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Abstract. We present MetaFork, a metalanguage for multithreaded
algorithms based on the fork-join concurrency model and targeting mul-
ticore architectures. MetaFork is implemented as a source-to-source
compilation framework allowing automatic translation of programs from
one concurrency platform to another. The current version of this frame-
work supports CilkPlus and OpenMP. We evaluate the benefits of
the MetaFork framework through a series of experiments, such as nar-
rowing performance bottlenecks in multithreaded programs. Our experi-
ments show also that, if a native program, written either in CilkPlus or
OpenMP, has little parallelism overhead, then the same property holds
for its OpenMP or CilkPlus counterpart translated by MetaFork.

1 Introduction

In the past decade the pervasive ubiquity of multicore processors has stimulated
a constantly increasing effort in the development of concurrency platforms, such
as CilkPlus, OpenMP and TBB. While those programming languages are all
based on the fork-join concurrency model, they largely differ in their way of
expressing parallel algorithms and scheduling the corresponding tasks. There-
fore, developing software code combining libraries written with several of those
languages is a challenge.

Nevertheless there is a real need for facilitating interoperability between con-
currency platforms. Consider for instance the field of symbolic computation. The
DMPMC library 3 provides sparse polynomial arithmetic and is entirely written
in OpenMP, meanwhile the BPAS library 4 provides dense polynomial arith-
metic and is entirely written in CilkPlus. Polynomial system solvers require
both sparse and dense polynomial arithmetic and thus could take advantage of
a combination of the DMPMC and BPAS libraries. However, CilkPlus and
OpenMP have different run-time systems. In order to achieve interoperability
between them, we propose an automatic source-to-source translation mechanism.

Another motivation for such a software tool is comparative implementa-
tion with the objective of narrowing performance bottlenecks. The underlying

3 From the TRIP project www.imcce.fr/trip developed at the Observatoire de Paris
4 From the Basic Polynomial Algebra Subprograms www.bpaslib.org developed at

the University of Western Ontario
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observation is that the same multithreaded algorithm, based on the fork-join
parallelism model, implemented with two different concurrency platforms, say
CilkPlus and OpenMP, could result in very different performance, often very
hard to analyze and compare. If one code scales well while the other does not,
one may suspect an inefficient implementation of the latter as well as other
possible causes such as higher parallelism overheads. Translating the inefficient
code to the other language can help narrowing the problem. Indeed, if the trans-
lated code still does not scale, one can suspect an implementation issue (say the
programmer missed to parallelize one portion of the algorithm) whereas if the
translated code does scale, then one can suspect a parallelism overhead issue in
the original code (say the grain-size of a parallel for-loop is too small).

In this paper, we propose MetaFork, a metalanguage for multithreaded
algorithms based on the fork-join parallelism model [5] and targeting multi-
core architectures. By its parallel programming constructs, the MetaFork lan-
guage is currently a super-set of CilkPlus [4, 13, 11] and offers counterparts
for the following widely used parallel constructs of OpenMP [16, 1]: #pragma
omp parallel, #pragma omp task, #pragma omp sections, #pragma omp

section, #pragma omp for, #pragma omp taskwait, #pragma omp barrier,
#pragma omp single and #pragma omp master. However, MetaFork does
not make any assumptions about the run-time system, in particular about schedul-
ing strategies (work sharing, work stealing [6]). In fact, MetaFork is not de-
signed to be a target language, but rather as the internal intermediate representa-
tion (IR) of a source-to-source compiler framework for multithreaded languages.

The syntax and the semantics of MetaFork’s parallel constructs are spec-
ified in Sections 2, 3 and 4. Since MetaFork is a faithful extension of the
C/C++ language, this is actually sufficient to completely define MetaFork.

Recall that a driving motivation of the MetaFork project is to facilitate au-
tomatic translation of programs between concurrency platforms. To date, our ex-
perimental framework includes translators between CilkPlus and MetaFork
(both ways) and, between OpenMP and MetaFork (both ways). Hence, through
MetaFork, we perform program translations between CilkPlus and OpenMP
(both ways). Integrating TBB in this framework is work in progress.

Despite of the fact that it does not support all features of OpenMP, the
MetaFork language is rich enough to capture the semantics of large bodies
of OpenMP code, such as the Barcelona OpenMP Tasks Suite (BOTS) [10]
and translate faithfully to CilkPlus each of the BOTS test cases. In the other
direction, we could translate the BPAS library to OpenMP.

In Section 5, we briefly explain how the translators of the MetaFork com-
pilation framework are implemented. In particular, we specify which OpenMP
data-sharing clauses are captured by the MetaFork translators. Simple exam-
ples of code translation are provided.

In Section 6, we evaluate the benefits of the MetaFork framework through a
series of experiments. First, we show that MetaFork can help narrow down per-
formance bottlenecks in multithreaded programs by means of comparative imple-
mentation, as discussed above. Secondly, we observe that, if a native CilkPlus
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(resp. OpenMP) program has little parallelism overhead, then the same holds
for its OpenMP (resp. CilkPlus) counterpart translated by MetaFork. We
tested more than 20 examples in total for which experimental results can be
found in the technical report [8] and for which code can be found on the web site
of the MetaFork project. Moreover, the source code of the MetaFork trans-
lators can be downloaded from the same web site at http://www.metafork.org.

Related work. While the well-developed source-to-source compiler framework
ROSE 5 has been used to support many programming languages, including
OpenMP and UPC, we are not aware of a ROSE-based platform similar to
MetaFork, that is, providing source-to-source translation between multithreaded
languages. On the other hand, several projects offer automatic one-way trans-
lation from a concurrency platform running on one hardware architecture to
another concurrency platform running on another hardware architecture, e.g.
OpenMP shared-memory code to MPI distributed-memory code as in the pa-
pers [2] [9] (HOMPI Project) or [15] (OpenMP Accelerator Model). Other
projects offer extension of a concurrency platform from one hardware architec-
ture to another hardware architecture, like HOMP [15] or OpenMPC [12] which
allow extended OpenMP code to run on NVIDIA GPUs. In contrast to these
two types of projects, MetaFork is currently dedicated to a single type of hard-
ware architecture, namely multicore processors. However, MetaFork offers au-
tomatic two-way translations. Moreover, the generated code is human-readable,
as illustrated by the examples available on the MetaFork web site.

2 Parallel Constructs and Execution Model of MetaFork

MetaFork extends both the C and C++ languages into a multithreaded lan-
guage based on the fork-join concurrency model. Thus, concurrent execution is
obtained by a parent thread creating and launching one or more child threads so
that the parent and its children execute a so-called parallel region. An important
example of parallel regions are for-loop bodies. MetaFork has the following
natural requirement regarding parallel regions: control flow cannot branch into
or out of a parallel region.

MetaFork has four parallel constructs: function call spawn, block spawn,
parallel for-loop and synchronization barrier. The first two use the keyword
meta fork while the other two use respectively the keywords meta for and
meta join. The parallel constructs of MetaFork grant permission for con-
current execution but do not command it. Hence, a MetaFork program can
execute on a single core machine. We emphasize the fact that meta fork al-
lows the programmer to spawn a function call (like in CilkPlus) as well as a
block (like in OpenMP). Examples of MetaFork code with CilkPlus and
OpenMP can be found through Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13.

As mentioned, the keyword meta fork is used to express the fact that a func-
tion call or a block is executed by a child thread, concurrently to the execution

5 http://en.wikibooks.org/wiki/ROSE_Compiler_Framework
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of the parent thread. If the program is run by a single processor, the parent
thread is suspended during the execution of the child thread; when this latter
terminates, the parent thread resumes its execution after the function call (or
block) spawn.

If the program is run by multiple processors, the parent thread may continue
its execution6 after the function call (or block) spawn, without being suspended,
meanwhile the child thread executes the function call (or block) spawn. In this
latter scenario, the parent thread waits for the completion of the execution of
the child thread, as soon as the parent thread reaches a synchronization point.

Spawning a function call with meta fork. Spawning a call to the function f, with
the argument sequence args, is done by meta fork f(args). The semantics is
similar to that of the CilkPlus counterpart cilk spawn f(args). In particu-
lar, all the arguments in the sequence args are evaluated before spawning the
function call f(args). However, the execution of meta fork f(args) differs
from that of cilk spawn f(args) on one feature. While there is an implicit
cilk sync at the end of the Cilk block [11] surrounding this latter cilk spawn,
no such implicit barriers are assumed with meta fork. This feature is motivated
by the fact that, in addition to the fork-join parallelism, we plan to extend the
MetaFork language to other forms of parallelism such as parallel futures [17, 3].

Spawning a block with meta fork. The other usage of the meta fork construct is
for spawning a basic block B, which is done as follows: meta fork { B }. If B
consists of a single instruction, then the surrounding curly braces can be omitted.
We also refer to this construction as a parallel region. There is no equivalent in
CilkPlus while it is offered by OpenMP. Similarly to a function call spawn, this
parallel region is executed by a child thread (once the parent thread reaches the
meta fork construct) meanwhile the parent thread continues its execution after
the parallel region. Similarly also to a function call spawn, no implicit barrier
is assumed at the end of the surrounding region. Hence synchronization points
have to be added explicitly, using meta join. A variable v which is not local to
B may be shared by both the parent and child threads; alternatively, the child
thread may be granted a private copy of v. Precise rules about data attributes,
for both parallel regions and parallel for-loops, are stated in Section 3.

Parallel for-loops with meta for. Parallel for-loops in MetaFork have the fol-
lowing format meta for (I, C, S) { B } where I is the initialization expres-
sion of the loop, C is the condition expression of the loop, S is the stride of the
loop and B is the loop body. The specifications of C, S, B are standard and similar
to the initialization expression, condition expression and stride of a CilkPlus
for-loop. We refer to the MetaFork specifications document [7] for details. The
parent thread will share the work of executing the iterations of the loop with

6 In fact, the parent thread does not participate to the execution of a function call
(or block) spawn, but will participate to the execution of the iterations of a parallel
for-loop.
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the child threads. An implicit synchronization point is assumed after the loop
body. That is, the execution of the parent thread is suspended when it reaches
meta for and resumes when all children threads (executing the loop body it-
erations) have completed their execution. As one can expect, the iterations of
the parallel loop meta for (I, C, S) { B } must execute independently of
each other in order to guarantee that this parallel loop is semantically equivalent
to its serial version for (I, C, S) { B }.

Synchronization point with meta join. The construct meta join indicates a
synchronization point (or barrier) for a parent thread and its children tasks.
More precisely, a parent thread reaching this point must wait for the completion
of its children tasks but not for those of the subsequent descendant tasks.

3 Variable Attribute Rules

Variables that are non-local to the block of a parallel region may be either shared
by or private to the threads executing the code paths where those variables are
defined. After a terminology review, we specify the rules that MetaFork uses
in order to decide whether such a non-local variable is shared or private.

Shared and private variables. Consider a parallel region with block Y (or a
parallel for-loop with loop body Y ). X denotes the immediate outer scope of Y .
We say that X is the parent region of Y and that Y is a child region of X. A
variable v which is defined in Y is said to be local to Y ; otherwise we call v a non-
local variable for Y . Let v be a non-local variable for Y . Assume v gives access
to a block of storage before reaching Y . (Thus, v cannot be a non-initialized
pointer.) We say that v is shared by X and Y if its name gives access to the
same block of storage in both X and Y ; otherwise we say that v is private to Y .
In particular, if Y is a parallel for-loop we say that a local variable w is shared
by Y whenever the name of w gives access to the same block of storage in any
loop iteration of Y , which means that all the threads that execute this parallel
for-loop share the same variable w; otherwise we say that w is private to Y .

Value-type and reference-type variables. In the C programming language, a
value-type variable contains its data directly as opposed to a reference-type vari-
able, which contains a reference to its data. Value-type variables are either of
primitive types (char, float, int, double, void) or user-defined types (enum,
struct, union). Reference-type variables are pointers, arrays and functions.

static and const type variables. In the C programming language, a static vari-
able is a variable that has been allocated statically and whose lifetime extends
across the entire run of the program. This is in contrast to automatic variables
(local variables are generally automatic) whose storage is allocated and deallo-
cated on the call stack and, other variables (such as objects) whose storage is
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dynamically allocated in heap memory. When a variable is declared with the
qualifier const, the value of that variable cannot typically be altered by the
program during its execution.

/* This file starts here ... */
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
int a;
long par_region(long n){

int b;
int *c = (int *)malloc(sizeof(int)*10);
int d[10];
const int f=0;
static int g=0;
meta_fork{

int e = b;
subcall(c,d);

}
}

/* ... and continues here ... */
void subcall(int *a,int *b){

for(int i=0;i<10;i++)
printf("%d %d\n",a[i],b[i]);

}
int main(int argc,char **argv){

long n=10;
par_region(n);
return 0;

}
/* ... and finishes here. */

Fig. 1: Various variable attributes in a parallel region.

Variable attribute rules of meta fork. A non-local variable v which gives access
to a block of storage before reaching Y is shared between the parent X and
the child Y whenever v is: (1) a global variable, (2) a file scope variable, (3) a
reference-type variable, (4) declared static or const, or (5) qualified shared.
In all other cases, the variable v is private to the child. In particular, value-type
variables (that are not declared static or const, or qualified shared ,and that
are not global or file scope variables) are private to the child. In Figure 1, the
variables a, c, d, f and g are shared, meanwhile the b and e are private.

/* To illustrate variable attributes, three
files (a headerfile "a.h" and two source

files "a.cpp" and "b.cpp") are used.
This file is a.cpp */
#include<stdio.h>
extern int var;
void test(int *array)
{

int basecase = 100;
meta_for(int j = 0; j < 10; j++)
{

static int var1=0;
int i = array[j];
if( i < basecase )

array[j]+=var;
}

}

/* This file is b.cpp*/
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include"a.h"
int var = 100;
int main(int argc,char **argv)
{

int *a=(int*)malloc(sizeof(int)*10);
srand((unsigned)time(NULL));
for(int i=0;i<10;i++)

a[i]=rand();
test(a);
return 0;

}
/* This file is a.h*/
void test(int *a);

Fig. 2: Example of shared and private variables with meta for.
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Variable attribute rules of meta for. A non-local variable which gives access to a
block of storage before reaching Y is shared between parent and child. A variable
local to Y is shared by Y whenever it is declared static, otherwise it is private
to Y . In particular, loop control variables are private to Y . In the example of
Figure 2, the variables array, basecase, var and var1, are shared by all threads
while the variables i and j are private. In the example of Figure 9, the variable
b is private, thus the OpenMP, MetaFork, CilkPlus codes of Figures 8, 9
and 10 are semantically equivalent.

long fib_parallel(long n)
{

long x, y;
if (n < 2)

return n;
else{

x = meta_fork fib_parallel(n-1);
y = fib_parallel(n-2);
meta_join;
return (x+y);}

}

Fig. 3: Parallel fib code using a function
spawn.

long fib_parallel(long n)
{

long x, y;
if (n < 2)

return n;
else{

meta_fork shared(x)
{

x = fib_parallel(n-1);
}
y = fib_parallel(n-2);
meta_join;
return (x+y);}

}

Fig. 4: Parallel fib code using a block
spawn.

The shared keyword. Programmers can explicitly qualify a given variable as
shared by using the shared keyword. In the example of Figure 3, the variable n

is private to fib parallel(n-1). In Figure 4, we specify the variable x as shared
and the variable n is still private. Notice that the programs in Figures 3 and 4 are
semantically equivalent. In the parallel regions of the example of Figure 12, the
variables sum a and sum b are qualified shared. Hence the OpenMP, MetaFork
and CilkPlus programs of Figure 11, 12 and 13 are semantically equivalent.

4 Semantics of the Parallel Constructs in MetaFork

In order to formally define the semantics of each of the parallel constructs in
MetaFork, we introduce the serial C-elision of a MetaFork program M:
this is a program C expressed in the C-language and with the same semantics
asM. In [7], we obtain such a serial C-elision C from the programM by means
of a series of rewriting rules. Due to space consideration, we cannot include this
algorithmic definition here. However, we believe that sketching its principle is
sufficient for understanding the rest of this paper.

As mentioned before, spawning a function call in MetaFork has the same
semantics as spawning a function call in CilkPlus. More precisely: meta fork

f(args) and cilk spawn f(args) are semantically equivalent.

7



A meta for loop allows iterations of the loop body to be executed in par-
allel. By default, each iteration of the loop body is executed by a separate
thread. However, using the grainsize compilation directive, one can specify
the number of loop iterations executed per thread7: #pragma meta grainsize =

expression. Nevertheless, in order to obtain the serial C-elision of a MetaFork
for-loop, we require that the meta for construct could be replaced by the C-
language for - whatever is the grainsize of this MetaFork for loop - with-
out changing the initialization expression, condition expression and stride. (Of
course, the loop-body must be replaced with its serial C-elision.)

Specifying the semantics of the spawning of a block in MetaFork is the
difficult part. We do it in [7] in an algorithmic fashion, using rewriting rules,
that are similar to a LEX-YACC program. The main idea is to use outlining, a
widely used technique in the OpenMP community, see [14]. To have a taste of
that transformation, one should observe how the MetaFork code of Figure 12
is transformed into the CilkPlus code of Figure 13. Obtaining the serial elision
of that latter code is easy and one can finally derive a serial C-elision for our
input MetaFork code.

5 Translation

In this section, we briefly explain how the translators of the MetaFork compila-
tion framework are implemented. Obviously, for each translator, the semantics of
each input program are preserved into the output program. However, scheduling
strategies (like an OpenMP clause schedule(static, chuksize)) are ignored
by our translators. Retaining them (at least as structured comments) will be
explored in a future release of MetaFork.

From CilkPlus code to MetaFork code. Translating code from CilkPlus
to MetaFork is easy in principle since, up to the vectorization constructs of
CilkPlus, the MetaFork language is a superset of CilkPlus. However, im-
plicit CilkPlus barriers need to be explicitly inserted in the target MetaFork
code. This implies that, during translation, it is necessary to trace the instruc-
tion stream DAG of the CilkPlus program in order to properly insert barriers
in the generated MetaFork code.

From MetaFork code to CilkPlus code. Since CilkPlus has no constructs
for spawning a block of code, we naturally use the outlining technique to: (1) wrap
the parallel region as a function, and then (2) call that function concurrently. In
fact, the problem of translating code from MetaFork to CilkPlus is equivalent
to that of defining the serial elision of a MetaFork program.

From OpenMP code to MetaFork code. We first consider the translation of
an OpenMP task directive: if it is a function call spawn, as in Figure 7, we
use the MetaFork construct for spawning a function call. Otherwise, we use

7 The loop iterations of a thread are then executed one after another by that thread.
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the MetaFork construct for spawning a block. Currently, we translate faith-
fully the following OpenMP optional clause directives: shared, private and
firstprivate. For the translation of OpenMP sections to the MetaFork
parallel regions we only support the default variable attribute and note that
this case leads us to insert extra synchronization points. Finally, for the trans-
lation of an OpenMP parallel for-loop to MetaFork, we note that: (1) the
private and firstprivate optional clause directives are faithfully translated,
(2) every variable specified private is re-declared in the parallel for-loop of the
MetaFork translation, (3) the loop control variables are initialized inside the
loop, and (4) scheduling strategies of OpenMP parallel for loops are ignored,

From MetaFork code to OpenMP code. This is easy in principle, since the
MetaFork language can be regarded as a subset of the OpenMP language. We
note that function calls spawned with the meta fork construct are translated
using the task constructs of OpenMP.

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Fig. 5: CilkPlus code

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

x = meta_fork fib(n-1);
y = fib(n-2);
meta_join;
return (x+y);

}
}

Fig. 6: MetaFork code

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

#pragma omp task shared(x)
x = fib(n-1);
y = fib(n-2);
#pragma omp taskwait
return (x+y);

}
}

Fig. 7: OpenMP code

int main()
{

int a[N];
int b = 0;
#pragma omp parallel
#pragma omp for private(b)
for(int i=0; i<N; i++)
{

b = i ;
a[i] = b;

}
}

Fig. 8: OpenMP code

int main()
{

int a[N];
int b = 0;

meta_for(int i=0; i<N; i++)
{

int b;
b = i ;
a[i] = b;

}
}

Fig. 9: MetaFork code

int main()
{

int a[N];
int b = 0;

cilk_for(int i=0; i<N; i++)
{

int b;
b = i ;
a[i] = b;

}
}

Fig. 10: CilkPlus code
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int main(){
int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)
sum_a += a[i];

}
#pragma omp section
{

for(int i=0; i<5; i++)
sum_b += b[i];

} } }
}

Fig. 11: OpenMP code

int main()
{

int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];
}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[i];
}

meta_join;
}

Fig. 12: MetaFork
code

void fork_func0(int* sum_a,int* a)
{

for(int i=0; i<5; i++)
(*sum_a) += a[i];

}
void fork_func1(int* sum_b,int* b)
{

for(int i=0; i<5; i++)
(*sum_b) += b[i];

}
int main()
{

int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};
cilk_spawn fork_func0(&sum_a,a);
cilk_spawn fork_func1(&sum_b,b);
cilk_sync;

}

Fig. 13: CilkPlus code

6 Experimentation

In this section, we evaluate the performance and the usefulness of the four
MetaFork translators (MetaFork to CilkPlus, CilkPlus to MetaFork,
MetaFork to OpenMP, OpenMP to MetaFork). To this end, we run these
translators on various input programs written either in CilkPlus or OpenMP,
or both.

We emphasize the fact that our purpose is not to compare the performance of
the CilkPlus or OpenMP run-time systems. The reader should notice that the
codes used in this study were written by different persons with different levels
of expertise. In addition, the reported experimentation is essentially limited to
one architecture (AMD Opteron) and one compiler (GCC). Therefore, it would
be delicate to draw any clear conclusions comparing CilkPlus and OpenMP.
We conducted three sets of experiments:

– In the first one, we compared the performance of hand-written codes. The
motivation, specified in the introduction, is comparative implementation.

– In the second one, we translated large portions of the BPAS library from
CilkPlus to OpenMP, motivated by the interoperability question raised in
the introduction.

– In the last experiment, we compared the parallelism overheads measured the
original codes (either CilkPlus or OpenMP) and their translated counter-
parts.

Before reporting on these three sets of experiments:

– we describe the setup (hardware, software) in which they were conducted
and,

– we explain how we verified the correctness of the multithreaded code gener-
ated by our translators.
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Fig. 14: Parallel mergesort in size
5 × 108

Fig. 15: Matrix inversion of order
4096

Experimentation setup. For all experiments, apart from student’s code, we use
codes from the following sources:

– The BPAS library http://www.bpaslib.org,
– John Burkardt’s Home Page http://people.sc.fsu.edu/~%20jburkardt/

c_src/openmp/openmp.html,
– the BOTS [10] and
– the Cilk distribution examples http://sourceforge.net/projects/cilk/.

The source code of those test cases was compiled as follows:

- CilkPlus code with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus

- OpenMP code with GCC 4.8 using -O2 -g -fopenmp

We run all our programs on AMD Opteron 6168 48-core nodes (with 256GB
RAM and 12MB L3) and Intel Xeon 2.66GHz/6.4GT with 12-cores nodes.

Correctness. Validating the correctness of our translators was a major require-
ment of our work. Depending on the test-case, we could use one of the following
strategies.

- Assume that the original program, say P, contains both a parallel code and
its serial elision (manually written). When program P is executed, both codes
run and compare their results. Let us callQ the translated version of P. Since
serial elisions are unchanged by our translation procedures, then Q can be
verified by the same process used for program P. This first strategy applies
to the Cilk++ distribution examples and the BOTS (Barcelona OpenMP
Tasks Suite) examples.

- If the original program P does not include a serial elision of the parallel
code, then the translated program Q is verified by comparing the output of
P and Q. This second strategy had to be applied to the FSU (Florida State
University) examples.
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Table 1: BPAS timings with 1 and 16 workers: original CilkPlus code and
translated OpenMP code

Test Input size CilkPlus OpenMP

T1 T16 T1 T16

8-way 2048 0.423 0.231 0.421 0.213
Toom-Cook 4096 1.849 0.76 1.831 0.644

8192 9.646 2.742 9.241 2.774
16384 39.597 9.477 39.051 8.805
32768 174.365 34.863 172.562 33.032

DnC 2048 0.874 0.259 0.867 0.299
Plain 4096 3.95 1.264 3.925 1.123
Polynomial 8192 18.196 3.335 18.154 4.428
Multiplication 16384 77.867 12.778 75.885 12.674

32768 331.351 55.841 332.126 55.925

Table 2: Timings on AMD 48-core: underlined timings refer to original code and
non-underlined timings to translated code.

Test Input size CilkPlus OpenMP

Serial T1 Serial T1

Protein alignment (for) 100 568.07 566.10 568.79 568.16
quicksort 5 · 108 94.42 96.23 94.15 97.20
prefixsum 1 · 109 27.06 28.48 27.14 28.42
Fibonacci 1 · 109 96.24 96.26 97.56 97.69
DnC MM 1 · 109 752.04 752.74 751.79 750.34
Mandelbrot 500 × 500 0.64 0.64 0.64 0.65

Comparative implementation. For this first purpose, we use a series of test-
cases, each of them consisting of a pair of hand-written programs: one written
in OpenMP and the other in CilkPlus. Within each pair, a program S, writ-
ten by a student, has a performance bottleneck; meanwhile its counterpart E,
written by an expert does not. For each pair, we translate one program (ei-
ther S or E) to the other language. For these two programs (expressed in the
same concurrency platform) we measure the running time on p processors, for
1 ≤ p ≤ 48, and compare the resulting data so as to narrow down the per-
formance bottleneck in the inefficient program. Figures 14 and 15 illustrate two
test-cases: Parallel mergesort, Matrix inversion. More test-cases can be found in
this technical report [8].

– For Parallel mergesort, the original OpenMP code (written by a student)
misses to parallelize the merge phase (and simply spawns the two recursive
calls using OpenMP sections) while the original CilkPlus code (written by
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an expert) does parallelize the merge phase. On Figure 14, the running time
curve of the translated OpenMP code is as theoretically expected while
the curve of the original OpenMP code shows a limited scalability. This
suggests that the original hand-written OpenMP code should expose more
parallelism.

– For Matrix inversion, the two original parallel programs are based on dif-
ferent serial algorithms for inverting a dense matrix. The original OpenMP
code uses Gauss-Jordan elimination while the original CilkPlus code uses a
divide-and-conquer approach based on Schur’s complement. Figure 15 shows
that the code translated from CilkPlus to OpenMP is more appropriate
for fork-join multithreaded languages targeting multicores. In other words
the Schur’s complement approach should be prefered in this context.

Interoperability. Our second experiment is dedicated to automatic translation of
highly optimized libraries. The motivation, presented in the introduction, is to
facilitate interoperability between libraries developed for different concurrency
platforms, namely CilkPlus and OpenMP. For this question, we want to de-
termine whether or not the translated programs have similar serial and parallel
running times as their hand-written-and-optimized counterparts. For this exper-
iment, we have used the BPAS library which counts more than 150,000 lines of
CilkPlus code. Half of those lines are dedicated to polynomial multiplication
and we translated those to OpenMP. In Table 1, we report on timings of two
of the main algorithms for polynomial multiplication, namely 8-way Toom-Cook
and divide-and-conquer plain multiplication. One can see that the original and
translated codes have similar running times on 1 and 16 cores, for all input data
sizes that we tested. Therefore, the OpenMP version of the BPAS library retains
the good performance of the original version written in CilkPlus.

Parallelism overheads. Our third experiment is devoted to the following ques-
tion: do the MetaFork translators add extra parallelism overheads to the gen-
erated code w.r.t. the original code? We focus here on work overhead. By work
overhead, we mean the time ratio between a multithreaded program run on
one core and its serial elision. For this experiment, we have considered original
programs using different parallelism patterns (divide-and-conquer, parallel for-
loops) and written in both OpenMP and CilkPlus. Our results are collected
in Table 2. For all the examples that we tested, we could observe that, if the
original program has little work overhead, then the same holds for the translated
program.

7 Concluding Remarks

MetaFork allows for rapidly mapping algorithms written for one concurrency
platform to another. As we have seen in Section 6, MetaFork can be applied for
(1) comparing algorithms written with different concurrency platforms and (2)
porting more programs to systems that may have a highly optimized run-time
for one paradigm (say divide-and-conquer algorithms, or producer-consumer).
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The MetaFork translation framework may also avoid the negative inter-
ferences of having multiple interfaces between the different components of a
large solver written with various concurrency platforms. Along the same idea,
the MetaFork translators can be used to transform legacy code into a more
adequate concurrency platform.

Last but not least, we think that a great benefit of MetaFork is the abstrac-
tion that it provides. It can be useful for parallel language design (for example in
designing parallel extensions to C/C++) as well as a good tool to teach parallel
programming.

In the future work, as discussed in the MetaFork specifications docu-
ment [7], we will consider parallel reduction as an important extension and
include other parallel computing models like pipelining.
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