Skip to main content

Interactions between Multiple Junctions

  • Conference paper
Book cover Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

Abstract

We consider a simple TASEP (Totally Asymmetric Simple Exclusion Process) network model with an aggregation point and a branching point. Generally speaking, the aggregation point behaves as a bottleneck and the branching point enables particles to encourage their velocity. However, the correlation among multiple junctions in TASEP network is not known so much. In order to investigate the correlation, we consider a simple TASEP network which including two junctions and discuss the network with an aggregation point and a branching point. From our theoretical analysis and numerical results, it is shown that aggregations become bottlenecks in TASEP networks and that branches enable flow of particles to be larger in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Dover Publications, Inc., Minesota

    Google Scholar 

  2. Ghrist, R.: Configuration Spaces and Braid Groups on Graphs in Robotics. In: Braids, Links, and Mapping Class Groups: the Proceedings of Joan Birman’s 70th Birthday. AMS/IP Studies in Mathematics, vol. 24, pp. 29–40 (2001)

    Google Scholar 

  3. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The Asymmetric Exclusion Process: Comparison of Update Procedures. Journal of Physics 92(1/2), 151–194 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Huang, D.-W.: Ramp-induced transitions in traffic dynamics. Physical Review E 73, 016123 (2006)

    Google Scholar 

  5. Huang, D.-W.: Analytical results of asymmetric exclusion processes with ramps. Physical Review E 72, 016102 (2005)

    Google Scholar 

  6. MacDonald, C.T., Gibbs, J.H.: Kinetics of Biopolymerization on Nucleic Acid Templates. Biopolymers 6, 1–25 (1968)

    Article  Google Scholar 

  7. Spitzer, F.: Interaction of Markov Process. Advances in Mathematics 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pronina, E., Kolomeisky, A.B.: Theoretical investigation of totally asymmetric exclusion processes with on lattices with junctions. J. Stat. Mech., P07010 (2005)

    Google Scholar 

  9. Wang, X., Jiang, R., Hu, M.-B., Nishinari, K., Wu, Q.-S.: Totally Asymmetric Exclusion Process on Lattices with a Branching Point. International Journal of Modern Physics C 20(12), 1999–2012 (2009)

    Article  MATH  Google Scholar 

  10. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a ID asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26, 1493–1517 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang, X., Jiang, R., Nishinari, K., Hu, M.-B., Wu, Q.-S.: Asymmetric Exclusion Processes on Lattices with a Junction: The Effect of Unequal Injection Rates. International Journal of Modern Physics C 20(6), 967–978 (2009)

    Article  MATH  Google Scholar 

  12. Parmeggiani, A., Franosch, T., Frey, E.: The Totally Asymmetric Simple Exclusion Process with Langmuir Kinetics. Physical Review E 70, 046101 (2004)

    Google Scholar 

  13. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. Gen. 31, 6911–6919 (1998)

    Google Scholar 

  14. Embley, B., Parmeggiani, A., Kern, N.: Understanding Totally Asymmetric Simple-exclusion-process Transport on Networks: Generic Analysis via Effective Rates and Explicit Vertices. Physical Review E 80, 041128 (2009)

    Google Scholar 

  15. Raguin, A., Parmeggiani, A., Kern, N.: Role of Network Junctions for the Totally Asymmetric Simple Exclusion Process. Physical Review E 88, 042104 (2013)

    Google Scholar 

  16. Lebacque, J.-P.: First-order Macroscopic Traffic Flow Models: Intersection Modeling, Network Modeling. In: Mahmassani, H.S. (ed.) Transportation and Traffic Theory Flow, Dynamics, and Human Interaction, Proceeding of 16th International Symposium on Transportation and Traffic Theory, pp. 365–386 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tannai, T., Nishinari, K. (2014). Interactions between Multiple Junctions. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics