reachability game G = (Q, qI ,Σ,∆, T∃, T∀) is a tuple where Q is
a (not necessarily finite) set of states; Σ is a finite set of actions; ∆ ⊆ Q × Σ × Q is a finitary transition
function (that is, for any q ∈ Q and σ ∈ Σ there are finitely many q′ ∈ Q such that (q, σ, q′) ∈ ∆); qI ∈ Q is
the initial state; and T∃, T∀ ⊆ Q are the terminating states. The game is played as follows. We place a token
on qI ∈ Q and start the game. Eve chooses an action σ ∈ Σ and Adam chooses a σ-successor of the current

4



q0

q1

q2

q3

a,-1

b,-1

Σ,-1

Σ,-1

b,-1

a,-1

Σ,+1

Figure 1: A non-determined MPG with limited ob-
servation (Σ = {a, b})

q0

q1

q2

q3

a,0

b,-1

a,-1

Σ,0

Σ,0

b,-1
b,0

Σ,+1

Figure 2: A limited-observation MPG in which Eve
requires infinite memory to win

state as determined by ∆. The process is repeated until the game reaches a state in T∃ or T∀. In the first
case we declare Eve as the winner whereas the latter corresponds to Adam winning the game. Notice that
the game, in general, might not terminate, in which case neither player wins. Notions of plays and strategies
in the reachability game follow the definitions for mean-payoff games, however we extend plays to include
finite paths that end in T∃ ∪ T∀.

3 Undecidability of Liminf Games

Mean-payoff games with partial observation were extensively studied in [9]. In that paper the authors
show that, with the mean payoff condition defined using MP and >, determining whether Eve has a winning
observation-based strategy is undecidable and when defined using MP and ≥, strategies with infinite memory
may be necessary. The analogous, and more general, questions using MP and ≥ were left open. In this section
we answer these questions, showing that both results still hold.

Proposition 1. There exist MPGs with partial observation for which Eve requires infinite-memory observation-
based strategies to ensure MP ≥ 0.

Proof. Consider the game G in Figure 2. We will show that Eve has an infinite-memory observation-based
strategy to win this game, but no finite-memory observation-based strategy.

Consider the observation-based strategy that plays (regardless of the witnessed observations) aba2ba3ba4b . . .
As b is played infinitely often by this strategy, the only concrete paths consistent with it are π = q0q

ω
1 and π =

q0 · q
k
1 · ql2 · q

ω
3 for non-negative integers k, l. In the first case we see that 1

n
w(π[..n]) → 0 as n→ ∞, and for

all paths matching the second case we have 1
n
w(π[..n]) → 1 as n→ ∞. Thus MP ≥ 0 and so the strategy is

winning.
Now suppose Eve has a finite-memory observation-based winning strategy forG. We will define a concrete

strategy for Adam such that a concrete path with negative mean payoff and consistent with both strategies
exists. The strategy for Adam is such that the game remains in {q1, q2}. The resulting play can now be
seen as choosing a word w ∈ {a, b}ω, but as Eve’s strategy has finite memory, this word must be ultimately
periodic, that is w = w0 ·v

ω for words w0, v ∈ {a, b}∗. We now describe the concrete strategy for Adam. If w
contains finitely many b’s then Adam moves to q2 on the final b and 1

n
w(π[..n]) → −1 as n→ ∞. Otherwise

Adam remains in q1 and 1
n
w(π[..n]) → −m

|v| as n→ ∞ where m is the number of b’s in v.

Theorem 1. Let G be an MPG with partial observation. Determining whether Eve has an observation-based
strategy to ensure MP ≥ 0 is undecidable.

The proof of this result is based on a similar construction to the one used in the proof of Proposition 20,
so we defer it to Section 6.1.
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4 Observable Determinacy

One of the key features of MPGs with full observation is that they are determined, that is, it is always the
case that one player has a winning strategy. This is not true in games of partial or limited observation as
can be seen in Figure 1. Any concrete strategy of Adam reveals to Eve the successor of q0 and she can use
this information to play to q3. Conversely Adam can defeat any strategy of Eve by playing to whichever
of q1 or q2 means the play returns to q0 on Eve’s next choice (recall Eve cannot distinguish q1 and q2 and
must therefore choose an action to apply to the observation {q1, q2}). This strategy of Adam can be encoded
as an observation-based strategy: “from {q1, q2} with action a or b, play to {q0}”. It transpires that any
such counter-play by Adam is always encodable as an observable strategy. We formalize these claims in the
sequel.

Let us recall the definition of the Borel hierarchy of sets. For a detailed description of both the hierarchy
and its properties we refer the reader to [13].

Definition 1 (Borel hierarchy & (co-)Suslin sets). For a (possibly infinite) alphabet A, let Aω and A∗ denote
the set of infinite and finite words on A, respectively. The Borel hierarchy is inductively defined as follows.

• Σ0
1 = {W · Aω |W ⊆ A∗} is the set of open sets.

• For all n ≥ 1, Π0
n = {Aω \ L | L ∈ Σ0

n} consists of the complement of sets in Σ0
n.

• For all n ≥ 1, Σ0
n+1 = {

⋃

i∈N
Li | ∀i ∈ N : Li ∈ Π0

n} is the set obtained by countable unions of sets in
Π0

n.
• Finally, we write ∆0

n = Σ0
n ∩ Π0

n, for all n ≥ 0.
The first level of the Projective hierarchy consists of Σ1

1 (Suslin) sets, which are those whose preimage is a
Borel set, i.e. all sets that can be defined as a projection of a Borel set, and Π1

1 (co-Suslin) sets: those sets
whose complement is the image of a Borel set.

4.1 (Full-observation) Determinacy

Let us first consider MPGs with full observation and recall the well-known determinacy result that applies
to them. Note that in games with full observation a play in fact corresponds to a unique infinite concrete
path. Furthermore, the distinction between observation-based and concrete strategies is unnecessary. For
clarity, in the remaining of this section we speak of concrete plays in full-observation games and abstract
plays in partial-observation games. Given a strategy λ∃ for Eve and a strategy λ∀ for Adam in an MPG, we
denote by Out(λ∃, λ∀) the unique play consistent with both strategies.

Proposition 2. In every MPG with full observation exactly one of the following assertions holds.
1. There exists a strategy λ∃ for Eve such that, for all strategies λ∀ for Adam, the concrete play Out(λ∃, λ∀)

is winning for Eve.
2. There exists a strategy λ∀ for Adam such that, for all strategies λ∃ for Eve, the concrete play Out(λ∃, λ∀)

is winning for Adam.

The proof of the above determinacy result follows from the fact that the set of winning plays in any
MPG is a Borel set. More precisely, the statement that the limit inferior of a given sequence (an)n∈N is
non-negative is a Π0

3-statement (for every k there exists a t such that for all n ≥ t an ≥ −2−k). Similarly,
for the limit superior we get a Σ0

2-statement. Hence, by Borel determinacy [15], all mean-payoff games with
full observation are determined.

4.2 Determinacy & partial-observation games

In MPGs with partial observation, authors usually focus on observation-based strategies for Eve and concrete
strategies for Adam. Using this asymmetric point of view, we will now state the well-known non-determinacy
of games with partial observation. Given an observation-based strategy λ∃ for Eve and a concrete strategy
µ∀ for Adam in an MPG with partial observation, we denote by Out(λ∃, µ∀) the unique abstract play
consistent with both strategies. Remark that here we can no longer assume a play is one unique concrete
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path. Furthermore, recall that an abstract play is winning (for a player) if all its concretizations are winning
(for the player)

Proposition 3. There are MPGs with limited observation for which none of the following assertions hold.
1. There exists an observation-based strategy λ∃ for Eve such that, for all concrete strategies µ∀ for Adam,

the abstract play Out(λ∃, µ∀) is winning for Eve.
2. There exists a concrete strategy µ∀ for Adam such that, for all observation-based strategies λ∃ for Eve,

the abstract play Out(λ∃, µ∀) is winning for Adam.

One such game is shown in Figure 1. Intuitively, the second statement is too strong for it to be implied
by the negation of the first. Indeed, the game remains asymmetric—in favour of Adam—just as long as Eve
does not know the concrete path corresponding to the current play prefix. This is not the case in the second
statement because of the order of quantifications over the strategies and the fact Adam is using a concrete
strategy. That is, since she knows his concrete strategy and the current play prefix, she knows the current
concrete state of the game as well.

We presently show that if one considers the “more symmetrical” statements in which both players use
observation-based strategies, then we recover determinacy.

Theorem 2 (Observable determinacy). In every MPG with limited observation (defined with MP or MP)
exactly one of the following assertions holds.

1. There exists an observation-based strategy λ∃ for Eve such that, for all observation-based strategies λ∀
for Adam, the abstract play Out(λ∃, λ∀) is winning for Eve.

2. There exists an observation-based strategy λ∀ for Adam such that, for all observation-based strategies
λ∃ for Eve, the abstract play Out(λ∃, λ∀) is winning for Adam.

In what follows we will first show how to construct a non-deterministic mean-payoff automaton that
recognizes as its language the set of all concrete plays that are winning for Adam in a given MPG with
limited observation. We then show that the language of the automaton is a Borel set. The result will thus
follow from Lemma 4, Corollaries 6 and 10, the fact that Borel sets are closed under complement, and Borel
determinacy [15].

Determinacy usually enables to simplify proofs. Without any sort of determinacy, game reductions can
become tedious and confusing. However, with determinacy, we can simply transfer winning strategies for
both players between games and that directly implies both players win in one game if and only if they
win in the game we reduce to (from). We remark that although our results in Section 5 already imply
that the games we consider from then onwards are observably determined, the above result is more general.
That is to say, all partial-observation MPGs which do not fit into the classes we consider later in this work,
are observably determined. It is also worth noting that observation-based strategies for Adam only really
make sense for games with limited observation, since in a general partial-observation game he may be able
to choose an observation which yields an abstract path with an empty set of concretizations. (The latter
is not possible in a limited-observation game.) Since, for a given partial-observation game, the equivalent
limited-observation game may be of size exponential w.r.t. to the original game, these kind of determinacy
results may be useful in instances where one is interested in decidability of game-related problems but not
necessarily when interested in establishing complexity bounds.

4.3 Borelness of losing plays

In [5] the authors consider parity objectives and show that, given a game with partial observation, one can
construct a non-deterministic automaton (with the negation of the game’s objective as acceptance condition)
that recognizes the set of plays that are winning for Adam. We adapt their construction for MPGs. Let
G = (Q, qI ,Σ,∆, w,Obs) be a limited-observation liminf (respectively, limsup) MPG. We construct a mean-
payoff automaton A = (Q, qI , A, T, c) where:

• A = Σ× Obs is the alphabet of the automaton,
• T = {(p, (σ, o), q) | (p, σ, q) ∈ ∆ ∧ q ∈ o} is the transition relation, and

7



• c is a weight function such that, (p, (σ, o), q) 7→ −w(p, σ, q).
A run of A over an infinite word α = a0a1 · · · ∈ Aω is an infinite sequence ̺ = q0a0q1a1 . . . such that q0 = qI
and (qi, ai, qi+1) ∈ T for all i ≥ 0. We say ̺ is accepting if the limit superior (resp. limit inferior) of the
sequence (c(qi, ai, qi+1))i∈N is strictly positive. Depending on its acceptance condition, we say the constructed
machine is a limsup (resp. liminf) mean-payoff automaton. Finally, the language of a mean-payoff automaton
recognizes is the set {σ0o0σ1o1 · · · | there is an accepting run of A over (σ0, o0)(σ1, o1) . . . }.

Clearly, if we write LA for the language of an automaton A constructed for an MPG with limited
observation G = (Q, qI ,Σ,∆, w,Obs), then the set {qI} · LA ⊆ Plays(G) is the set of all plays in G which are
not winning for Eve. Intuitively, A receives the choice of action σ for Eve and observation o for Adam and
then “guesses” the actual state chosen by a concrete strategy for Adam, thus constructing all concretizations
of a play in parallel and accepting if one of them is losing for Eve (i.e., winning for Adam).

Lemma 4. The set of winning plays in a limited-observation MPG is recognizable by a non-deterministic
mean-payoff automaton.

We will now show that the language of any non-deterministic mean-payoff automaton is a Borel set.

Liminf mean-payoff automata Recall that the statement that the limit inferior of a given sequence is a
Π0

3-statement. Thus, any set recognized by a deterministic liminf mean-payoff automaton is Σ0
4. The jump

from Π0
3 is due to the strictness of the inequality (if there exists b > 0 such that MP ≥ b, then MP > 0).

Moving to non-deterministic liminf mean-payoff automata, however, adds an existential quantification over
all runs—and hence looks like it could go as high as Σ1

1. (Whether or not all games with Σ1
1 winning-play sets

are determined is independent of ZFC. A positive answer follows, e.g., from the existence of a measurable
cardinal [16].) However, in the following we shall see that non-deterministic liminf mean-payoff automata
still only recognize Σ0

4-sets.

Proposition 5. The following are equivalent for a non-deterministic liminf mean-payoff automaton:
1. There exists a run over α with non-negative liminf mean-payoff.
2. For any k there exists a run pk over α and a position tk ∈ N such that the mean payoff along pk never

falls below −2−k after position tk ∈ N.

Essentially, the difference between (1.) and (2.) is that the existential quantifier over the runs is moved
inwards. In particular, it is obvious that (1.) implies (2.), but the converse direction is non-trivial. The
basic idea of the proof is that we construct a new run p from the runs pk by always following some run for
some time, and then switching to a run for higher k, and so on. We are faced with two problems: We can
only switch from a run to another if they are at the same state of the automaton at the same time, so we
might get stuck in a run which never meets another run for higher k. Moreover, a run pk could at some
position t have much higher current mean payoff than a run pk′ with k > k′, and proceed to lose a lot of
payoff—which pk′ could not afford.

Thus, in order to construct our run p, we need to make sure that we always have the option available to
switch to a suitable run for higher k at some position where the two runs have very similar current mean
payoff. The existence of suitable collections will be proven by iterative applications of Ramsey’s theorem:

Theorem 3 (Infinite Ramsey’s theorem). Let P(N)r denote the set of r-element subsets of N. Then for any
colouring function c : P(N)r → {0, 1, . . . , κ}, where κ ∈ N, there exists an infinite subset H ⊆ N such that
for any two A,B ∈ P(N)r with A ⊆ H, B ⊆ H we find that c(A) = c(B). Such an H is called c-homogenous.

Proof of Proposition 5. Assume that for any k there exists a run pk and a position tk such that the mean
payoff along pk never falls below −2−k after position tk. Let states in the automaton be labelled 0 to n.
W.l.o.g., assume that the payoff values are from [−1, 1]. For x ∈ [−1, 1] and ℓ ∈ N, let bx,ℓ := ⌈2ℓ(x + 1)⌉.
Note that bx,ℓ ∈ {0, . . . , 2ℓ+1}. Let 〈 , 〉 : N× N → N denote a standard pairing function, i.e. an encoding
of a pair of natural numbers into one single natural number.

To use Ramsey’s theorem, one must colour subsets of N, not tuples. Since we will use it on sets {k, t}
with k the index of a run and t a position, we must somehow decide which number in a given set of size 2 is
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the run index and which one is the position. Since for any position t ≥ tk the mean payoff of pk never falls
below −2−k after position t, the larger number in a pair will always be understood as the position while the
smaller will be the run index.

We iteratively define colourings ci of 2-element subsets of N, to which we apply Ramsey’s theorem in
order to obtain ci-homogenous sets Hi and derived infinite sets Si. For all k < t, let c0({k, t}) := 〈v, bx,1〉
where v is the state the run pk is in at position t, and x is the current mean payoff of pk at position t. Let
H0 be an infinite c0-homogenous set. Let S0 := H0. Once we have obtained Si, let (mi

j)j∈N be a monotone
(increasing) sequence enumerating Si. Then let ci+1({k, t}), again for k < t, be 〈v, bx,i+2〉 where v is the
state the run pmi

k
is in at position t and x is the current mean payoff of pmi

k
at position t. Let Hi+1 be an

infinite ci+1-homogenous set. Let Si+1 = {mi
k | k ∈ Hi+1}.

This construction ensures that for all i ∈ N, for all k1, k2 ∈ Si, and for all sufficiently large t ∈ Hi, the
runs pk1

and pk2
will be at the same state at position t and their current mean payoff at position t will differ

by at most 2−i−1. If i > 0, by sufficiently large we mean any t larger than the indices j, ℓ we assign to k1
and k2 in the construction of Hi, i.e. t > mi

j ,m
i
ℓ where k1 = mi

j and k2 = mi
ℓ. Since the sequence (mi

j)j∈N

is monotone, it suffices to take t > max{k1, k2}. (The latter also allows us to claim the property holds for
i = 0.) Finally, also note that Si+1 ⊆ Si.

The run p we need to construct will first follow some pk0
with k0 ∈ S0 until sufficient time s0 ∈ H0 has

passed, then switch to some pk1
with k1 > k0 and k1 ∈ S1, again until sufficient (total) time s1 ∈ H1 has

passed, then switch to pk2
with k2 > k1 and k2 ∈ S2, and so forth.

It remains to specify what sufficient time means for the position si, and to show that this condition
ensures that the mean payoff of p is non-negative. For the latter, we will ensure that after position si
the current mean payoff of p never again drops below −2−i+1. The sufficient condition for si will include
the sufficiency condition for any runs with indices from Si having the same current vertex and current
mean-payoff difference at most 2−i−1. Moreover, we need that si ≥ tki+1

.
Let us now consider the current mean payoff of p at some position t with si ≤ t < si+1. By summing

up the loss of mean payoff through the changes, we see that the current mean payoff of p differs by at most
2−2 s0

t
+ . . . + 2−i−2 si

t
from that of pki

, which in turn is at least −2−ki . Note that, since we have chosen
our indices so that ki ≤ ki+1 for all i ∈ N, we have that ki ≥ i and therefore −2−ki ≥ −2−i. Thus, once
s0, . . . , si−1 have been chosen, we just need make sure that si is large enough so that:

• si ≥ tki+1
,

• si ≥ max{ki, ki+1}, and finally

•
∑i

j=0 2
−j−1 sj

si
≤ 2−i−1 so that the mean payoff of p never again drops below −2−i+1.

The first two items are trivial. For the third one, note that, as the left hand side goes to 0 for si → ∞, this
can always be ensured by staying increasingly longer with each run we switch to.

Corollary 6. Any set recognized by a liminf mean-payoff automaton is Σ0
4.

Proof. Using Proposition 5, it suffices to argue that the second equivalent condition is Π0
3. This in turn

follows from the observation that for fixed k, t ∈ N the condition there exists a run whose mean payoff never
falls below −2k after position t is by Weak König’s Lemma a Π0

1 condition.

Limsup mean-payoff automata We now show an analogue of Corollary 6 holds for limsup mean-payoff
automata. Once more, to simplify the argument, we focus on the non-strict acceptance condition. We show
languages recognized by such automata are Π0

3 and, thus, those recognized by limsup mean-payoff automata
are Σ4

0.

Proposition 7. The following are equivalent for a non-deterministic limsup mean-payoff automaton:
1. There exists a run over α with non-negative limsup mean payoff.
2. For any k there exists a run pk over α such that for all positions t there exists a position t′ > t such

that the mean payoff of pk at position t′ is at least −2−k.
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Proof. That (1.) implies (2.) follows immediately from the definition of limsup mean payoff and the fact
that the witnessing run from (1.) is also a witness for all k in (2.). That (2.) implies (1.) will be shown
using Ramsey’s theorem, similar to the argument in the proof of Proposition 5. We do not need iterative
applications here, though.

We define a colouring c by setting c({t, k}) = v where k < t and the run pk is in the state v at position
t, and obtain an infinite c-homogenous set S. If k, k′ ∈ S, then for any position t ∈ S with t > max{k, k′}
the runs pk and pk′ are at the same state at position t, and hence we are allowed to switch from one run to
the other. Let (km)m∈N be a monotone sequence enumerating S. We first follow k0 for a while, then switch
to k1, and so on. This constructs the witnessing run p.

By assumption, the run pk0
will eventually reach a current mean payoff of at least −2−k0 at some position

t0. We pick some t′0 ∈ S with t′0 > max{t0, k0, k1}, and follow pk0
until position t′0, and then switch to the

run pk1
. At the time of the switch, there is some c0 such that the current mean payoff of pk0

is not more than
c0 below the current mean payoff of pk1

. (Our intention is to make the difference c0, along with all future
ones, disappear by staying longer and longer with runs we switch to.) This implies that at positions t > t′0
(but prior to the next switch) the mean payoff of p is at least the mean payoff of pk1

minus
t′0
t
c, for some c.

We pick t1 > t′0 such that
t′0
t1
c ≤ 2−k1 , and then some t′1 ≥ t1 such that pk1

at position t′1 has a mean payoff

of at least −2−k1 . Then p has a current mean payoff of at least −2−k1+1 at position t′1. Then let t′′1 ∈ S
such that t′′1 > max{t′1, k1, k2}. The run p follows pk1

until position t′′1 , and then switches to pk2
. Again, we

will follow pk2
long enough so that the accumulated difference of the mean payoff caused by the switches is

small enough, and then until pk2
realizes its bound next, and then switch to pk3

at the next possible chance,
and so on. As we keep reaching mean payoff values closer and closer to 0, the limsup mean payoff of p is
non-negative, as intended.

To obtain an analogue of Corollary 10 here, we must still argue that the statement ϕ: there exists a run
over α whose mean payoff is at least −2k infinitely often, is Borel. In the sequel we show how to encode
all run prefixes of the mean-payoff automaton over a given word α into a DAG. The DAG is constructed to
have special edges witnessing the existence of a run prefix with mean payoff of at least −2k. We show the
DAG has an infinite path that traverses such edges infinitely often if and only if ϕ holds. To conclude, we
then argue the set of all such DAGs is ω-regular and thus Borel.

Definition 2. Given an automaton M with n states, an input α and some precision parameter k ∈ N, we
define a directed acyclic graph (DAG, for short) Dk(α) over {1, . . . , n} × N with the structural constraint
that there are only edges from (i, ℓ) to (j, ℓ + 1) or from (i, ℓ) to (j, ℓ + 2). We fix some sequence (tℓ)ℓ∈N

such that tℓ
tℓ+1

≤ 2−k−1. There is an edge from (i, ℓ) to (j, ℓ + 1) if there is an run of M starting from state

i, reading in α from position tℓ to position tℓ+1 and ending in j. There is an edge from (i, ℓ) to (j, ℓ + 2) if
there is an run of M starting from state i, reading in α from position tℓ to position tℓ+2 and ending in j,
such that at some point t with tℓ < t < tℓ+2 the current mean payoff x satisfies that t−tℓ

t
x− tℓ

t
≥ −2−k. We

call the latter long edges.

The following remark will be useful in the sequel to establish that languages recognized by limsup mean-
payoff automata are Borel. Intuitively, we will argue that the set of DAGs containing infinite paths with
infinitely many long edges form a Borel set.

Remark 3. We can code the DAGs Dk(α) for a fixed M into an infinite sequence over a finite alphabet, by
letting the l-th symbol code which of the finitely many potential edges from some (i, ℓ) to (j, ℓ+1) and from
(i, ℓ) to (i, ℓ+ 2) are available.

We will now sketch how to recognize such DAGs using a Büchi automaton. That is, an infinite-word
non-deterministic automaton (S, sI , A, T,B) with finite set of states S, initial state sI , alphabet A, transition
relation T ⊆ S×A×S and accepting transition set B ⊆ T . The notion of run is as for mean-payoff automata.
We say a run of a Büchi automaton is accepting if it contains infinitely many accepting transitions, and define
its language as for mean-payoff automata.
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Remark 4. There exists a finite non-deterministic Büchi automaton that reads in DAGs (represented as
described in Remark 3), and accepts exactly those DAGs that admit a path containing infinitely many long
edges starting from (i0, 0), where i0 is the initial state of M . For instance, the Büchi automaton can be
defined using the same state-space as the original mean-payoff automaton, with a transition from i to j on
input edge ((i, ℓ), (i, ℓ′)) if j is reachable from i in the original automaton. The transition is then marked as
accepting if the edge being read is long.

Lemma 8. If Dk(α) admits a path containing infinitely many long edges starting from (i0, 0), where i0 is
the initial state of M , then M has a run over α which has a mean payoff of at least −2−k infinitely many
times.

Proof. Any edge in Dk(α) is witnessed by a partial run of M , in such a way that an infinite path through
Dk(α) starting from (i0, 0) gives rise to a full run of M on input α. Given the condition for adding a long
edge, i.e. of the form (i, ℓ) ⇒ (j, ℓ + 2), we note that at the witnessing position t, the current mean payoff
of M is of the form tℓ

t
y + t−tℓ

t
x, where x is the mean payoff from position t to position tℓ, and y the mean

payoff from the start to position t. As we assume all payoffs to be from [−1, 1], this is bounded from below
by t−tℓ

t
x− tℓ

t
≥ −2−k, hence the claim follows.

Lemma 9. If M has a run over α reaching a mean payoff of at least −2−k−1 infinitely often, then Dk(α)
admits a path containing infinitely many long edges starting from (i0, 0).

Proof. Following a run p through M , we can construct an infinite path through Dk(α) as follows: Start
from (i0, 0). If we are currently at (i, ℓ), and there is an edge available to (j, ℓ + 2) where p is in state j at
position tℓ+2, take that edge. Else, take the edge to (j′, ℓ + 1), where j′ is the state p is in a position tℓ+1

(by construction of Dk(α), the latter always exists. We claim that if the mean payoff of p is at least −2−k−1

infinitely often, then the former case occurs infinitely many times.
Assume that p has mean payoff at least −2−k−1 at position t with tℓ+1 ≤ t < tℓ+2. Let p be in state i at

position tℓ and at state j at position tℓ+2. We claim that Dk(α) has an edge from (i, ℓ) to (j, ℓ+ 2). To see
that, note that the mean payoff of p at position t is of the form x t−tℓ

t
+ y tℓ

t
, where x is the mean payoff from

position tℓ to position t, and y the mean payoff from the start to position tℓ. As y ≥ −1, we can conclude
that x t−t1

t
≥ −2−k−1 − tℓ

t
. As t ≥ tℓ+1 and the constraint on the choice of (tℓ)ℓ∈N that tℓ

tℓ+1
≤ 2−k−1, we in

turn find that x t−t1
t

≥ −2−k – hence the claimed edge exists.
The only reason why we might be unable to choose such an edge from (i, ℓ) to (j, ℓ + 2) is if we choose

some edge from (i′, ℓ− 1) to (j′, ℓ + 1) earlier. But that means that the availability of infinitely many such
edges implies that our construction will choose them, hence showing the claim.

Corollary 10. Any set recognized by a limsup mean-payoff automaton is Σ0
4.

Proof. By Lemmas 8 and 9 we find that for some input α and limsup mean payoff automatonM the following
are equivalent:

1. For all k there exists a run pk over α such that for all positions t there exists a position t′ > t such
that the mean payoff of pk at position t′ is at least −2−k.

2. For all k the DAG Dk(α) has a path containing infinitely many long edges starting from (i0, 0).
By Proposition 7, the former is equivalent to M accepting α, and by Remarks 3 and 4, and [20], the latter
is a universal quantification over a ∆0

3-set, hence a Π0
3-set. Thus, with the strict acceptance condition, a Σ4

0

set.

5 Strategy Transfer

In this section we will construct a reachability game from an MPG with limited observation in which winning
strategies for either player are sufficient (but not necessary) for observation-based winning strategies in the
original MPG.
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Let us fix a limited-observation MPG G = (Q, qI ,Σ,∆, w,Obs). We will define a reachability game on
the weighted unfolding of G.

Belief functions Let B be the set of (belief ) functions f : Q → Z ∪ {+∞,⊥}. Our intention is to use
functions in B to keep track of the minimum payoff of all concrete paths ending in the given state. A function
value of ⊥ indicates that the given state is not in the current observation, and a function value of +∞ is used
to indicate to Eve that the token is not located at such a state. Intuitively, +∞ will allow our reachability
winning condition to include games where Adam wins by ignoring paths going through the given state.

The support of f ∈ B is supp(f) := {q ∈ Q | f(q) 6= ⊥}. We define a family of partial orders �k⊆ B × B
for all k ∈ N. Formally, f �k f

′ if:
• supp(f) = supp(f ′) and
• f(q) + k ≤ f ′(q) for all q ∈ supp(f)

where +∞+ k = +∞.

(Proper) successor functions Given two functions f, f ′ ∈ B, we say f ′ a σ-successor of f if:
• supp(f ′) ∈ Obs;
• supp(f ′) ⊆ postσ(supp(f)); and
• for all q ∈ supp(f ′) either

– f ′(q) = min{f(q′) + w(q′, σ, q) | q′ ∈ supp(f) and (q′, σ, q) ∈ ∆}, or
– f ′(q) = +∞.

Moreover, if f ′ is a �0-minimal σ-successor of f , we say it is a proper σ-successor of f .

Function-action sequences Let us denote by F(G) the set of all sequences f0σ0f1 . . . fn ∈ (B ·Σ)∗B such
that for all 0 ≤ i < n, fi+1 is a σi-successor of fi. Observe that for each ϕ = f0σ0 . . . fn ∈ F(G) there is
a unique abstract path supp(ϕ) := o0σ0 . . . on such that oi = supp(fi) for all i. Conversely for each finite
abstract path ψ = o0σ0 . . . on there may be many corresponding function-action sequences supp−1(ψ) :=
{ϕ ∈ F(G) | supp(ϕ) = ψ}. Of particular interest are function-action sequences that are minimal with
respect to �0. Given a finite abstract path ψ = o0σ0 . . . on and a function f0 ∈ B such that supp(f0) ⊆ o0,
let prop(ψ, f0) denote the unique (pointwise) �0-minimal function-action sequence f0σ0 . . . fn ∈ supp−1(ψ).
That is to say, if prop(ψ, f0) = f0σ0 . . . fn, then for all g0σ0 . . . gn ∈ supp−1(ψ) it holds that fi �0 gi for all
0 ≤ i ≤ n. Observe the latter holds if and only if fi+1 is a proper σi-successor of fi, for all 0 ≤ i < n.

We extend supp(·), supp−1(·), and prop(·, ·) to infinite sequences in the obvious way.

The weighted unfolding of an MPG The reachability game associated with G, i.e. Γ = (Π,Σ, fI , δ, T∃, T∀),
is formally defined as follows. The initial state fI ∈ B is the function for which qI 7→ 0, and q 7→ ⊥ for all
q 6= qI . The state-set Π is the subset of F(G) where for all f0σ0f1 . . . fn ∈ Π we have:

• f0 = fI ; and
• for all 0 ≤ i < j < n,

– fi 6�0 fj and
– fj 6�1 fi.

The transition function δ is such that if x and x · σ · f are elements of Π then (x, σ, x · σ · f) ∈ δ. For the
terminating states we have

T∃ = {f0σ0 . . . fn ∈ Π | for some 0 ≤ i < n : fi �0 fn}; and

T∀ = {f0σ0 . . . fn ∈ Π | for some 0 ≤ i < n : fn �1 fi, and

for some q ∈ supp(fi) : fi(q) 6= +∞}.

Note that the directed graph defined by Π and δ is a tree, but not necessarily finite.
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Good and bad cycles To gain an intuition about Γ, let us say an abstract cycle χ is good if:
• there exists f0σ0 . . . fn ∈ supp−1(χ) such that fi(q) 6= +∞ for all q ∈ Q and all 0 ≤ i ≤ n, and
• f0 �0 fn.

Let us say χ is bad if:
• there exists f0σ0 . . . fn ∈ supp−1(χ) such that f0(q) 6= +∞ for some q ∈ supp(f0), and
• fn �1 f0.

Then it is not difficult to see that Γ is essentially an abstract cycle-forming game played on G which is
winning for Eve if a good abstract cycle is formed and winning for Adam if a bad abstract cycle is formed.

Our main result for this section is the following:

Theorem 4. Let G be an MPG with limited observation and let Γ be the associated reachability game. If
Adam (Eve) has a winning strategy in Γ then (s)he has a finite-memory observation-based winning strategy
in G.

The idea behind the observation-based strategies for the MPG is straightforward. If Eve wins the reach-
ability game then she can transform her strategy into one that plays indefinitely by returning, whenever
the play reaches T∃, to the natural previous position—namely the position that witnesses the membership
of T∃. By continually playing her winning strategy in this way Eve perpetually completes good abstract
cycles and this ensures that all concrete paths consistent with the play have non-negative mean-payoff value.
Likewise if Adam has a winning strategy in the reachability game, he can continually play his strategy by
returning to the natural position whenever the play reaches T∀. By doing this he perpetually completes
bad abstract cycles and this ensures that there is a concrete path consistent with the play that has strictly
negative mean-payoff value.

We will repeatedly use the next result which follows by induction immediately from the definition of a
σ-successor.

Lemma 11. Let ϕ = f0σ0 . . . fn ∈ F(G) be a sequence such that fi+1 is a proper σi-successor of fi, for all
i. Then for all q ∈ supp(fn),

fn(q) = min{f0(π[0]) + w(π) | π ∈ γ(supp(ϕ)) and π[n] = q}.

The following simple facts about �n will also be useful:

Lemma 12. For any two functions f1, f2 ∈ B with f1 �k f2:
(i) For all k′ ≤ k, f1 �k′ f2,
(ii) For all k′ ≥ 0, if f2 �k′ f3 for some f3 ∈ F then f1 �k+k′ f3, and
(iii) If f ′

1 is a proper σ-successor of f1 and f ′
2 is a σ-successor of f2 with supp(f ′

2) = supp(f ′
1), then f ′

1 �k f
′
2.

Proof. Items (i) and (ii) are trivial. For (iii), let di,j = w(qi, σ, qj) for qi ∈ supp(f1) and qj ∈ supp(f ′
1) where

such a transition exists and +∞ otherwise. We now observe that as f ′
1 is �0-minimal, f ′

1(qj) can be defined
as min{f1(qi) + di,j | qi ∈ supp(f1)} for all qj ∈ supp(f ′

1). As f1(qi) ≤ f2(qi) − k for any qi ∈ supp(f1), it
follows that

f ′
1(qj) ≤ min{f2(qi) + di,j | qi ∈ supp(f1)} − k ≤ f ′

2(qj)− k,

where the second inequality follows from the definition of a σ-successor. Thus f ′
1 �k f

′
2.

Although the following results are not used until Section 7, they already give an intuition towards the
correctness of the strategies described above. In words, we will show that repeating good cycles is itself, in
some sense, good, while repeating bad ones is bad.

Lemma 13. Let χ be an abstract cycle.
(i) If χ is good (bad) then an interleaving of χ with another good (bad) cycle is also good (bad).
(ii) If χ is good then for all k and all concrete cycles π ∈ γ(χk), w(π) ≥ 0.
(iii) If χ is bad then ∃k ≥ 0, π ∈ γ(χk) such that w(π) < 0.
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Proof. Item (i) follows from Lemma 12. For (ii), let f0σ0 . . . fn ∈ supp−1(χ) be such that fi(q) 6= +∞ for all
i and q and f0 �0 fn. In particular this means that fi+1 is a proper σi-successor of fi. Now fix k and let
π ∈ γ(χk) be a concrete cycle. From Lemma 11 we have, for all 0 ≤ i < k,

w(π[n · i..n(i+ 1)]) ≥ fn(π[n(i + 1)])− f0(π[n · i])

and
fn(π[n(i + 1)])− f0(π[n · i]) ≥ f0(π[n(i + 1)])− f0(π[n · i]).

Hence

w(π) =
k

∑

i=1

w(π[n · i..n(i+ 1)]) ≥ f0(π[n · k])− f0(π[0]) = 0.

We now prove item (iii) holds. Let f0σ0 . . . fn ∈ supp−1(χ) and q0 ∈ supp(f0) be such that f0(q0) 6= +∞
and fn �1 f0. It follows that fn(q0) < +∞. From the definition of a σ-successor, it follows that there exists
r ∈ supp(fn−1) such that fn−1(r) < +∞, and there is an edge from r to q0 with weight fn(q0) − fn−1(r).
Proceeding this way inductively we find there is a q1 ∈ supp(f0) with f0(q1) < +∞ and a concrete path
π0 ∈ γ(χ) from q1 to q0 with w(π0) = fn(q0) − f0(q1). As f0(q1) < +∞ and fn �1 f0 we have fn(q1) ≤
f0(q1)− 1 < +∞. Repeating the argument yields a sequence of states q0, q1, . . . such that there is a concrete
path πi ∈ γ(χ) from qi+1 to qi with

w(πi) = fn(qi)− f0(qi+1) ≤ f0(qi)− f0(qi+1)− 1.

AsQ is finite it follows that there exists i < j such that qi = qj . Then the concrete path π = πj ·πj−1 . . . πi+1 ∈
γ(χj−i) is a concrete cycle with

w(π) =

j
∑

k=i+1

w(πk) ≤ f0(qi)− f0(qj)− (j − i) < 0.

Corollary 14. No cyclic permutation of a good abstract cycle is bad.

Restricting Γ w.r.t. a strategy We note that, as a play prefix in Γ is completely described by the last
state in the sequence, it suffices to consider positional strategies for both players. Thus, when speaking of
winning strategies for either player in Γ, we will assume they are positional.

Let Π⇂λ denote the set of states from Π that can be reached via plays consistent with λ. At this point, we
can already show that a winning strategy for either player in Γ will reach a terminating state in a bounded
number of steps. This will later allow us to argue that the strategies we construct for Eve or Adam in G
based on their strategies in Γ use finite memory.

Lemma 15. If λ is a winning strategy for Adam or Eve in Γ, then there exists N ∈ N such that for all plays
π consistent with λ we have |π| ≤ N .

Proof. Suppose there is no bound on the size of Π⇂λ. As Γ, is acyclic, it follows that Π⇂λ contains infinitely
many states. However, as Γ is finitely-branching, it follows from König’s lemma that there exists an infinite
path in Γ. As this play is not winning for either player and it is consistent with λ, this contradicts the fact
that λ is a winning strategy.
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5.1 Strategy transfer for Eve

Suppose Eve has a winning positional strategy λ in Γ. Let M = Π⇂λ be the corresponding restriction of Π.
From Lemma 15, M is finite. We will define an observation-based strategy λ∗ with memory |M | for Eve in
G. Given a memory state µ = f0σ0 . . . fn ∈M let

µ′ =

{

the proper prefix f0σ0 . . . fℓ of µ such that fℓ �0 fn if µ ∈ T∃

µ otherwise.

The initial memory state is µ0 := fI . Let us write µ′ = f ′
0σ

′
0 . . . f

′
m. We define the output function

αo : M × Obs → Σ as αo(µ, o) = λ(µ′). Finally we define the update function αu : M × Obs → M as
αu(µ, o) = µ′ · λ(µ′) · g where g is the proper λ(µ′)-successor of f ′

m with supp(g) = o. Observe that we
maintain the invariant that the current observation is supp(f ′

m), consequently the Obs input to αo is not
used.

We will show shortly that λ∗ is a winning observation-based strategy for Eve in G. First, we require
a result about plays consistent with λ∗. We will argue that, by following λ∗ in G, Eve ensures the belief
functions from proper function-action sequences induced by play prefixes consistent with it are �0-smaller
than her current memory state.

Lemma 16. Let ψ = o0σ0 · · · ∈ Plays(G) and µ0µ1 · · · ∈ Mω be such that σi = αo(µi, oi) and µi+1 =

αu(µi, oi) for all i ≥ 0. If we write µi = f
(0)
i σ

(0)
i . . . f

(ni)
i and prop(ψ, fI) = g0σ0 . . . , then f

(ni)
i �0 gi for all

i ≥ 0.

Proof. We prove this by induction. For i = 0 we have µ0 = fI = g0. Now suppose f
(ni)
i �0 gi. By definition

of prop(·, ·) we have that gi+1 is the proper σi-successor of gi and supp(gi+1) = oi+1. Assume first that
µi /∈ T∃. Then

µi+1 = αu(µi, oi) = µi · σi · h,

where h is the proper σi-successor of f
(ni)
i with supp(h) = oi+1. Then, by Lemma 12 (iii) we have f

(ni+1)
i+1 =

h �0 gi+1.

Now assume µi ∈ T∃, and let ℓ < ni be the index such that f
(ℓ)
i �0 f

(ni)
i . Then

µi+1 = αu(µi, oi) =
(

f
(0)
i σ

(0)
i . . . σ

(ℓ−1)
(i) f

(ℓ)
i

)

· σi · h

where h is the proper σi-successor of f
(ℓ)
i with supp(h) = oi+1. From Lemma 12 item (ii) we have f

(ℓ)
i �0 gi,

so by Lemma 12 (iii) we have f
(ni+1)
i+1 = h �0 gi+1 as required.

We now proceed with the proof of strategy transfer for Eve.

Lemma 17. Let G be a mean-payoff game with limited observation and let Γ be the associated reachability
game. If Eve has a winning strategy in Γ then she has a finite-memory observation-based winning strategy
in G.

Proof. We will show that λ∗ described above is a winning strategy for Eve. Let ψ = o0σ0 · · · ∈ Plays(G)
be any play consistent with λ∗. That is, there is a sequence µ0µ1 . . .M

ω such that σi = αo(µi, oi) and
µi+1 = αu(µi, oi) for all i ≥ 0. We will show that there exists a constant β ≥ 0 such that for all concrete
paths π ∈ γ(ψ) and all j ≥ 0, w(π[..j]) ≥ β. It follows that MP(π) ≥ 0, and so ψ is winning for Eve.

Let W = {fℓ(q) | f0σ0 . . . fℓ ∈ M, q ∈ Q, and fℓ(q) 6= ⊥}. Note that W is finite because M and Q are
finite, and non-empty because µ0 = fI and fI(qI) = 0 ∈ W . Let β = minW . As 0 ∈ W , we have that
β < +∞.

As with Lemma 16, let prop(ψ, fI) = g0σ0 . . . and µi = f
(0)
i σ

(0)
i . . . f

(ni)
i . Consider an arbitrary j ∈ N.

As supp(fI) = {qI} and fI(qI) = 0, Lemma 11 implies for all q ∈ supp(gj), we have gj(q) 6= +∞. Hence, for
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all concrete paths π ∈ γ(ψ) we have:

w(π[..j]) ≥ gj(π[j])− fI(π[0]) from Lemma 11
= gj(π[j])

≥ f
(nj)
j (π[n]) from Lemma 16

≥ β as required.

5.2 Strategy transfer for Adam

To complete the proof of Theorem 4, we now show how to transfer a winning strategy for Adam from Γ to
a winning finite-memory observation-based strategy in G. So let us assume λ : Π × Σ → Π is a (positional)
winning strategy for Adam in Γ. The finite-memory observation-based strategy for Adam is similar to that
for Eve in that it perpetually plays λ, returning to a previous position whenever the play reaches T∀. However,
the proof of correctness is more intricate because we need to handle the +∞ function values.

Formally, the finite-memory observation-based strategy λ∗ is given as follows. As before, let M = Π⇂λ
and µ0 = fI . Given µ ∈M , let

µ′ =

{

the proper prefix of f0σ0 . . . fℓ such that fℓ �1 fn if µ ∈ T∀

µ otherwise.

Let us write µ′ = f ′
0σ

′
0 . . . f

′
m. The output function αo : M×Obs×Σ → Obs is defined as: αo(µ, o, σ) = supp(g)

where λ(µ′, σ)) = µ′ ·σ · g. The update function αu :M ×Obs×Σ →M is defined as: αu(µ, o, σ) = λ(µ′, σ).
Note that as the current observation is stored in the memory state, the Obs input to αo and αu is redundant.

To show that λ∗ is winning for Adam in G we require an analogue to Lemma 16. To be precise, we show
that, by following λ∗ in G, Adam ensures the belief functions from ultimately proper function-action sequences
induced by play prefixes consistent with it are �r-larger than his current memory state (for r a function of
how many times his memory has been reset). Given a finite sequence µ0 . . . µn ∈ M∗ of memory states we
denote by reset(µ0 . . . µn) the number of times the memory is reset along the sequence. That is, reset(µ0) = 0,
and if µi ∈ T∀ then reset(µ0 . . . µi+1) = reset(µ0 . . . µi) + 1, otherwise reset(µ0 . . . µi+1) = reset(µ0 . . . µi).

Lemma 18. Let ψ = o0σ0 · · · ∈ Plays(G), µ0µ1 · · · ∈Mω, k ∈ N, and f0σ0 · · · ∈ supp−1(ψ) be such that:
• fkσk · · · = prop(ψ[k..], fk); and for all i ≥ 0,
• oi+1 = αo(µi, oi, σi) and
• µi+1 = αu(µi, oi, σi).

If we write µi = g
(0)
i σ

(0)
i . . . g

(ni)
i and fk �r g

(nk)
k for some r ∈ N, then for all i ≥ k it holds that fi �r′

i
g
(ni)
i

where r′i = r + reset(µk . . . µi).

Proof. We prove this by induction on i. For i = k the result clearly holds. Now suppose i ≥ k and fi �r′
i
g
(ni)
i

where r′i = r + reset(µk . . . µi). We consider two cases depending on whether µi ∈ T∀. If µi /∈ T∀ then

µi+1 = µi · σi · h

where h is a σi-successor of g
(ni)
i with supp(h) = oi+1. Furthermore, since no reset occurred, we have that

reset(µ0 . . . µi+1) = reset(µ0 . . . µi). Then, by Lemma 12 (iii) we have fi+1 �r′
i
h = g

(ni+1)
i+1 and since

r′i = r + reset(µ0 . . . µi) = r + reset(µ0 . . . µi+1) = r′i+1

the result holds for i+ 1.
Otherwise if µi ∈ T∀, let ℓ < ni be the index such that g

(ni)
i �1 g

ℓ
i . We have that

µi+1 =
(

g
(0)
i σ

(0)
i . . . σ

(ℓ−1)
i g

(ℓ)
i

)

· σi · h
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where h is a σi-successor of g
(ℓ)
i with supp(h) = oi+1. From Lemma 12 (ii) we have fi �r′

i
+1 h. So by

Lemma 12 (iii) we have fi+1 �r′
i
+1 h = g

(ni+1)
i+1 , and as

r′i + 1 = r + reset(µk . . . µi) + 1 = r + reset(µk . . . µi+1) = r′i+1

the result holds for i+ 1.

We now show how to transfer strategies for Adam.

Lemma 19. Let G be a mean-payoff game with limited observation and let Γ be the associated reachability
game. If Adam has a winning strategy in Γ then he has a finite-memory observation-based winning strategy
in G.

Proof. We will show that the finite-memory observation-based strategy λ∗ constructed above is winning for
Adam. Let ψ = o0σ0 . . . be any play consistent with λ∗. That is, there is a sequence µ0µ1 . . .M

ω such

that oi+1 = αo(µi, oi, σi) and µi+1 = αu(µi, oi, σi) for all i ≥ 0. Let us write µi = g
(0)
i σ

(0)
i . . . g

(ni)
i . As M

is finite, there exists ϕ = . . . f∗ ∈ M and an infinite set I ⊆ N of indices such that for all i ∈ I we have
µi = ϕ. We will show that this implies there exists π ∈ γ(ψ) such that MP(π) < 0. As MP(π) ≥ MP(π)
the result follows. For convenience, given n ∈ N, let succI(n) = min{i ∈ I | i > n}. Denote by o∗ the set
{q ∈ supp(f∗) | f∗(q) 6= +∞}. Note that from the definition of T∀ it follows that o∗ is non-empty.

We will use a function-action sequence to find a concrete path that is winning for Adam. That is, a
concrete path where the weights of the prefixes can be identified and seen to be strictly decreasing. Unlike in
Lemma 17, the unique proper function-action sequence prop(ψ, fI) fulfilled does not hold enough information
for us to prove this claim. Indeed, to handle +∞ values, which correspond to irrelevant paths, we require a
more complex sequence. Recall that Adam can place +∞ values in a function to tell Eve that the token is
not in a particular state, e.g. f(q) = +∞ signifies q does not hold the token.

The sequence we construct will be piecewise proper in the sense that for all i ∈ I the sequence will consist
of proper successors in the interval [i, succI(i)). When the sequence reaches an element of I we “reset” the
values of the states not in o∗ to +∞. More formally, the required sequence, pw-propI(ψ, fI) = h0σ0 · · · ∈
supp−1(ψ), is constructed inductively as follows. Initially, let h0 = h′0 = fI . For i ≥ 0, let h′i+1 be the proper
σi-successor of hi with supp(h′i+1) = oi+1. If i /∈ I then hi = h′i. Otherwise, for any q ∈ supp(h′i+1) we let

h′i(q) =

{

+∞ if q /∈ o

h′i(q) otherwise.

Observe that, by construction, for all i ∈ I and all q ∈ o∗ we have that hi(q) = h′i(q).
We now claim that

∀i ∈ N : hi �ri g
(ni)
i ,

where ri = reset(µ0 . . . µi). From Lemma 12 (i) and Lemma 18 it follows that we only need to show that for
all i ∈ I it holds that hi �ri f

∗. Induction and Lemma 18 imply that for all i ∈ I we have h′i �ri f
∗. Recall

that hi differs from h′i only on states where f∗ is equal to +∞, we therefore have hi �ri f
∗ as required.

We will now show that there is an infinite concrete path q0σ0 · · · ∈ γ(ψ) such that qi ∈ o∗ for all i ∈ I.
To do this we will show for any i ∈ I and any q ∈ o∗ there is a concrete path in γ(ψ[i..succI(i)]), that
ends in q and starts at some state in o∗. The result then follows by induction. Let us fix i ∈ I, q ∈ o∗,
and let j = succI(i). As h′j �rj f

∗, we have that h′j(q) 6= +∞. From Lemma 11, there is a concrete path
π = q0σ0 . . . qn from q0 ∈ oi ending at qn = q such that h′j(q) = hi(q0)+w(π). As h′j(q) 6= +∞ it follows that
hi(q0) 6= +∞, and as hi(q0) = +∞ if and only if f∗(q0) = +∞, it follows that q0 ∈ o∗. Note that Lemma 11
implies for all k ≤ |π| we have

w(π[..k]) = h′i+k(qk)− hi(q0) = hi+k(qk)− hi(q0).

In particular w(π) = hj(q)− hi(q0).

17



Now let π = q0σ0 . . . be the infinite path implied by the above construction and, for convenience, for
i ∈ I let πi = qiσi . . . qj where j = succI(i). To show MP(π) < 0 we need to show lim supℓ→∞

1
ℓ
w(π[..ℓ]) < 0.

To prove this, we will show there exists a constant β < 0 such that for all sufficiently large ℓ we have
w(π[..ℓ]) ≤ β · ℓ.

For convenience, let i0 = min I and let iℓ = max{i ∈ I | i ≤ ℓ}. From Lemma 11 and the construction
of πi we have for all ℓ ≥ i0:

w(π[..ℓ]) = w(π[..i0]) + w(π[iℓ..ℓ]) +
∑

i∈I
i≤ℓ

w(πi)

= w(π[..i0]) + (hℓ(qℓ)− hiℓ(qiℓ)) +
∑

i∈I
i≤ℓ

h
succI(i)(qsuccI(i))− hi(qi)

= w(π[..i0]) + hℓ(qℓ)− hi0(qi0 )

≤ w(π[..i0]) + g
(nℓ)
ℓ (qℓ)− rℓ − hi0(qi0)

There are only finitely many values for g
(nℓ)
ℓ (qℓ) and from Lemma 15 we get rℓ ≥ ⌊ ℓ

N
⌋. Hence

w(π[..ℓ]) ≤ α− β′ · ℓ

for constants α and β′ > 0. Thus there exists β < 0 such that for sufficiently large ℓ we have w(π[..ℓ]) ≤ β · ℓ.
Hence MP(π) ≤ MP(π) < 0.

6 Forcibly Terminating Games

The reachability game defined in the previous section gives a sufficient condition for determining the winner
in an MPG with limited observation. However, as there may be plays where no player wins, such games are
not necessarily determined. The first subclass of MPGs with limited observation we investigate is the class
of games where the associated reachability game is determined.

Definition 3. An MPG with limited observation is forcibly terminating if in the corresponding reachability
game Γ either Adam has a winning strategy to reach states in T∀ or Eve has a winning strategy to reach
states in T∃.

It follows immediately from Theorem 4 that finite-memory strategies suffice for both players in forcibly
terminating games. Note that an upper bound on the memory required is the number of states in the
reachability game restricted to a winning strategy, and this is exponential in N , the bound obtained in
Lemma 15.

Theorem 5 (Finite-memory determinacy). One player always has a winning finite-memory observation-
based strategy in a forcibly terminating MPG.

We now consider the complexity of two natural decision problems associated with forcibly terminating
games: the problem of recognizing if an MPG is forcibly terminating and the problem of determining the
winner of a forcibly terminating game. Both results follow directly from the fact that we can accurately
simulate a Turing Machine with an MPG with limited observation.

Proposition 20. Let M be a Deterministic Turing Machine. Then there exists an MPG with limited
observation G, constructible in polynomial time, such that Eve wins the associated reachability game Γ if and
only if M halts in the accept state and Adam wins Γ if and only if M halts in the reject state.

We will in fact show how to simulate a (deterministic) four-counter machine (4CM). The standard reduc-
tion from Turing Machines to 4CMs, via finite state machines with two stacks (see e.g. [17]), is readily seen
to be constructible in polynomial time.
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Counter machines A counter machine (CM) M consists of a finite set of control states S, an initial state
sI ∈ S, a final accepting state sA ∈ S, a final rejecting state sR, a set C of integer-valued counters and a
finite set δM of instructions manipulating the counters. δM contains tuples (s, instr, c, s′) where s, s′ ∈ S
are source and target states respectively, the action instr ∈ {INC,DEC} applies to counter c ∈ C. It also
contains tuples of the form (s, 0CHK, c, s′, s0) where s′, s0 are two target states, one of which will be chosen
depending on the value of counter c at the moment the instruction is “executed”. Without loss of generality
we may assume M is deterministic in the sense that for every state s ∈ S there is exactly one instruction
of the form (s, 0CHK, ·, ·, ·) in δM or one of the form (s, ·, ·, ·). We also assume that DEC instructions are
always preceded by 0CHK instructions so that counter values never go below 0.

A configuration of M is a pair (s, v) where s ∈ S and v : C → N is a valuation of the counters. A valid
run of M is a finite sequence (s0, v0)δ0(s1, v1)δ1 . . . δn−1(sn, vn) where δi ∈ δM is either (si, instri, ci, s

′
i) or

(si, instri, ci, s
′
i, s

0
i ) and (si, vi) are configurations of M such that s0 = sI , v0(c) = 0 for all c ∈ C, and for

all 0 ≤ i < n we have that:
• vi+1(c) = vi(c) for c ∈ C \ {ci};
• if instri = INC then vi+1(ci) = vi(ci) + 1 and si+1 = s′i;
• if instri = DEC then vi+1(ci) = vi(ci)− 1 and si+1 = s′i;
• if instri = 0CHK then vi+1(ci) = vi(ci) and if vi(ci) = 0 we have si+1 = s0i , otherwise si+1 = s′i.

The run is accepting if sn = sA and it is rejecting if sn = sR.

Proof of Proposition 20. Given a 4CM M = (S, sI , sA, sR, C, δM ), we now show how to construct an MPG
with limited observation G in which Eve wins the associated reachability game Γ if and only if M has an
accepting run, and Adam wins Γ if and only if M has a rejecting run. Plays in G correspond to executions
of M . As we will see, the tricky part is to make sure that zero-check instructions are faithfully simulated
by one of the players. Initially, both players will be allowed to declare how many instructions the machine
needs to execute in order to reach an accepting or rejecting state. Either player can bail out of this initial
“pumping phase” and become the Simulator. The Simulator is then responsible for the faithful simulation
of M and the opponent will be monitoring the simulation and punish him if the simulation is not executed
correctly. Let us now go into the details.

Control structure The control structure of the machineM is encoded in the observations of our game. To
be precise, to each state of M , there will correspond at most three observations in the game. We require two
copies of each such observation since, in order to punish Adam or Eve (whoever plays the role of Simulator),
existential and universal gadgets have to be set up in a different manner. For technical reasons that will
be made clear below, we also need two additional observations. Formally, the observation set in our game
contain observations {b+, b0, b−}, {a+, a−}, and {qI}, which do not correspond to instructions from the 4CM
but they are used in gadgets that will make sure that zero tests are faithfully executed.

Counter values The values of counters will be encoded using the weights of transitions that reach desig-
nated states. We will associate to each observation (so to each state in the 4CM) two states for each counter:
c+i and c−i , for i ∈ {1, 2, 3, 4}. Intuitively, an abstract path, corresponding to the simulation of a run of the
machine, will encode the value of counter i, at each step, as the weight of the shortest suffix from the initial
pumping gadget to c+i .

Start of the construction The mean-payoff game with limited observation G = (Q, qI ,Σ,∆, w,Obs)
starts in observation {qI}. For now, we will describe the transitions of G on symbols Σ′ ⊂ Σ which allow Eve
to “declare” the value of a counter as being zero or non-zero, as well as “bailing” from certain gadgets in the
game. More formally, let Σ′ := {z, z, bail}. The transition relation ∆ contains σ-transitions (for all σ ∈ Σ′)
from qI to b+, b0, b−. This observation represents the pumping phase of the simulation. From here each player
will be allowed to declare how many steps they require to reach a halting state that will accept or reject.
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c+i c−i α+ α− s∃I

b0 b− b+

c+i c−i α+ α− s∀I

Σ \ {bail}, 0 Σ \ {bail},−1 Σ \ {bail}, 1

Σ \ {bail}, 0 Σ \ {bail}, 0 Σ \ {bail}, 0 Σ \ {bail}, 0

bail, 0 bail, 0 bail, 0 bail, 0

Figure 3: Initial pumping gadget for the 4CM simulation

If Adam bails, we go to the initial instruction of M on the universal side of the construction (s∀I ), if Eve
does so then we go to the analogue in the existential side (s∃I ). Σ′ contains a symbol bail which represents
Eve choosing to leave the gadget and try simulating an accepting run of M , that is ∆ ∋ (b+, bail, (s∃I , α

−)),
(b−, bail, (s∃I , α

+)), and (b0, bail, (s∃I , c)) for c ∈ {c+i , c
−
i | i = 1, . . . , 4}. For all other actions in Σ′, self-

loops are added on the states b+, b0, b− with weights +1, 0,−1 respectively. Meanwhile, Adam is able to exit
the gadget at any moment—via non-deterministic transitions (b+, σ, (s∀I , α

−)), (b−, σ, (s∀I , α
+)), (b0, σ, (s∀I , c))

where c ∈ {c+i , c
−
i } for all i and σ ∈ Σ′ \ {bail}—to the universal side of the construction, i.e. he will try

to simulate a rejecting run of the machine. Bailing transitions (transitions going to states (s∃I , ·) or (s∀I , ·))
have weight 0.

Note that after these initial transitions the (simulated) value of all the counters is 0. Indeed, this
corresponds to the beginning of a simulation of M starting from configuration (sI , v) where v(c) = 0 for all
c ∈ C.

Counter increments & decrements Let us now explain how Eve simulates increments of counter values
using this encoding (decrements are treated similarly). The gadget we explain below actually works the same
in both sides of the construction, i.e. the universal and existential gadgets for increments and decrements
are identical. For that, consider Figure 4, the upper part of the figure is related to the state s of M , while
the bottom part is related to the state s′ of M , and assume that (s, INC, ci, s

′) ∈ δM .
As can be seen in the figure, the observation related to the instruction s contains the states c+i , c

−
i . These

states are used for the encoding of the value of counter ci. The additional states α+, α− are used to encode
the number of steps in the simulation (again one positive ending in α+ and one negative encoding in α−).
Now, let us consider the transitions of the gadget. The increment of the counter ci from state s to state s′

is encoded using the weights on the transitions that go from the observation s to the observation s′. As you
can see, the weight on the edge between the copy of state c+i of observation s to the copy of this state in
observation s′ is equal to +1, while the weight on the edge between the copy of state c−i of observation s
to the copy of this state in observation s′ is equal to −1. As you can see from the figure, when going from
state s to state s′, we also increment the additional counter that keeps track of the number of steps in the
simulation of M . As the machine is deterministic there is no choice for Eve in observation s, since only an
increment can be executed, this is why, regardless of the action chosen from Σ′, the same transition is taken.

Existential zero checks Now, let us turn to the gadget of Figure 5, that is used to simulate zero-check
instructions. We first focus on the case in which it is the duty of Eve to reveal if the counter has value
zero or not, by forcibly choosing the next letter to play in {z, z} ⊂ Σ′. In the observation that corresponds
to the state s of M , Eve decides to declare that the counter ci is equal to zero (by issuing z) or not (by
issuing z), then Adam resolves non-determinism as follows. If Eve does not cheat then Adam should let the
simulation continue to either s0 or s′ depending on Eve’s choice (the figure only depicts the branching to s0,
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c+i c−i α+ α− s

c+i c−i α+ α− s′

Σ′, 1 Σ′,−1 Σ′, 1 Σ′,−1

Figure 4: Observation gadget for (s, INC, ci, s
′) in-

struction. For (s, q) ∈ Q only the q component is
shown.

c+i c−i α+ α− sqI

c+i c−i α+ α− s0

z, 0 z, 0 z, 1 z,−1
z,−1

z, 0

Figure 5: Existential observation gadget for
(s, 0CHK, ci, s

′, s0) instruction. Transitions to s′ ob-
servation not shown.

c+i c−i α+ α− s

c+i
. . . sz

c−i
. . . sz

qI

s0 s′

Σ′, 0
Σ′, 0

bail,−1

bail, 0

Σ′ \ {bail}, 0 Σ′ \ {bail}, 0

Figure 6: Universal observation gadget for (s, 0CHK, ci, s
′, s0) instruction. Transitions to s′, s0 observations

are weighted as with the existential observation gadget.

the branching to s′ is similar). Now if Eve has cheated, then Adam should have a way to retaliate: we allow
him to do so by branching to observation {qI} from state (s, c−i ) with weight 0 in case z has been issued and
the counter ci is not equal to zero and with weight −1 in case z has been issued and the counter ci is equal
to zero. It should be clear that in both cases Adam closes a bad abstract cycle.

Universal zero checks A similar trick is used for the gadget from Figure 6, where Adam is forced to
simulate a truthful zero check or lose Γ. Since Adam can control non-determinism and not the action chosen,
we have transitions going from (s, ·) to states in both (sz , ·) and (sz) with weight 0 and all actions in Σ′.
Eve is then allowed to branch back to qI as follows. If Adam does not cheat, then Eve will play any action
in Σ′ \ {bail} and transitions, with weights similar to those used in the the existential check gadget, will
take the play from (sz , ·) to (s0, ·) and from (sz, ·) to (s′, ·). Now if Adam has cheated by taking the play
to (sz , ·) when ci was not zero, then Eve—by playing bail—can go from (sz, c

+
i ) to the initial observation

with weight −1 and close a good abstract cycle. (Recall that a good abstract cycle is good for Eve: by
repeatedly closing good cycles, Eve can win the MPG. Thus, closing a good cycle is our way of punishing
Adam.) If Adam cheated by taking the play to (sz, ·) when ci was indeed zero, Eve can go (with the same
action) from (sz, c

−
i ) to the initial observation with weight 0 again and close a good abstract cycle. Indeed,

Adam can escape the zero-check gadget by choosing a non-proper successor. We will shortly explain why
this is not a viable option for him.
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Stopping Simulator It should be clear also from the gadgets, that the opponent of Simulator has no
incentive to interrupt the simulation if there is no cheat. Doing so is actually beneficial to Simulator, who
can get a function-action sequence which makes him win Γ.

Finally, ∆ also contains self-loops at all (sA, ·) with all Σ′ and with 0 weights and at all (sR, ·) with all
Σ′ and with −1 weights. Thus, if the play reaches the observation representing state sF or sR from M then
Simulator will be able to force function-action sequences which allow him to win Γ.

Making Adam play properly We will now explain the idea behind observation gadget {a+, a−}. Note
that Adam could break Eve’s simulation of an accepting run by declaring the value of functions from Γ,
which are actually our means of encoding the values of the counters, to be +∞ (or at least some subset of
the values of the functions). We describe how we obtain the final set of actions for the constructed game
and mention the required transitions from every observation in the game so that it is not in the interest of
Adam to do the latter.

Denote by (o, qi) the i-th state in observation o. Observe that in our construction we need at most 10
states per observation: two copies of every counter state and two additional step counters. The full action
set in the game is defined as follows Σ := Σ′ ∪ {qi | 0 ≤ i < 10}∪ {ex}. For every observation o in G we add
the transitions ((o, qi), qi, a

−), ((o, qj), qi, a
+) for all qi, qj in o where qi 6= qj . To finish, we add the self-loops

(a+, σ, a+) and (a−, σ, a−), with weights +1 and −1 respectively, as part of ∆ for all σ ∈ Σ. Clearly, Adam
cannot choose anything other than proper σ-successors in Γ or he gives Eve enough information for her to
win the game. Indeed, if the game is currently at observation o and Adam has chosen a non-proper successor,
then Eve knows some state qi ∈ o does not currently hold the token. Hence, she can play action qi and be
sure to reach the state a+ where she will win the game.

Bound on the length of the simulation All that remains is to show how we allow the opponent of
Simulator to stop the simulated run of M in case Simulator exhausts the number of instructions he initially
declared would be used to accept or reject. The ex action is used in transitions ((o, α+), ex, qI) ∈ ∆ for all
observation gadgets o in the universal side of the construction. This allows Eve to stop Adam (who is playing
Simulator) in case he tries to simulate more steps than he said were required for M to reject. (Indeed, Adam
may instead choose to move to another observation besides {qI} on ex, but then he reveals to Eve that some
state qi in the following observation cannot hold the token, and she will then play qi ∈ Σ to win from there.)
Similarly, in the existential part of the construction, we add a transition ((o, α−), σ, qI) for all observation
gadgets o and all σ ∈ Σ, which lets Adam stop Eve’s simulation if she tries to cheat in the same way.

Finally, to have the game be limited observation we let all missing σ-transitions on the existential (resp.
universal) side of the simulation go to a sink state in which Adam (Eve) wins.

Correctness Now, let us prove the correctness of the overall construction. Assume thatM has an accepting
or rejecting run. Then, Simulator, by simulating faithfully the run of M has an observation-based strategy
that allows him to force abstract paths which induce good or bad abstract cycles depending on who is
simulating. Clearly, in this case even if the opponent decides to interrupt the simulation M at a zero-check
gadget, he will only be helping Simulator.

If M has no accepting or rejecting run, then by simulating the machine faithfully, Simulator will be
generating cycles in the control state of the machine and such abstract paths are “mixed” because of concrete
paths between corresponding α−, α+ states. Cheating does not help him either since after the opponent
catches him cheating and restarts the simulation of the machine (by returning to the initial observation),
the corresponding path is losing for him.

It follows from Proposition 20 that determining if a given limited-observation MPG is forcibly terminating
is as hard as determining if a given 4CM halts (by accepting or rejecting). As the latter problem is known
to be undecidable, we obtain the following result.
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Theorem 6 (Class membership). Let G be an MPG with limited observation. Determining if G is forcibly
terminating is undecidable.

Although determining if Eve wins a forcibly terminating MPG is decidable, Proposition 20 implies the
problem is extremely hard. Let R denote the class of all decision problems solvable by a Turing machine.
We say a problem is R-complete under polynomial reductions if it is decidable and if any decidable problem
reduces to it in polynomial time.

Theorem 7 (Winner determination). Let G be a forcibly terminating MPG. Determining if Eve wins G is
R-complete under polynomial reductions.

Proof. For decidability, Lemma 15 implies that an alternating Turing Machine simulating a play on Γ will
terminate. Regarding hardness, we will argue that any decidable problem reduces to winner determination
of forcibly terminating MPGs via our 4CM simulation. Indeed, it is known that any given Turing machine
can be simulated by a 4CM of polynomial size with respect to the size of the original Turing machine. Also,
given a decidable problem, we know there exists a Turing machine which, given any instance of the problem,
always halts and outputs a positive or negative answer. We construct, from the Turing machine and a given
instance of the problem, the corresponding 4CM and, in turn, the corresponding limited-observation MPG
as in the proof of Proposition 20. Since the original Turing machine always halts, the game is guaranteed
to be forcibly terminating. Now, it should be clear that in the constructed game Eve wins if and only if the
4CM accepts if and only if the Turing machine accepts the instance. As both the construction of the CM
and the game are feasible in polynomial time, the result follows.

6.1 Modifications for Theorem 1

To prove Theorem 1 we reduce from the non-termination problem for 2CMs using a construction similar to
the one used in the proof of Proposition 20. Given a 2CM M , we construct a game G as in the proof of
Proposition 20, with the following adjustments:

• We only consider the universal side of the simulation, but allow both players to exit the initial pumping
phase into it;

• The observation corresponding to the accept state of M is a sink state winning for Adam;
• The α− states are replaced with β states which have transitions to other β states of weight 0 except

in one case specified below;
• The pumping gadget has self loops of weights 0, 0,−1 and the transition from b+ to β has weight −1

if Eve exits and weight 0 if Adam exits;
• The ex transition also goes from β states to qI .
Suppose the counter machine halts in N steps. The observation-based winning strategy for Adam is as

follows. Exit the pumping gadget after N steps and faithfully simulate the counter machine. Suppose Eve
can beat this strategy. If she allows a faithful simulation for N steps then Adam reaches a sink state and
wins, so Eve must play ex within N steps of the simulation. Let us consider each cycle of at most 2N steps.
If she waits for Adam to exit the pumping gadget then the number of steps in the simulation is less than
the number of steps in the pumping gadget, so a negative cycle is closed. On the other hand if she exits
the pumping gadget before N steps then the cycle through the β states has negative weight. In both cases,
a negative cycle is closed in at most 2N steps, so the limit average is bounded above by − 1

2N . Thus this
strategy is winning for Adam.

Now suppose the counter machine does not halt. The (infinite memory) observation-based winning
strategy for Eve is as follows. For increasing n, exit the pumping gadget after n steps and faithfully simulate
(i.e. call any, and only, cheats of Adam) the counter machine for n steps. Then play ex and increase n.
Cheating in the simulation does not benefit Adam, so we can assume Adam faithfully simulates the counter
machine. Likewise, if Eve always waits until the number of steps in the simulation exceeds the number of
steps in the pumping gadget, then there is no benefit for Adam to exit the pumping gadget. However if the
play proceeds as Eve intends then the weight of the path through the α+ states is non-negative and although
the weight through the β states is negative, the limit average is 0. Thus the strategy is winning for Eve.
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7 Forcibly First Abstract Cycle Games

In this section and the next we consider restrictions of forcibly terminating games in order to find sub-classes
with more efficient algorithmic bounds. The negative algorithmic results from the previous section largely
arise from the fact that the abstract cycles required to determine the winner are not necessarily simple cycles.
Our first restriction of forcibly terminating games is the restriction of the abstract cycle-forming game to
simple cycles.

More precisely, letG = (Q, qI ,Σ,∆, w,Obs) be an MPG with limited observation and Γ = (Π,Σ, fI , δ, T∃, T∀)
be the associated reachability game. Define Π′ ⊆ Π as the set of all sequences f0σ0f1σ1 . . . fn ∈ Π such that
supp(fi) 6= supp(fj) for all 0 ≤ i < j < n and denote by Γ′ the reachability game (Π′,Σ, fI , δ

′, T ′
∃ , T

′
∀) where

δ′ is δ restricted to Π′, T ′
∃ = T∃ ∩ Π′, and T ′

∀ = T∀ ∩Π′.

Definition 4. An MPG with limited observation is forcibly first abstract cycle (or forcibly FAC) if in the
associated reachability game Γ′ either Adam has a winning strategy to reach states in T ′

∀ or Eve has a
winning strategy to reach states in T ′

∃ .

One immediate consequence of the restriction to simple abstract cycles is that the bound in Lemma 15
is at most |Obs|. In particular an alternating Turing Machine can, in linear time, simulate a play of the
reachability game and decide which player, if any, has a winning strategy. Hence the problems of deciding
if a given MPG with partial observation is forcibly FAC and deciding the winner of a forcibly FAC game
are both solvable in Pspace. The next results show that there is a matching lower bound for both these
problems.

Theorem 8 (Class membership). Let G be an MPG with limited observation. Determining if G is forcibly
FAC is Pspace-complete.

Proof. For Pspace membership we observe that a linear bounded alternating Turing Machine can decide
whether one of the players can force to reach T ′

∃ or T ′
∀ in Γ′. To show hardness we use a reduction from

the True Quantified Boolean Formula (TQBF) problem. Given a fully quantified Boolean formula Ψ =
∃x0∀x1 . . .Qxn−1(Φ), where Q ∈ {∃, ∀} and Φ is a Boolean formula expressed in conjunctive normal form
(CNF), the TQBF problem asks whether Ψ is true or false. The TQBF problem is known to be Pspace-
complete [22].

This problem is often rephrased as a game between Adam and Eve. In this game the two players alternate
choosing values for each xi from Φ. Eve wins if the resulting evaluation of Φ is true while Adam wins if it
is false. We simulate such a game with the use of “diamond” gadgets that allow Eve to choose a value for
existentially quantified variables by letting her choose the next observation. Similarly, the same gadget—
except for the labels on the transitions, which are completely non-deterministic in the following case—allow
Adam to choose values for variables that are universally quantified.

We construct a game GΨ = (Q, qI ,Σ,∆, w,Obs) in which there are no concrete negative cycles, hence
it follows from Lemma 13 that there are no bad cycles. The game will thus be forcibly FAC if and only
if Eve is able to force good cycles. If Eve is unable to prove the QBF is true, Adam will be able to avoid
such plays. For this purpose, the “diamond” gadgets employed have two states per observation. This will
allow two disjoint concrete paths to go from the initial state qI through the whole arena and form a simple
abstract cycle that is either good or not good depending on where the cycle started from.

Concretely, let x1 be a universally quantified variable from Ψ. We add a gadget to GΨ consisting of
eight states grouped into four observations: {b−0 , b

0
0}, {x1, z1}, {x1, z1}, {b

−
1 , b

0
1}. We also add the following

transitions:
• from b−0 to x1 and x1, b

0
0 to z1 and z1, with all Σ and weight 0;

• from x1 and x1 to b−1 , z1 and z1 to b01, with all Σ and the first two with weight −1 while the last two
have weight 0.

Figure 7 shows the universal “diamond” gadget just described. The observation {x1, z1} corresponds to the
variable being given a false valuation, whereas the {x1, z1} observation models a true valuation having been
picked. Observe that the choice of the next observation from {b−0 , b

0
0} is completely non-deterministic, i.e.

Adam chooses the valuation for this variable.

24



qI

x0 z0 z0x0

b−0 b00

¬x0, 0 ¬x0, 0 x0, 0 x0, 0

Σ,−1 Σ, 0
Σ,−1

Σ, 0

z1x1 x1 z1

b−1 b01

Σ, 0 Σ, 0 Σ, 0 Σ, 0

Σ,−1
Σ, 0 Σ,−1 Σ, 0

...

b−n−1 b0n−1

c01c1 c2 c02
. . .

Σ, 0Σ, 0
Σ, 0

Σ, 0

x0, n

x0, 0

¬x1, n − 1

¬x1, 0

Figure 7: Corresponding game for QBF ∃x0∀x1 . . . (¬x0) ∧ (x1) . . .

For existentially quantified variables, the first set of transitions from the gadget is slightly different. Let
xi be an existentially quantified variable in Ψ, then the upper part of the gadget includes transitions from
b−i to xi and from b0i to zi with action symbol ¬xi and weight 0; as well as transitions from b−i to xi and
from b0i to zi with action symbol xi and weight 0.

A play in GΨ traverses gadgets for all the variables from the QBF and eventually gets to the observation
{b−n−1, b

0
n−1} where the assignment of values for every variable has been simulated. At this point we want

to check whether the valuation of the variables makes Φ true. We do so by allowing Adam to choose the
next observation (corresponding to one of the clauses from the CNF formula Φ) and letting Eve choose a
variable from the clause (which might be negated). Let xi (resp. xi) be the variable chosen by Eve, in GΨ

the next observation will correspond to closing a good abstract cycle if and only if the chosen valuation of
the variables for Ψ assigns to xi a true (false) value. For this part of the construction we have 2m states
grouped in m observations, where m is the number of clauses in the formula. The lower part of figure 7
shows the clause observations we just described.

Denote by {ci, c
0
i } the observation associated to clause ci. The game has transitions from ci to xi (or xi)

and from c0i to zi (zi) with action symbol xi (¬xi) and weight n− i for the first, 0 for the latter, if and only
if the clause ci includes the (negated) variable xi.

3

After Eve and Adam have chosen values for all variables (and the game reaches observation {b−n−1, b
0
n−1})

3All missing transitions for GΨ to be complete go to a dummy state with a negative and 0-valued non-deterministic transi-
tions.
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there are two concrete paths corresponding with the current play: one with payoff 0 and one with payoff
−n. When Adam has chosen a clause and Eve chooses a variable xi from the clause, the next observation is
reached with both concrete paths having payoffs 0 and −i. Observe, however, that if we consider the suffix of
said concrete paths starting from {xi, zi} or {xi, zi}—depending on which valuation the players chose—both
payoffs are 0. Indeed, if the observation was previously visited, i.e. Eve has proven the clause to be true,
then a good cycle is closed. On the other hand, if the observation has not been visited previously, then Eve
has no choice but to keep playing and the play thus reaches observation {b−i , b

0
i }. We note that traversing

the lower part of our “diamond” gadgets results in a mixed payoff of −1 and 0 and since {b−i , b
0
i } has already

been visited, a cycle is closed that is not good. To summarize, either a good cycle is closed when moving
from {b−n−1, b

0
n−1} to {xi, zi} (or, respectively, {xi, zi}) if the latter observation had been visited before; or

a bad cycle is closed on the next step when moving to {b−i , b
0
i }.

Therefore, if Ψ is true then Eve has a strategy to make the first cycle closed be a good one, so GΨ is
forcibly FAC. Conversely, if Ψ is false then Adam has a strategy to make the first cycle formed be not good
(mixed, in fact). Hence GΨ is not forcibly FAC.

We can slightly modify the above construction in such a way that if the game does not finish when the
play returns to a variable then Adam can close a bad cycle (instead of just being able to force a mixed cycle).
This results in a forcibly FAC game that Eve wins if and only if the formula is satisfied. Hence,

Theorem 9 (Winner determination). Let G be a forcibly FAC MPG. Determining if Eve wins G is Pspace-
complete.

Proof. We describe the modifications required to the construction used in the proof of Theorem 8.
First, we augment every observation with 2n states corresponding to variables from Φ and their negation

(say, yi and yi for 0 ≤ i < n).
We then add transitions from every new state yi (yi) to its counterpart in the next observation so as

to form 2n new disjoint cycles going from qI through the whole construction. (Note that, up to this point
Plays(GΨ) remains unchanged. That is, the set of abstract paths in the game constructed for the proof of
Theorem 8 is the same as the set of abstract paths in the present game.) These new transitions all have
weight zero except for a few exceptions:

• the transition corresponding to the lower part of the gadget which represents the variable itself, i.e. the
transition from augmented observation {xi, zi, . . . } to {b−i , b

0
i , . . . } (resp. {xi, zi, . . . } to {b−i , b

0
i , . . . })

has weight of +1 for the yi-transition (yi-transition);
• outgoing transitions from clause observations have weight −1 on the yi-transition going to the xi-

gadget—i.e. if we let yj be one of the new states in the clause observation and y′j the corresponding
state in the xi-gadget, then w(yj , σ, y

′
j) = −1; and

• at every {xi, zi, . . . } and {xi, zi, . . . } augmented observation, Adam is allowed to resolve non-determinism
by going back to qI—i.e. in these observations we add a transition from yi and yi, respectively, back
to the initial state.

Let us argue that the game is forcibly FAC and that the QBF instance is true if and only if Eve wins the
reachability game associated with the constructed MPG. When the play reaches {xi, zi, . . . } (or {xi, zi, . . . })
after Eve and Adam choose values for all the variables and after she has chosen a variable from a clause
given by Adam, then the concrete path ending at yi (resp. yi) has weight 0 if the observation was previously
visited, and weight −1 if it was not. The concrete paths ending at all the other new states have weight
0 or +1 depending on the choices made by the players. Concrete paths ending at xi and zi states are as
before (mixed if the observation has not been witnessed, and good otherwise). Thus if the observation was
previously visited, then the cycle closed is good as before. If the observation was not previously visited,
then Adam can now choose to play to qI from yi (yi) and close a bad cycle (of weight −1). Note that if
Adam chooses to play to qI before the clause gadgets are reached then he will only be closing good cycles.
Following the same argument as before, if Ψ is true then Eve has a winning strategy and if Ψ is false then
Adam has a winning strategy. So GΨ is forcibly FAC and Eve wins if and only if Ψ is true.
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It also follows from the |Obs| upper bound on plays in Γ′ that there is an exponential upper bound on the
memory required for a winning strategy for either player. Furthermore, we can show this bound is tight—the
games constructed in the proof of Theorem 9 can be used to show that there are forcibly FAC games that
require exponential memory for winning strategies.

Theorem 10 (Exponential memory determinacy). One player always has a winning observation-based strat-
egy with exponential memory in a forcibly FAC MPG. Further, for any n ∈ N there exists a forcibly FAC
MPG, of size polynomial in n, such that any winning observation-based strategy has memory at least 2n.

Proof. For the upper bound we observe that plays in Γ′ are bounded in length by |Obs|. It follows that the
strategy constructed in Theorem 4 has memory at most |Σ||Obs|.

For the lower bound, consider the forcibly FAC game Gn constructed in the proof of Theorem 9 for the
formula

ϕn = ∀x1∀x2 . . . ∀xn∃y1 . . .∃yn.

n
∧

i=1

(xi ∨ ¬yi) ∧ (¬xi ∨ yi).

As ϕn is satisfied, Eve wins Gn. Now consider any observation-based strategy for Eve with memory < 2n.
As there are 2n possible assignments for the values of x1, . . . xn it follows there are at least two different
assignments of values such that Eve makes the same choices in the game. Suppose these two assignments
differ at xi and assume w.l.o.g. that Eve’s choice is at (n+ i)-th gadget to play to yi. Then Adam can win
the game by choosing values for the universal variables that correspond to the assignment which sets xi to
false, and then playing to the clause (xi,∨¬yi). Thus any winning observation-based strategy for Eve must
have size at least 2n.

In a similar way the game defined by the formula ¬ϕn is won by Adam, but any winning observation-based
strategy must have size at least 2n.

8 First Abstract Cycle Games

We now consider a structural restriction that guarantees Γ′ is determined. Recall that to any limited-
observation MPG G = (Q, qI ,Σ,∆, w,Obs) we associate a reachability game Γ = (Π,Σ, fI , δ, T∃, T∀) and
that Γ′ is the restriction of Γ to simple function-action sequences (with respect to the supports). That is, Π′

is the set of all sequences f0σ0f1σ1 . . . fn ∈ Π such that supp(fi) 6= supp(fj) for all 0 ≤ i < j < n and the
other components of Γ′ are the corresponding restrictions of Γ to Π′.

Definition 5. An MPG with limited observation is a first abstract cycle game (FAC) if in the associated
reachability game Γ′ all leaves are in T ′

∀ ∪ T ′
∃.

Intuitively, in an FAC game G all simple abstract cycles (that can be formed) are either good or bad.
Since Γ′ is a full-observation finite reachability game, G is determined. Thus, by Theorem 4, we get that in
every FAC one of the two players has a winning finite-memory observation-based strategy. However, we can
show an even stronger result holds: one of them has a winning positional observation-based strategy.

Theorem 11 (Positional determinacy). One player always has a positional winning observation-based strat-
egy in an FAC MPG.

Proof. It follows then from Corollary 14 that any cyclic permutation of a good cycle is also good and any
cyclic permutation of a bad cycle is also bad. Together with Lemma 13, this implies the abstract cycle-forming
games associated with FAC games can be seen to satisfy the following three assumptions: (1) A play stops as
soon as an abstract cycle is formed; (2) The winning condition and its complement are preserved under cyclic
permutations; and (3) The winning condition and its complement are preserved under interleavings. These
assumptions were shown in [1] to be sufficient for winning positional strategies to exist in any game.4

4These conditions supersede those of [4] which were shown in [1] to be insufficient for positional strategies.
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As we can check in polynomial time if a positional observation-based strategy is winning in an FAC MPG,
we immediately have:

Theorem 12 (Winner determination). Let G be an FAC MPG. Determining if Eve wins G is in NP∩coNP.

A path in Γ′ to a leaf not in T ′
∀ ∪ T ′

∃ provides a short certificate to show that an MPG with limited
observation is not FAC. Thus deciding if an MPG is FAC is in coNP. A matching lower bound can be
obtained using a reduction from the complement of the Hamiltonian cycle problem.

Theorem 13 (Class membership). Let G be an MPG with limited observation. Determining if G is FAC is
coNP-complete.

Proof. For coNP membership, one can guess a large enough simple abstract cycle ψ and (in polynomial
time with respect to Q) check that it is neither good nor bad. To show coNP-hardness we use a reduction
from the complement of the Hamiltonian Cycle problem.

Given graph G = (V,E) where V is the set of vertices and E ⊆ V × V the set of edges. We construct a
directed weighted graph with limited observation G = (Q, qI ,Σ,∆, w,Obs) where:

• Q = V ∪ {qI , q+, q−};
• Obs = {{v} | v ∈ V } ∪ {{q−, q+}, {qI}};
• Σ = V ∪ {τ};
• ∆ contains transitions (u, v, v) such that (u, v) ∈ E and self-loops (u, v′, u) for all (u, v′) /∈ E, transitions

(with all σ) from qI to both q+ and q− and from these last two to all states v ∈ V , as well as τ -transitions
from every state v ∈ V to q+ and q−;

• w is such that all outgoing transitions from q+ and q− have weight 1− |V |, (u, v, v) transitions where
(u, v) ∈ E have weight +1, τ -transitions to q− from states v ∈ V have weight −1 and all other
transitions have weight 0.

Notice that the only non-deterministic transitions in G are those incident on and outgoing from the states q+,
q−. Clearly, the only way for a simple abstract cycle to be not good and not bad (thus making G not FAC)
is if there is a path from {q−, q+} ∈ Obs that traverses |V | unique observations and ends with a τ -transition
back at {q−, q+}. Such a path corresponds to a Hamiltonian cycle in G. If there is no Hamiltonian cycle in
G then for any play π in G, a bad cycle will be formed (hence, G is FAC).

9 MPGs with Partial Observation

In the introduction it was mentioned that an MPG with partial observation can be transformed into an
MPG with limited observation. This translation allows us to extend the notions of FAC and forcibly FAC
games to the larger class of MPGs with partial observation. In this section we will investigate the resulting
algorithmic effect of this translation on the decision problems we have been considering.

The idea behind the translation is to take subsets of the observations and restrict transitions to those
that satisfy the limited-observation requirements. More formally, given an MPG with partial observation
G = (Q,Σ,∆, qI , w,Obs) we construct an MPG with limited observation G′ = (Q′,Σ,∆′, q′I , w

′,Obs′) where:
• Q′ = {(q,K) ∈ Q× 2Q | q ∈ K and K ⊆ o ∈ Obs},
• q′I = (qI , {qI}),
• Obs′ =

{

{(q,K) | q ∈ K} | K ⊆ o for some o ∈ Obs
}

,
• ∆′ contains the transitions ((q,K), σ, (q′,K ′)) such that (q, σ, q′) ∈ ∆ and K ′ = postσ(K)∩ o for some
o ∈ Obs, and

• w′((q,K), σ, (q′,K ′)) = w(q, σ, q′) for all ((q,K), σ, (q′,K ′)) ∈ ∆′.
It is folklore to show that this knowledge-based subset construction (also known as a belief construction)
preserves winning strategies for Eve. The terms belief and knowledge are used to denote a state from any
variation of the classic “Reif construction” [21] to turn a game with partial observation into a game with
full observation. Other names for similar constructions include “knowledge-based subset construction” (see
e.g. [9]). In this case the resulting game is not one with full observation but one with limited observation.
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Theorem 14 (Equivalence). Let G be an MPG with partial observation and G′ be the corresponding MPG
with limited observation as constructed above. Eve has a winning observation-based strategy in G if and only
if she has a winning observation-based strategy in G′.

The result above is shown by proving that winning observation-based strategies for Eve transfer between
G and G′. It is worth noting that an observation-based strategy for Eve in G can directly be used by her in
G′. Conversely, for her to use a strategy from G′ in G she must keep in memory the knowledge-based subset
construction herself. Hence,

Theorem 15 (Memory requirements). Let G be a partial-observation MPG and G′ be the corresponding
limited-observation MPG. If a player has a finite-memory observation-based winning strategy in G′, then
(s)he has a finite-memory observation-based winning strategy in G′ which requires exponentially more memory
(on the size of G).

We say an MPG with partial observation is (forcibly) first belief cycle, or FBC, if the corresponding MPG
with limited observation is (forcibly) FAC.

10 FBC and Forcibly FBC MPGs

Our first observation is that FBC MPGs generalize the class of visible weight games studied in [9]. An MPG
with partial observation is considered a visible weights game if its weight function satisfies the condition that
all σ-transitions between any pair of observations have the same weight. We base some of our results for
FBC and forcibly FBC games on lower bounds established for problems on visible weights games.

Lemma 21. Let G be a visible weights MPG with partial observation. Then G is FBC.

We now turn to the decision problems we have been investigating throughout the paper. Given the
exponential blow-up in the construction of the game of limited observation, it is not surprising that there is
a corresponding exponential increase in the complexity of the class membership problem.

Theorem 16 (Class membership). Let G be an MPG with partial observation. Determining if G is FBC is
coNEXPtime-complete and determining if G is forcibly FBC is in EXPspace and NEXPtime-hard.

Membership of the relevant classes is straightforward, they follow directly from the upper bounds for
MPGs with limited observation and the (at worst) exponential blow-up in the translation from games of
partial observation to games of limited observation. For hardness, we prove first the result for FBC games
and comment on the changes necessary for the construction to yield the result for forcibly FBC games.

Lemma 22. Let G be an MPG with partial observation. Determining if G is FBC is coNEXPtime-hard.

Proof. We reduce from the complement of the succinct Hamilton cycle problem: Given a Boolean circuit C
with 2N inputs, does the graph on 2N nodes with edge relation encoded by C have a Hamiltonian cycle?
This problem is known to be NEXPtime-complete [19].

The idea is to simulate a traversal of the succinct graph in our MPG: if we make 2N valid steps without
revisiting a vertex of the succinct graph then that guarantees a Hamiltonian cycle. To do this, we start
with a transition of weight −2N and add 1 to all paths every time we make a valid transition. We include
a pair of transitions back to the initial state with weights 0 and −1 and ensure this is the only transition
that can be taken that results in paths of different weight. The resulting game then has a mixed lasso if
and only if we can make 2N valid transitions. If we encode the succinct graph vertex in the knowledge set
then the definition of an FAC game will give us an automatic check if we revisit a vertex. In fact, we store
several pieces of information in the knowledge sets of the observations: the current (succinct) graph vertex,
the potential successor, and the evaluation of the edge-transition circuit up to a point.
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Figure 8: This is the partial-observation gadget to simulate x ∨¬y = z. Inside the gate gadget we also have
on all states: self-loops with weight +1 on χ, and 0 on τ±; 0-weight transitions to a sink on external actions.
(Zero-weights have been omitted for clarity.)

Simulating gates The crucial technical trick used in our reduction is the construction of an observation
gadget which simulates a logical gate. Figure 8 depicts the gadget corresponding to z = x ∨¬y. We assume
we have a knowledge set K that is a subset of the states from the leftmost observation. Further, we assume
K induces a valid valuation of x and y, i.e. x ∈ K if and only if x 6∈ K and similarly for y. Denote by
K |= x ∨ ¬y the fact that the valuation of x and y makes the formula true. We also assume all concrete
paths arriving at states in K have the same weight. Now, by playing σ, Eve reaches the x ∨ ¬y observation
where she can play internal actions τ−, τ+, χ. We claim observation x ∨ ¬y allows concrete plays to reach
the z observation with weight 0 without creating a non-mixed belief lasso if and only if K |= x ∨ ¬y. The
main idea is that Eve declares the truth value of x using τ+ if it is true and τ− otherwise, she then plays χ
to cancel the −1 weight seen upon entering the observation. For example, if K = {x, y}, Eve plays σ and
enters the gate observation with knowledge set {v1, v0}. Then, Eve plays τ+ and one concrete path moves
from v1 to v2, the other from v0 to f ; Eve then plays χ and concrete paths reach v3 and f , both with weight
0; finally, she plays σ, and a concrete play reaches a sink or a concrete play reaches z (as expected since
K |= x ∨ ¬y). Crucially, the sequence of internal transitions on τ±χ induces a sequence of three distinct
knowledge sets if and only if she declared the correct value of x. Otherwise, a lasso is formed.

We now describe the construction in detail.

Simplifying assumptions Let us assume inputs of the circuit C are labelled x1, . . . x2N and that it has
k gates G1, . . . , Gk numbered in an order that respects the circuit graph, so Gj has inputs from {xi,¬xi :
1 ≤ i < 2N + j} where, for convenience, x2N+i indicates the output of gate Gi. We may assume each gate
has two inputs and (as we are allowing negated inputs) we may assume we only have AND and OR gates.

Construction description The game consists of two external actions primarily for transitions between
observations: σ (solid lines) and σ′ (dotted lines); and a number of internal actions denoted with τ and χ for
transitions primarily within observations (not shown). The numbers in parentheses indicate the maximum
weight that can be added to the total with internal transitions, and the edge weights indicate the weight of
all transitions between observations.

Our game proceeds in several stages:
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Figure 9: Overall structure of the game for succinct Hamiltonian cycle

1. The transition from S to O1 sets the initial (succinct) vertex (stored in a subset of the states of O1)
and initializes the vertex counter to −2N .

2. Internal transitions in G0 select the next vertex, the transition from O1 to G0 initializes this procedure.
3. For i > 0, internal transitions in Gi evaluate gate i, incoming transitions initialize this by passing on

the previous evaluations (including the current and next vertices).
4. Internal transitions in Chk test if the circuit evaluates to 1.
5. The next succinct vertex (chosen in G0) is passed to O2, where there is an implicit check that this

vertex has not been visited before, and the counter is incremented.
6. The play can return to S, generating a mixed lasso if and only if the vertex counter is 0, i.e. 2N

vertices have been correctly visited, or return to O1 with a new current succinct vertex.
The weights on the incoming transitions to an observation are designed to impose a penalty that can

only be nullified if the correct sequence of internal transitions is taken. We observe that if there is a penalty
that is not nullified then the game can never enter a mixed lasso (as the vertex counter will still be negative
when a vertex is necessarily revisited). The overall (i.e. observation-level) structure of the game is shown in
Figure 9.

We now describe the structure of the observations.

Observation O1 It contains 2N states: {xi, xi | 1 ≤ i ≤ N}. For convenience we will use the same labels
across different observations, using observation membership to distinguish them. There are σ-transitions
from S to {xi | 1 ≤ i ≤ N} with weight −2N .

Observation O2 It contains 2N + 1 states: {xi, xi | 1 ≤ i ≤ N} ∪ {⊥}. There are σ-transitions from each
state in O2 other than ⊥ to its corresponding state in O1 with weight 0. There is a σ′-transition from each
state in O2 other than ⊥ to S with weight 0, and a σ′-transition from ⊥ to S with weight −1.

Observation G0 It contains 5N states: {xi, xi | 1 ≤ i ≤ 2N}∪{yi | N < i ≤ 2N}. There is a σ-transition
from each state in O1 to its corresponding state in G0 of weight −N and in addition, σ-transitions from
every state in O1 to {yi | N < i ≤ 2N} also of weight −N . For N < j ≤ 2N there is a τ+j transition of

weight 1 from yj to xj and a τ−j transition of weight 1 from yj to xj . For all states in G0 other than yj there

is a τ+j and τ−j loop of weight 1. Figure 10 shows the construction.

Observations Gj (for j > 0) Observation gadgets for the logical gates follow the idea laid out earlier.
The observation corresponding to gate j contains 4N+2j+8 states: {xi, xi | 1 ≤ i ≤ 2N+j}∪{vm, vm | 0 ≤
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m ≤ 3}. Recall gate j has inputs from {xi, xi | 1 ≤ i < 2N + j}. Suppose these inputs are yl ∈ {xl, xl} and
yr ∈ {xr, xr}, and for convenience let yl and yr denote the other member of the pair (i.e. the complement of
the input). We have a σ-transition of weight −1 from {xi, xi | 1 ≤ i < 2N + j} ⊆ Gj−1 to the corresponding
vertex in Gj . In addition we have σ-transitions of weight −1 from yl, yl, yr, yr ∈ Gj−1 to v0, v0, v1, v1 ∈ Gj

respectively. We have the following internal transitions:
• τ+ (weight 0): v1 to v2, v1 to v3, v0 to x2N+j , v0 to x2N+j if gate j is an AND gate, v0 to x2N+j if it

is an OR gate,
• τ− (weight 0): v1 to v3, v1 to v2, v0 to x2N+j , v0 to x2N+j if gate j is an AND gate, v0 to x2N+j if it

is an OR gate,
• χ (weight 1): v2 to v3, v2 to v3.
For all states in Gj we have τ±, χ-loops with the same weights as above (i.e. χ loops have weight 1, τ±

loops have weight 0). Bit states (i.e. xN+1, x2N ) transition to the next observation on external actions.
Figure 11 shows an example of the construction of Gj for the gate xl ∧ ¬xr .

Observation Chk This last observation gadget contains 4N + 2 states: {xi, xi | 1 ≤ i ≤ 2N} ∪ {y, z}.
There is a σ-transition of weight −1 from {xi, xi | 1 ≤ i ≤ 2N} ⊆ Gk to their corresponding states in Chk,
and a σ-transition of weight −1 from x2N+k ∈ Gk to y. There is a χ-transition of weight 1 from y to z and
for all other states in Chk there is a χ-loop of weight 1. There is a σ-transition of weight 1 from all states
in Chk to ⊥ ∈ O2 and for N < i ≤ 2N there is a σ-transition of weight 1 from xi ∈ Chk to xi−N ∈ O2 and
from xi ∈ Chk to xi−N ∈ O2.

Correctness of the construction We present a similar argument to that given for the proof of Theorem 8.
Recall the game’s initial transition is weighted −2N . Further, note that internal transitions in all observations
can only lead to reaching a good or bad sink or reaching the next observation gadget (while nullifying the
incoming −1 weight). Hence, completing 2N full simulations of the circuit is the only way of not forming a
bad cycle and reaching observation O2 with all concrete paths having weight 0. From there, a mixed cycle
can be formed by going back to S. The latter thus holds if and only if the graph encoded succinctly by the
given circuit has a Hamiltonian cycle.
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Figure 11: Gadget for gate xl ∧ ¬xr (self-loops not shown)

Based on the construction used to prove the above result, we will now show hardness for forcibly FBC
class membership.

Lemma 23. Let G be an MPG with partial observation. Determining if G is forcibly FBC is NEXPtime-
hard.

Proof. Suppose we make the following adjustments to the construction given in the proof of Lemma 22:
• Change the weights of incoming transitions to Gi (i > 0) to −5 and the weights of all internal τ -

transitions to 1,
• Change the weight of the σ′-transition from ⊥ ∈ O2 to S to 0,
• Add a new state ⊥ to all observations other than S (and O2),
• Add a σ-transition of weight 2N from S to ⊥ ∈ O1, and
• Whenever there is a transition of weight w from xi ∈ o to xj ∈ o′ (o, o′ and i, j possibly the same) add

a transition of weight −w from ⊥ ∈ o to ⊥ ∈ o′.
Then the only possible non-mixed lasso in the resulting graph5 is one that would correspond to a successful
traversal of a Hamiltonian cycle. Eve can force the play to this cycle if and only if the succinct graph has a
Hamiltonian cycle.

Somewhat surprisingly, for the winner determination problem we have an EXPtimealgorithm matching
the EXPtime-hardness lower bound from games with visible weights. This is in contrast to the class
membership problem in which an exponential increase in complexity occurs when moving from limited to
partial observation.

Theorem 17 (Winner determination). Let G be a forcibly FBC MPG. Determining if Eve wins G is
EXPtime-complete.

Proof. The lower bound follows from the fact that forcibly FBC games are a generalization of visible weights
games (see Lemma 21), shown to be EXPtime-complete in [9]. For the upper bound, rather than working
on the reachability game Γ′ associated to G′, which is doubly-exponential in the size of G, we instead reduce

5We assume dead-ends go to a dummy state with a single mixed self-loop.
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the problem of determining the winner to that of solving a safety game which is only exponential in the size
of G.

Given an MPG with partial observation G = (Q, qI ,Σ,∆, w,Obs), let G′ = (Q′, q′I ,Σ,∆
′, w′,Obs′) be its

limited-observation version and Γ′ be the finite reachability game, as defined in Section 7, constructed for
G′ (not for G!). Let E = [−1, 2W |Obs′|] ∪ {⊥} where W = max{|w(e)| : e ∈ ∆}, and let B′ ⊆ B be the set
of functions f : Q→ E .

The safety game will be played on B′ with the transitions defined by σ-successors. The idea is that a
given position f ∈ B′ of the safety game corresponds to being in an observation of G′, namely supp(f). The
functions additionally keep track of the minimal weight of all concrete paths ending in states from supp(f).
However, they do so only up to the point where a belief cycle is formed. Since W is the biggest absolute
weight in G and in G′, and the length of any simple belief path is bounded by |Obs′|, it suffices to keep track
of weights from E .

Formally, the safety game is SG = (B′, f ′
I ,Σ,∆succ,F

′
neg) where f ′

I(qI) = W |Obs′| and f ′
I(q) = ⊥ for all

other q ∈ Q; (f, σ, f ′) ∈ ∆succ if f ′ is a proper σ-successor of f where we let

a+ b =











⊥ if a = ⊥ or b = ⊥,

−1 if a = −1, b = −1, or a+ b < 0, and

min{a+ b, 2W |Q|} otherwise.

F ′
neg is the set of all functions f ∈ F ′ such that f(q) = −1 for some q ∈ supp(f). The game is played similar

to the reachability game Γ, i.e. Eve chooses an action σ and Adam resolves non-determinism by selecting a
proper σ-successor. In this case, however, Eve’s goal is to avoid visiting any function in F ′

neg.
In this safety game (just like in the weighted unfolding) the non-negative integer values of f give a lower

bound for the minimum weights of the concrete paths ending in the given state (see Lemma 11). More
formally, since obtaining a −1 weight means that henceforth the weight stays −1, we have that if f(q) 6= ⊥
and f(q) ≥ 0 then the minimum weight over all concrete paths starting at qI and ending at q is at least
f(q)+W |Obs′|. We do not have equality because of the max applied after each sum. If f(q) = −1 then there
is a concrete path of weight at most −W |Obs′| − 1, because fI(qI) = W |Obs′|. As the winner of a forcibly
FAC game can be resolved in at most |Obs′| transitions it turns out that this is sufficient information to
determine the winner.

The above observation that non-negative values give lower bounds for concrete paths ending at the given

state implies that if Eve has a strategy to always avoid F ′
neg then lim infn→∞

π[..n]
n

≥ 0 for all concrete paths
π consistent with the play. That is, if Eve has a winning strategy in SG then she has a winning strategy in
G.

Now suppose Eve has a winning strategy in G. It follows from the determinacy of forcibly FAC games
and Theorem 4 that she has a winning strategy λ in Γ′. Let λ∗ be the translation of λ to G′ as per Theorem 4,
and let M denote the set of memory states required for λ∗. Clearly λ∗ induces a strategy in SG. We claim
this induced strategy is winning in SG. Let ̺ = f0σ0 . . . be any play in SG consistent with λ∗, and let

µi = g
(0)
i . . . g

(ni)
i denote the i-th memory state obtained in the generation of ̺ (as in Lemma 16). Then,

with a slight adjustment to the proof of Lemma 16 to account for function values not exceeding 2W |Obs′|
we have for all i and all q:

fi(q)−W |Obs′| ≥ g
(ni)
i (q)

= min{w(π) | π ∈ γ(supp(µi)) and π ends at q}6

≥ −W |Obs′|

because |µi| ≤ |Obs′| from the definition of Γ′. Thus fi(q) ≥ 0 for all i. Hence ̺ does not reach F ′
neg and is

winning for Eve. Thus λ∗ is a winning strategy for Eve.

6The step follows from Lemma 11.
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So to determine the winner of G, it suffices to determine the winner of SG. This is just the complement
of alternating reachability, known to be decidable in polynomial time (see e.g. [18]). As

|SG| = O(|F ′|2) = O
(

(2W |Obs′|+ 1)|Q|
)

= 2O(|Q|2),

determining the winner of SG, and hence G, is in EXPtime.

Corollary 24. Let G be an FBC MPG. Determining if Eve wins G is EXPtime-complete.
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