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Library Support for Resource
Constrained Accelerators

Laust Brock-Nannestad and Sven Karlsson
Technical University of Denmark

Motivation

IAccelerators provide attractive power/performance trade offs

IExisting programming models treat them as offload devices

IWe want accelerator cores as first class citizens
IExecute your application directly from the accelerator

I Spawn parallelism from accelerator

IBut retain convenience of a complete system: libraries, file I/O, ...

Contributions

IA new runtime for accelerators

IAccelerator drives execution – main() on accelerator

ILow overhead – moving C library to host keeps runtime small

I Implementation on x86-64 and ARM + Epiphany (Parallella)

IEvaluation using SPLASH-2; comparison to libgomp

IMeasure impact on object code size by minimizing runtime

Design

Figure : System architecture

I main()/master thread executes on accelerator

IDecisions on spawning parallelism taken locally
I fast, low latency

IAccelerator may invoke host

IComplex decisions or function calls (C library)

IHost assists accelerator, not vice versa
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Figure : Mailboxes in shared memory

IHost and accelerator communicate through shared memory

IMailbox data structures used for communication

IEncode function call identity, arguments, and results
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Experimental setups

I 1) Dual Socket Xeon 5570 @ 2.93 GHz, Linux 3.2, GCC 4.8.1, glibc 2.17

I 2) Adapteva Parallella w. 16 core Epiphany accelerator

I SPLASH-2 benchmarks LU, FFT, C-runtime library offloaded to host

IBaseline is SPLASH-2 parallelized with GNU libgomp for GCC 4.8.1

Execution time (x86-64)
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Figure : Execution time and speed up for increasing number of cores on x86-64.

Object code sizes and savings

C library function (sym) Size (bytes) FFT LU
printf fp 9345 X X
sin sse2 8569 X
cos sse2 5159 X
getopt internal r 4391 X X
int malloc 4776 X X
int free 2796

memset sse2 2705 X
malloc 333 X X
(the rest) 271 565
Total 35044 22115

Accelerator runtime object code size

Accelerator component x86-64 (bytes) Epiphany (bytes)
Host interface 209 96
Locks, Barriers 159 178
Misc 130 228
Bootstrap/Initialization 202 138
Thread creation 49 0

Total 749 640

Conclusions

IObject code reduction of 66-75% on benchmarks by offloading C library

I Low runtime footprint of 750 bytes (x86-64), 640 bytes (Epiphany)

IComputational code not influenced by remote function call overhead –
Performance comparable to GNU libgomp

I Initialization is single threaded. FFT initialization dominated by remote
function call overhead (see paper for details)

IFuture work

IParallella/Epiphany implementation soon to be released

ICareful memory management – software caching techniques
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