

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Library Support for Resource Constrained Accelerators

Brock-Nannestad, Laust; Karlsson, Sven

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Brock-Nannestad, L., & Karlsson, S. (2014). Library Support for Resource Constrained Accelerators. Poster
session presented at 7th Swedish Workshop on Multicore Computing (MCC14), Lund, Sweden.

https://orbit.dtu.dk/en/publications/66bc3383-1046-4d1d-8ee2-8219c5c12627

Library Support for Resource
Constrained Accelerators

Laust Brock-Nannestad and Sven Karlsson
Technical University of Denmark

Motivation

IAccelerators provide attractive power/performance trade offs

IExisting programming models treat them as offload devices

IWe want accelerator cores as first class citizens
IExecute your application directly from the accelerator

I Spawn parallelism from accelerator

IBut retain convenience of a complete system: libraries, file I/O, ...

Contributions

IA new runtime for accelerators

IAccelerator drives execution – main() on accelerator

ILow overhead – moving C library to host keeps runtime small

I Implementation on x86-64 and ARM + Epiphany (Parallella)

IEvaluation using SPLASH-2; comparison to libgomp

IMeasure impact on object code size by minimizing runtime

Design

Figure : System architecture

I main()/master thread executes on accelerator

IDecisions on spawning parallelism taken locally
I fast, low latency

IAccelerator may invoke host

IComplex decisions or function calls (C library)

IHost assists accelerator, not vice versa

Read

Write

Write

Read
Returnbox

int completed_flag
int seqnr
RETVAL retval

Accelerator

Shared MemoryHost

Mailbox

int seqnr
int func_id
void *arglist

Figure : Mailboxes in shared memory

IHost and accelerator communicate through shared memory

IMailbox data structures used for communication

IEncode function call identity, arguments, and results

Acknowledgments

This work was funded by the European Artemis project nr. 295440, Portable
and Predictable Performance on Heterogeneous Manycores (PaPP)

Experimental setups

I 1) Dual Socket Xeon 5570 @ 2.93 GHz, Linux 3.2, GCC 4.8.1, glibc 2.17

I 2) Adapteva Parallella w. 16 core Epiphany accelerator

I SPLASH-2 benchmarks LU, FFT, C-runtime library offloaded to host

IBaseline is SPLASH-2 parallelized with GNU libgomp for GCC 4.8.1

Execution time (x86-64)

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

1	 2	 4	 1	 2	 4	 1	 2	 4	

FFT	 LU	 -‐	 con0guous	 blocks	 LU	 -‐	 non-‐con0guous	
Ti
m
e	
[s
]	

Threads	 and	 benchmark	

Lightweight	 run0me	 Baseline	

Figure : Execution time and speed up for increasing number of cores on x86-64.

Object code sizes and savings

C library function (sym) Size (bytes) FFT LU
printf fp 9345 X X
sin sse2 8569 X
cos sse2 5159 X
getopt internal r 4391 X X
int malloc 4776 X X
int free 2796

memset sse2 2705 X
malloc 333 X X
(the rest) 271 565
Total 35044 22115

Accelerator runtime object code size

Accelerator component x86-64 (bytes) Epiphany (bytes)
Host interface 209 96
Locks, Barriers 159 178
Misc 130 228
Bootstrap/Initialization 202 138
Thread creation 49 0

Total 749 640

Conclusions

IObject code reduction of 66-75% on benchmarks by offloading C library

I Low runtime footprint of 750 bytes (x86-64), 640 bytes (Epiphany)

IComputational code not influenced by remote function call overhead –
Performance comparable to GNU libgomp

I Initialization is single threaded. FFT initialization dominated by remote
function call overhead (see paper for details)

IFuture work

IParallella/Epiphany implementation soon to be released

ICareful memory management – software caching techniques

Further information

Brock-Nannestad, L. and Karlsson, S. “Library Support for Resource Constrained Accelerators.” In

Improving OpenMP for Devices, Task, and More. Springer, 2014, pp.187-201.

Further informationDTU Compute - Technical University of Denmark laub@dtu.dk http://www.compute.dtu.dk

