Efficient program transformers for translating LCC to PDL

P. Pardo E. Sarrión Morillo
F. Soler Toscano F. Velázquez Quesada

Grupo de Investigación en Lógica, Lenguaje e Información
Universidad de Sevilla
\{ppardo1, esarrion, fsoler, frvelazquezquesada\}@us.es

Workshop "Logic, Language and Information"
November 4th 2014, Málaga

Outline

(1) Introduction
(2) A brief sketch of LCC
(3) A new translation of LCC to PDL
(4) Summary and future work

Outline

(1) Introduction

(2) A brief sketch of LCC

3 A new translation of LCC to PDL

(4) Summary and future work

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]
is a multi-agent dynamic epistemic logic (DEL)

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]
is a multi-agent dynamic epistemic logic (DEL)
\ldots with public/private/secret $\left\{\begin{array}{l}\text { communication among agents } \\ \text { observation } \\ \text { factic change }\end{array}\right.$

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]
is a multi-agent dynamic epistemic logic (DEL)
\ldots with public/private/secret $\left\{\begin{array}{l}\text { communication among agents } \\ \text { observation } \\ \text { factic change }\end{array}\right.$

- Verification of (secure) communication protocols in DEL
(e.g. Russian Cards Problems, Muddy Children Problem).

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]
is a multi-agent dynamic epistemic logic (DEL)
\ldots with public/private/secret $\left\{\begin{array}{l}\text { communication among agents } \\ \text { observation } \\ \text { factic change }\end{array}\right.$

- Verification of (secure) communication protocols in DEL (e.g. Russian Cards Problems, Muddy Children Problem).
- Generation of plans or protocols in DEL planning.

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:
- A translation of LCC to PDL (which requires program transformers).

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:
- A translation of LCC to PDL (which requires program transformers).
- Some PDL checker.

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:
- A translation of LCC to PDL (which requires program transformers).
- Some PDL checker.
- The translation is also used to generate a complete set of reduction of axioms, together with those of PDL.

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:
- A translation of LCC to PDL (which requires program transformers).
- Some PDL checker.
- The translation is also used to generate a complete set of reduction of axioms, together with those of PDL.
- (LCC 2006) uses an inefficient translation based on Kleene's translation of finite automata to regular languages.

Introduction

Logic of communication and change (LCC)
[J. van Benthem, B. Kooi and J. van Eijck, 2006]

- Validity checking in LCC makes use of:
- A translation of LCC to PDL (which requires program transformers).
- Some PDL checker.
- The translation is also used to generate a complete set of reduction of axioms, together with those of PDL.
- (LCC 2006) uses an inefficient translation based on Kleene's translation of finite automata to regular languages.
- Our proposal: a new translation with lower complexity based on a matrix treatment of Brzozowski's equational method.

Outline

(9) Introduction

(2) A brief sketch of LCC

3 A new translation of LCC to PDL

4. Summary and future work

LCC models
 Let $\operatorname{Var}=\{p, q, \ldots\}$ and $\operatorname{Ag}=\{a, b, \ldots\}$ be sets of atoms and agents.

LCC models

Let $\operatorname{Var}=\{p, q, \ldots\}$ and $\mathrm{Ag}=\{a, b, \ldots\}$ be sets of atoms and agents.
Definition (Epistemic model)
A triple $M=\left(W,\left\langle R_{a}\right\rangle_{a \in \operatorname{Ag}}, V\right)$ with:

Example (Agents b and c know that a knows whether p)

LCC models

Let $\operatorname{Var}=\{p, q, \ldots\}$ and $\operatorname{Ag}=\{a, b, \ldots\}$ be sets of atoms and agents.
Definition (Epistemic model)
A triple $M=\left(W,\left\langle R_{a}\right\rangle_{a \in A g}, V\right)$ with:

- A non-empty set of worlds $W=\left\{w_{0}, w_{1}, \ldots\right\}$.

Example (Agents b and c know that a knows whether p)

LCC models

Let $\operatorname{Var}=\{p, q, \ldots\}$ and $\mathrm{Ag}=\{a, b, \ldots\}$ be sets of atoms and agents.
Definition (Epistemic model)
A triple $M=\left(W,\left\langle R_{a}\right\rangle_{a \in \mathrm{Ag}}, V\right)$ with:

- A non-empty set of worlds $W=\left\{w_{0}, w_{1}, \ldots\right\}$.
- An accessibility relations $R_{a} \subseteq W \times W$ for each agent a.

Example (Agents b and c know that a knows whether p)

LCC models

Let $\operatorname{Var}=\{p, q, \ldots\}$ and $\mathrm{Ag}=\{a, b, \ldots\}$ be sets of atoms and agents.
Definition (Epistemic model)
A triple $M=\left(W,\left\langle R_{a}\right\rangle_{a \in \mathrm{Ag}}, V\right)$ with:

- A non-empty set of worlds $W=\left\{w_{0}, w_{1}, \ldots\right\}$.
- An accessibility relations $R_{a} \subseteq W \times W$ for each agent a.
- A valuation V : $\operatorname{Var} \rightarrow \wp(W)$.

Example (Agents b and c know that a knows whether p)

LCC models

Definition (Action model)

For a language \mathcal{L} upon Var and $A g$ that can be interpreted over relational models, a 4-tuple $U=\left(E,\left\langle R_{a}\right\rangle_{a \in A g}\right.$, pre, sub) with:

LCC models

Definition (Action model)

For a language \mathcal{L} upon Var and $A g$ that can be interpreted over relational models, a 4-tuple $U=\left(E,\left\langle R_{a}\right\rangle_{a \in A g}\right.$, pre, sub) with:

- $E=\left\{e_{0}, \ldots, e_{n-1}\right\}$ is a finite non-empty set of actions.

Example (Public change to $\neg p$. | Private comm. by a to b about p.)

LCC models

Definition (Action model)

For a language \mathcal{L} upon Var and $A g$ that can be interpreted over relational models, a 4-tuple $U=\left(E,\left\langle R_{a}\right\rangle_{a \in A g}\right.$, pre, sub) with:

- $E=\left\{e_{0}, \ldots, e_{n-1}\right\}$ is a finite non-empty set of actions.
- $R_{a} \subseteq E \times E$ is an accessibility relation for each agent a.

Example (Public change to $\neg p$. | Private comm. by a to b about p.)

LCC models

Definition (Action model)

For a language \mathcal{L} upon Var and Ag that can be interpreted over relational models, a 4-tuple $U=\left(E,\left\langle R_{a}\right\rangle_{a \in A g}\right.$, pre, sub) with:

- $E=\left\{e_{0}, \ldots, e_{n-1}\right\}$ is a finite non-empty set of actions.
- $R_{a} \subseteq E \times E$ is an accessibility relation for each agent a.
- pre : $\mathrm{E} \rightarrow \mathcal{L}$ is a precondition map.

Example (Public change to $\neg p$. | Private comm. by a to b about p.)

LCC models

Definition (Action model)

For a language \mathcal{L} upon Var and Ag that can be interpreted over relational models, a 4-tuple $U=\left(E,\left\langle R_{a}\right\rangle_{a \in A g}\right.$, pre, sub) with:

- $E=\left\{e_{0}, \ldots, e_{n-1}\right\}$ is a finite non-empty set of actions.
- $R_{a} \subseteq E \times E$ is an accessibility relation for each agent a.
- pre : $\mathrm{E} \rightarrow \mathcal{L}$ is a precondition map.
- sub : $(E \times \operatorname{Var}) \rightarrow \mathcal{L}$ is a postcondition map $(e, p) \rightarrow \varphi$.
[Notation: $p^{\text {sub }(e) ~}:=\operatorname{sub}(\mathrm{e}, p)=\varphi$.]
Example (Public change to $\neg p$. | Private comm. by a to b about p.)

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
\pi & ::=\mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::= \\
\pi & \mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
\pi & \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a] agent a knows/believes that . . .

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::= \\
\pi & \mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
\pi & \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a] agent a knows/believes that . . .

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::= \\
\pi & \mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
\pi & \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a]
[a;b]
agent a knows/believes that ...
agent a knows/believes that b knows/believes that ...

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a]
[a;b]
$[a \cup b]$
agent a knows/believes that ...
agent a knows/believes that b knows/believes that ... both agents a, b know/believe that ...

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a]
[a; b]
$[a \cup b]$
$\left[(a \cup b)^{*}\right]$
agent a knows/believes that ...
agent a knows/believes that b knows/believes that ... both agents a, b know/believe that ... it is common knowledge among a, b that \ldots

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a]
[a; b]
$[a \cup b]$
$\left[(a \cup b)^{*}\right]$
$\left[(a \cup b) ;(a \cup b)^{*}\right]$
agent a knows/believes that ...
agent a knows/believes that b knows/believes that ... both agents a, b know/believe that ... it is common knowledge among a, b that \ldots it is common belief among a, b that ...

LCC syntax

Definition (LCC language)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
\pi & ::=\mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Example (LCC modalities)

[a]
[a; b]
$[a \cup b]$
$\left[(a \cup b)^{*}\right]$
$\left[(a \cup b) ;(a \cup b)^{*}\right]$
[U, e]
agent a knows/believes that ...
agent a knows/believes that b knows/believes that ... both agents a, b know/believe that ... it is common knowledge among a, b that ...
it is common belief among a, b that ...
after executing action e of U it necessarily holds that ...

LCC semantics

Definition (Language LCC)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

LCC semantics

Definition (Language LCC)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Definition (Semantics of LCC formulas and LCC programs)
The function $\left\|_\right\|^{M}$ for some LCC epistemic model $M=\left(W,\left\langle R_{a}\right\rangle_{a \in A g}, V\right)$ is:

LCC semantics

Definition (Language LCC)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
& \varphi::=\mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\mathrm{U}, \mathrm{e}] \varphi \\
& \pi::= \\
& \text { a }|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Definition (Semantics of LCC formulas and LCC programs)
The function $\left\|_\right\|^{M}$ for some LCC epistemic model $M=\left(W,\left\langle R_{a}\right\rangle_{a \in A g}, V\right)$ is:

LCC semantics

Definition (Language LCC)

Extend PDL language with formula $[\mathrm{U}, \mathrm{e}] \varphi$ for an LCC pointed action model (U, e):

$$
\begin{aligned}
\varphi & ::= \\
\pi & \mathrm{T}|p| \neg \varphi|\varphi \wedge \varphi|[\pi] \varphi \mid[\cup, \mathrm{e}] \varphi \\
\pi & \mathrm{a}|? \varphi| \pi ; \pi|\pi \cup \pi| \pi^{*}
\end{aligned}
$$

Definition (Semantics of LCC formulas and LCC programs)

The function $\left\|_\right\|^{M}$ for some LCC epistemic model $M=\left(W,\left\langle R_{a}\right\rangle_{a \in A g}, V\right)$ is:

$$
\begin{array}{rlrl}
\|T\|^{M} & =W & \|a\|^{M}= & R_{a} \\
\|p\|^{M} & =V(p) & \|? \varphi\|^{M}=I_{\|}\left\|_{\| \varphi}\right\|^{M} \\
\|\neg \varphi\|^{M} & =W \backslash\|\varphi\|^{M} & \left\|\pi_{1} ; \pi_{2}\right\|^{M}=\left\|\pi_{1}\right\|^{M} \circ\left\|\pi_{2}\right\|^{M} \\
\left\|\varphi_{1} \wedge \varphi_{2}\right\|^{M} & =\left\|\varphi_{1}\right\|^{M} \cap\left\|\varphi_{2}\right\|^{M} & \left\|\pi_{1} \cup \pi_{2}\right\|^{M}=\left\|\pi_{1}\right\|^{M} \cup\left\|\pi_{2}\right\|^{M} \\
\|[\pi] \varphi\|^{M} & =\left\{w \in W \mid \forall v\left((w, v) \in\|\pi\|^{M} \Rightarrow v \in\|\varphi\|^{M}\right)\right\} & \left\|\pi^{*}\right\|^{M}=\left(\|\pi\|^{M}\right)^{*} \\
\|[U, \mathrm{e}] \varphi\|^{M} & =\left\{w \in W \mid w \in\|\operatorname{pre}(\mathrm{e})\|^{M} \Rightarrow(w, e) \in\|\varphi\|^{M \otimes U}\right\} &
\end{array}
$$

LCC semantics

Definition (Update execution)

An epistemic model $M \otimes U=\left(W^{M \otimes U},\left\langle R_{a}^{M \otimes U}\right\rangle_{a \in A g}, V^{M \otimes U}\right)$ with:

LCC semantics

Definition (Update execution)

An epistemic model $M \otimes U=\left(W^{M \otimes U},\left\langle R_{a}^{M \otimes U}\right\rangle_{a \in A g}, V^{M \otimes U}\right)$ with:

$$
W^{M \otimes U}=\text { the pairs }(w, e) \text { such that } M, w \models \text { pre(e) }
$$

Example (After a public change to \neg p, it is common knowl. that $\neg p$.)

$=$

LCC semantics

Definition (Update execution)

An epistemic model $M \otimes U=\left(W^{M \otimes U},\left\langle R_{a}^{M \otimes U}\right\rangle_{a \in A g}, V^{M \otimes U}\right)$ with:

$$
\begin{aligned}
W^{M \otimes U} & =\text { the pairs }(w, e) \text { such that } M, w \models \operatorname{pre}(\mathrm{e}) \\
R_{a}^{M \otimes U} & =\text { the pairs }((w, e),(v, f)) \text { such that } w R_{a} v \text { and } e R_{a} f
\end{aligned}
$$

Example (After a public change to $\neg p$, it is common knowl. that $\neg p$.)

LCC semantics

Definition (Update execution)

An epistemic model $M \otimes U=\left(W^{M \otimes U},\left\langle R_{a}^{M \otimes U}\right\rangle_{a \in A g}, V^{M \otimes U}\right)$ with:

$$
\begin{aligned}
W^{M \otimes U} & =\text { the pairs }(w, e) \text { such that } M, w \models \operatorname{pre}(\mathrm{e}) \\
R_{\mathrm{a}}^{M \otimes U} & =\text { the pairs }((w, \mathrm{e}),(v, \mathrm{f})) \text { such that } w R_{\mathrm{a}} v \text { and } e R_{\mathrm{a}} f \\
V^{M \otimes U}(p) & =\text { the pairs }(w, \mathrm{e}) \text { such that } M, w \models p^{\text {sub }(e)}
\end{aligned}
$$

Example (After a public change to $\neg p$, it is common knowl. that $\neg p$.)

LCC axioms

Definition (LCC = PDL + reduction axioms for [U, e)

Propositional tautologies

$$
\begin{aligned}
& \text { (K) }[\pi](\varphi \rightarrow \psi) \rightarrow([\pi] \varphi \rightarrow[\pi] \psi) \quad \text { (top) }[\mathrm{U}, \mathrm{e}] \mathrm{T} \leftrightarrow \mathrm{~T} \\
& \text { (test) }\left[? \varphi_{1}\right] \varphi_{2} \leftrightarrow\left(\varphi_{1} \rightarrow \varphi_{2}\right) \quad \text { (atoms) [U, e]p } \leftrightarrow\left(\operatorname{pre}(\mathrm{e}) \rightarrow p^{\mathrm{sub}(e)}\right) \\
& \text {] (seq.) }\left[\pi_{1} ; \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right]\left[\pi_{2}\right] \varphi \quad \text { (neg.) }[\mathrm{U}, \mathrm{e}] \neg \varphi \leftrightarrow(\mathrm{pre}(\mathrm{e}) \rightarrow \neg[\mathrm{U}, \mathrm{e}] \varphi) \\
& \text { (choice) }\left[\pi_{1} \cup \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right] \varphi \wedge\left[\pi_{2}\right] \varphi \quad\left(\text { conj.) }[\mathrm{U}, \mathrm{e}]\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow\left([\mathrm{U}, \mathrm{e}] \varphi_{1} \wedge[\mathrm{U}, \mathrm{e}] \varphi_{2}\right)\right. \\
& \text { (mix) }\left[\pi^{*}\right] \varphi \leftrightarrow \varphi \wedge[\pi]\left[\pi^{*}\right] \varphi \quad \text { (prog.) }\left[\mathrm{U}, \mathrm{e}_{\mathrm{i}}\right][\pi] \varphi \leftrightarrow \bigwedge_{j=0}^{n-1}\left[T_{i j}^{U}(\pi)\right]\left[\mathrm{U}, \mathrm{e}_{\mathrm{j}}\right] \varphi \\
& \text { (ind.) } \left.\varphi \wedge\left[\pi^{*}\right](\varphi \rightarrow[\pi] \varphi)\right) \rightarrow\left[\pi^{*}\right] \varphi \quad(M P) \vdash \varphi_{1} \text { and } \vdash \varphi_{1} \rightarrow \varphi_{2} \text { imply } \vdash \varphi_{2} \\
& \left(\mathrm{Nec}_{\pi}\right) \vdash \varphi \text { implies } \vdash[\pi] \varphi . \quad\left(\mathrm{Nec}_{U}\right) \vdash \varphi \text { implies } \vdash[\mathrm{U}, \mathrm{e}] \varphi
\end{aligned}
$$

LCC program transformers [J. van Benthem et al., 2006]

Definition (Program transformers $T_{i j}{ }^{\cup}$)

Given some U with $E=\left\{e_{0}, \ldots, e_{n-1}\right\}$, the $T_{i j}^{U}$ function $(0 \leq i, j \leq n-1)$ is:

$$
\begin{aligned}
& T_{i j}^{U}(a)=\left\{\begin{array}{lll}
? \operatorname{pre}\left(e_{i}\right) ; a & \text { if } \mathrm{e}_{i} \mathrm{R}_{\mathrm{a}} \mathrm{e}_{j} \\
? \perp & \text { otherwise }
\end{array}\right. \\
& T_{i j}^{U}(? \varphi)= \begin{cases}?\left(\operatorname{pre}\left(\mathrm{e}_{\mathrm{i}}\right) \wedge\left[\mathrm{U}, \mathrm{e}_{\mathrm{i}}\right] \varphi\right) & \text { if } i=j \\
? \perp & \text { if } i \neq j\end{cases} \\
& T_{i j}^{U}\left(\pi_{1} ; \pi_{2}\right)=\bigcup_{k=0}^{n-1}\left(T_{i k}^{U}\left(\pi_{1}\right) ; T_{k j}^{U}\left(\pi_{2}\right)\right)
\end{aligned} T_{i j}^{U}\left(\pi_{1} \cup \pi_{2}\right)=T_{i j}^{U}\left(\pi_{1}\right) \cup T_{i j}^{U}\left(\pi_{2}\right), ~ \$
$$

$$
T_{i j}^{U}\left(\pi^{*}\right)=K_{i j n}^{U}(\pi) \quad \text { where } K_{i j n}^{U} \text { is inductively defined as: }
$$

$$
\begin{aligned}
K_{i j 0}^{U}(\pi)= & \begin{cases}? \mathrm{~T} \cup T_{i j}^{U}(\pi) & \text { if } i=j \\
T_{i j}^{U}(\pi) & \text { otherwise }\end{cases} \\
K_{i j(k+1)}^{U}(\pi) & = \begin{cases}\left(K_{k k k}^{U}(\pi)\right)^{*} & \text { if } i=k=j \\
\left(K_{k k k}^{U}(\pi)\right)^{*} ; K_{k j k}^{U}(\pi) & \text { if } i=k \neq j \\
K_{i k k}^{U}(\pi) ;\left(K_{k k k}^{\cup}(\pi)\right)^{*} & \text { if } i \neq k=j \\
K_{i j k}^{\cup}(\pi) \cup\left(K_{i k k}^{U}(\pi) ;\left(K_{k k k}^{U}(\pi)\right)^{*} ; K_{k j k}^{U}(\pi)\right) & \text { if } i \neq k \neq j\end{cases}
\end{aligned}
$$

LCC program transformers [J. van Benthem et al., 2006]

Example $\left(T_{i j}^{U}(a)\right)$

$$
\begin{aligned}
& \text { [} \mathrm{U}, \mathrm{e}_{0} \text {][a]p path in } \mathrm{M} \otimes \mathrm{U} \\
& {\left[T_{00}^{U}(a)\right]\left[U, \mathrm{e}_{0}\right] p \wedge\left[T_{01}^{U}(a)\right]\left[U, \mathrm{e}_{1}\right] p} \\
& {[? \perp]\left[U, e_{0}\right] p \wedge[? \neg p ; a]\left[U, e_{1}\right] p \quad \text { path in } M}
\end{aligned}
$$

LCC program transformers [J. van Benthem et al., 2006]

Example $\left(T_{10}^{U}\left(\pi^{*}\right)=K_{103}^{U}(\pi)\right)$

$$
\begin{aligned}
& K_{103}^{U}(\pi)=K_{102}^{U}(\pi) \cup\left(K_{122}^{U}(\pi) ;\left(K_{222}^{U}(\pi)\right)^{*} ; K_{202}^{U}(\pi)\right) \\
& =\left(\left(K_{11}^{U}(\pi)\right)^{*} ; K_{101}^{U}(\pi)\right) \cup \\
& \begin{array}{l}
\left(\left(K_{111}^{U}(\pi)\right)^{*} ; K_{101}^{U}(\pi) ;\right. \\
\left(K_{21}^{U}(\pi) \cup\left(K_{21}^{U}(\pi) ;\left(K_{11}^{U}(\pi)\right)^{*} ; K_{12}^{U}(\pi)\right)\right)^{*} ; \\
\left(K_{201}^{U}(\pi) \cup\left(K_{211}^{U}(\pi) ;\left(K_{111}^{U}(\pi)^{*} ; K_{101}^{U}(\pi)\right)\right)\right)=\ldots
\end{array}
\end{aligned}
$$

Translation of $\mathcal{L}_{\text {LCC }}$ to $\mathcal{L}_{\text {PDL }}$ from (LCC 2006).

Definition (Translation functions t and r.)

$$
\begin{aligned}
& t(T) \quad=T \\
& t(p) \quad=p \\
& t(\neg \varphi) \quad=\neg t(\varphi) \\
& t\left(\varphi_{1} \wedge \varphi_{2}\right) \quad=t\left(\varphi_{1}\right) \wedge t^{\prime}\left(\varphi_{2}\right) \\
& r(a)=a \\
& r(B)=B \\
& r(? \varphi) \quad=? t(\varphi) \\
& r\left(\pi_{1} ; \pi_{2}\right)=r\left(\pi_{1}\right) ; r\left(\pi_{2}\right) \\
& t([\pi] \varphi)=[r(\pi)] t(\varphi) \\
& r\left(\pi_{1} \cup \pi_{2}\right)=r\left(\pi_{1}\right) \cup r\left(\pi_{2}\right) \\
& t([\mathrm{U}, \mathrm{e}] \mathrm{T}) \quad=\mathrm{T} \\
& r\left(\pi^{*}\right)=(r(\pi))^{*} \\
& t([\mathrm{U}, \mathrm{e}] p) \quad=t(\text { pre }(\mathrm{e})) \rightarrow t\left(\mathrm{p}^{\text {sub(e) })}\right) \\
& t([\mathrm{U}, \mathrm{e}] \neg \varphi) \quad=t(\mathrm{pre}(\mathrm{e})) \rightarrow \neg t([\mathrm{U}, \mathrm{e}] \varphi) \\
& t\left([\mathrm{U}, \mathrm{e}]\left(\varphi_{1} \wedge \varphi_{2}\right)\right) \quad=t([\mathrm{U}, \mathrm{e}] \varphi) \wedge t\left([\mathrm{U}, \mathrm{e}] \varphi_{2}\right) \\
& t\left(\left[\mathrm{U}, \mathrm{e}_{\mathrm{i}}\right][\pi] \varphi\right) \quad=\bigwedge_{j=0}^{n-1}\left[r\left(T_{i j}^{U}(\pi)\right)\right] t\left(\left[\mathrm{U}, \mathrm{e}_{j}\right] \varphi\right) \\
& t\left([\mathrm{U}, \mathrm{e}]\left[\mathrm{U}^{\prime}, \mathrm{e}^{\prime}\right] \varphi\right) \quad=t\left([\mathrm{U}, \mathrm{e}] t\left(\left[\mathrm{U}^{\prime}, \mathrm{e}^{\prime}\right] \varphi\right)\right)
\end{aligned}
$$

Outline

(9) Introduction

(2) A brief sketch of LCC

(3) A new translation of LCC to PDL

4. Summary and future work

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
X^{00}=? \operatorname{pre}\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { ?pre }\left(\mathrm{e}_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{10}\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { ?pre }\left(\mathrm{e}_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{10}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{00}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{i j}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; x^{00}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{j i}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
X^{10}=\left(S^{10} ;\left(? \operatorname{pre}\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right)
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { ?pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{00}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{i j}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
\begin{aligned}
X^{10} & =\left(S^{10} ;\left(? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(S^{10} ; S^{01} ; X^{10}\right) \cup\left(S^{11} ; X^{10}\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { ?pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{00}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{i j}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
\begin{aligned}
X^{10} & =\left(S^{10} ;\left(? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(S^{01} ; S^{11} ;{ }^{10}\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$)
Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{00}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{j i}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
\begin{aligned}
X^{10} & =\left(S^{10} ;\left(? p r e\left(e_{0}\right) \cup\left(S^{01} ; ;^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? p r e\left(e_{0}\right)\right) \cup\left(S^{10} ; S^{01} ; X^{10}\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \\
& =\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \cup\left(S^{10} ; \text { pre }\left(e_{0}\right)\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$) Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{10}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{j i}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
\begin{aligned}
X^{10} & =\left(S^{10} ;\left(? \operatorname{pre}\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \text { pre }\left(e_{0}\right)\right) \cup\left(S^{10} ; S^{01} ; X^{10}\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \\
& =\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \cup\left(S^{10} ; \text { ?pre }\left(e_{0}\right)\right) \\
& \left.=\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right)^{*} ; S^{10} ; ? \text { pre }\left(e_{0}\right) \quad \text { (by Arden Theorem) }\right)
\end{aligned}
$$

Brzozowski's equational method.

Example (The transformations of π^{*}-paths $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$, denoted $X^{i j}$) Let $S^{i j}$ be the transformed direct π path $\mathrm{e}_{i} \rightarrow \mathrm{e}_{j}$ in U .

$$
\begin{aligned}
& X^{00}=? \text { pre }\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right) \\
& X^{10}=\left(S^{10} ; X^{00}\right) \cup\left(S^{11} ; X^{10}\right) \\
& X^{20}=\left(S^{22} ; X^{20}\right) \cup\left(S^{21} ; X^{10}\right)
\end{aligned}
$$

Solve $X^{j i}$ by substitution and Arden theorem: $X=A X \cup B \Rightarrow X=A^{*} B$

$$
\begin{aligned}
X^{10} & =\left(S^{10} ;\left(? \operatorname{pre}\left(e_{0}\right) \cup\left(S^{01} ; X^{10}\right)\right)\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \text { pre }\left(e_{0}\right)\right) \cup\left(S^{10} ; S^{01} ; X^{10}\right) \cup\left(S^{11} ; X^{10}\right) \\
& =\left(S^{10} ; ? \operatorname{pre}\left(e_{0}\right)\right) \cup\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \\
& =\left(\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right) ; X^{10}\right) \cup\left(S^{10} ; \text { ?pre }\left(e_{0}\right)\right) \\
& \left.=\left(\left(S^{10} ; S^{01}\right) \cup S^{11}\right)^{*} ; S^{10} ; ? \text { pre }\left(e_{0}\right) \quad \text { (by Arden Theorem) }\right)
\end{aligned}
$$

New program transformers $\mu^{\mathrm{U}}(\pi)[i, j]$

Definition (Program transformers for π-paths $\mathrm{e}_{\mathrm{i}} \rightarrow \mathrm{e}_{\mathrm{j}}$)

$$
\mu^{U}\left(\pi^{*}\right)=S_{0}^{\mathrm{U}}\left(\mu^{U}(\pi) \mid A^{U}\right) \text { defined next. }
$$

$$
\begin{aligned}
& \mu^{U}(a)[i, j]=\left\{\begin{array}{ll}
? \text { pre }\left(\mathrm{e}_{\mathrm{i}}\right) ; a & \text { if } \mathrm{e}_{\mathrm{i}} \mathrm{R}_{\mathrm{a}} \mathrm{e}_{\mathrm{j}} \\
? \perp & \text { otherwise }
\end{array} \quad \mu^{\mathrm{U}}(? \varphi)[i, j]= \begin{cases}?\left(\operatorname{pre}\left(\mathrm{e}_{\mathrm{i}}\right) \wedge\left[\mathrm{U}, \mathrm{e}_{\mathrm{e}}\right] \varphi\right) & \text { if } i=j \\
? \perp & \text { if } i \neq j\end{cases} \right. \\
& \mu^{\cup}\left(\pi_{1} \cup \pi_{2}\right)[i, j]=\oplus\left\{\mu^{\cup}\left(\pi_{1}\right)\left[i, j, \mu^{\cup}\left(\pi_{2}\right)[i, j\}\right\} \text { where } \oplus \Gamma= \begin{cases}\cup(\Gamma \backslash \backslash ? \perp\}) & \text { if } \varnothing \neq \Gamma \neq\{? \perp\} \\
? \perp & \text { otherwise }\end{cases} \right. \\
& \mu^{\cup}\left(\pi_{1} ; \pi_{2}\right)[i, j]=\oplus\left\{\mu^{\cup}\left(\pi_{1}\right)[i, k] \odot \mu^{\cup}\left(\pi_{2}\right)[k, j] \mid 0 \leq k \leq n-1\right\} \\
& \text { where } \sigma \odot \rho= \begin{cases}\sigma ; \rho & \text { if } \sigma \neq ? \perp \neq \rho \\
? \perp & \text { otherwise }\end{cases}
\end{aligned}
$$

Program transformers $\mu^{U}\left(\pi^{*}\right)[i, j]$

Definition ((cont'd))

$$
\mu^{U}\left(\pi^{*}\right)=S_{0}^{U}\left(\mu^{U}(\pi) \mid A^{U}\right) \quad \text { where }
$$

$\left(\mu^{\cup}(\pi) \mid A^{\mathrm{U}}\right)$ is an $n \times 2 n$ matrix with $A^{\mathrm{U}}[i, j]= \begin{cases}? \operatorname{pre}\left(\mathrm{e}_{i}\right) & \text { if } i=j \\ ? \perp & \text { otherwise }\end{cases}$
$S_{n}^{U}(M \mid A)=A \quad$ and $\quad S_{k}^{U}(M \mid A)=S_{k+1}^{U}\left(\operatorname{Subs}_{k}\left(\operatorname{Ard}_{k}(M \mid A)\right)\right)$, where
$\operatorname{Ard}_{k}(N)[i, j]= \begin{cases}N[i, j] & \text { if } i \neq k \\ ? \perp & \text { if } i=k=j \\ N[i, j] & \text { if } i=k \neq j \text { and } N[k, k]=? \perp \\ N[k, k]^{*} \odot N[i, j] & \text { otherwise }\end{cases}$
$\operatorname{Subs}_{k}(N)[i, j]= \begin{cases}N[i, j] & \text { if } i=k \\ ? \perp & \text { if } i \neq k=j \\ \oplus(N[i, k] \odot N[k, j], N[i, j]\} & \text { otherwise }\end{cases}$

New program transformers

Example ((cont'd) $1 / 7$)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? \mathrm{pre}\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\mathrm{~S}^{10}$	S^{11}	$? \perp$	$? \perp$	$?$ pre $\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$? \perp$	S^{21}	S^{22}	$? \perp$	$? \perp$	$?$ pre $\left(\mathrm{e}_{2}\right)$

New program transformers

Example ((cont'd) 2/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? \operatorname{pre}\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$? \perp$	$? \perp$	$\left(S^{11}\right)^{*} ; ? \operatorname{pre}\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$? \perp$	S^{21}	S^{22}	$? \perp$	$? \perp$	$? \operatorname{pre}\left(\mathrm{e}_{2}\right)$

New program transformers

Example ((cont'd) 3/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{0}	$? \perp$	$? p r e\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$\left(S^{11}\right)^{*} ; ? \perp$	$\left(S^{11}\right)^{*} ; ? \perp$	$\left(S^{11}\right)^{*} ; ? p r e\left(\mathrm{e}_{1}\right)$	$\left(S^{11}\right)^{*} ; ? \perp$
e_{2}	$? \perp$	S^{21}	S^{22}	$? \perp$	$? \perp$	$? p r e\left(e_{2}\right)$

New program transformers

Example ((cont'd) 4/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? \operatorname{pre}\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$? \perp$	$? \perp$	$\left(S^{11}\right)^{*} ; ? p r e\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$\left(S^{21} ;\left(S^{11}\right)^{*} ; S^{10}\right)$	$? \perp$	S^{22}	$? \perp$	$\left(S^{21} ;\left(S^{11}\right)^{*} ; ? \operatorname{pre}\left(\mathrm{e}_{1}\right)\right)$	$? \mathrm{pre}\left(\mathrm{e}_{2}\right)$

New program transformers

Example ((cont'd) 5/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? p r e\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$? \perp$	$? \perp$	$\left(S^{11}\right)^{*} ; ? p r e\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$\left(S^{21} ;\left(S^{11}\right)^{*} ; S^{10}\right) \cup ? \perp$	$? \perp$	$\left(S^{21} ; ? \perp\right) \cup S^{22}$	$? \perp$	$? \perp$	$? p r e\left(\mathrm{e}_{2}\right)$

New program transformers

Example ((cont'd) 6/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? \operatorname{pre}\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$? \perp$	$? \perp$	$\left(S^{11}\right)^{*} ; ? \mathrm{pre}\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$\left(S^{21} ;\left(S^{11}\right)^{*} ; S^{10}\right)$	$? \perp$	S^{22}	$? \perp$	$? \perp$	$?$ pre $\left(\mathrm{e}_{2}\right)$

New program transformers

Example ((cont'd) 7/7)

	e_{0}	e_{1}	e_{2}	e_{0}	e_{1}	e_{2}
e_{0}	$? \perp$	S^{01}	$? \perp$	$? \operatorname{pre}\left(\mathrm{e}_{0}\right)$	$? \perp$	$? \perp$
e_{1}	$\left(S^{11}\right)^{*} ; S^{10}$	$? \perp$	$? \perp$	$? \perp$	$\left(S^{11}\right)^{*} ; ? p r e\left(\mathrm{e}_{1}\right)$	$? \perp$
e_{2}	$\left(S^{21} ;\left(S^{11}\right)^{*} ; S^{10}\right)$	$? \perp$	S^{22}	$\left(S^{21} ; ? \perp\right)$	$\left(S^{21} ;\left(S^{11}\right)^{*} ; ? p r e\left(\mathrm{e}_{1}\right)\right)$	$\left(S^{21} ; ? \perp\right)$
		$\cup ? \perp$	$\cup ? \perp$	$\cup ? p r e\left(\mathrm{e}_{2}\right)$		

A new translation $\mathcal{L}_{\mathrm{LCC}} \rightarrow \mathcal{L}_{\mathrm{PDL}}$.

Definition (Translation functions t^{\prime}, r^{\prime})

$t^{\prime}(\mathrm{T})$	$=\top \quad r^{\prime}(a)$	$=\mathrm{a}$
$t^{\prime}(p)$	=p $\quad r^{\prime}(B)$	$=B$
$t^{\prime}(\neg \varphi)$	$=\neg t^{\prime}(\varphi) \quad r^{\prime}(? \varphi)$	$=? t^{\prime}(\varphi)$
$t^{\prime}\left(\varphi_{1} \wedge \varphi_{2}\right)$	$=t^{\prime}\left(\varphi_{1}\right) \wedge t^{\prime}\left(\varphi_{2}\right) \quad r^{\prime}\left(\pi_{1} ; \pi_{2}\right)$	$=r^{\prime}\left(\pi_{1}\right) ; r^{\prime}\left(\pi_{2}\right)$
$t^{\prime}([\pi] \varphi)$	$=\left[r^{\prime}(\pi)\right] t^{\prime}(\varphi) \quad r^{\prime}\left(\pi_{1} \cup \pi_{2}\right)$	$=r^{\prime}\left(\pi_{1}\right) \cup r^{\prime}\left(\pi_{2}\right)$
$t^{\prime}([\mathrm{U}, \mathrm{e}] \mathrm{T})$	$=\mathrm{T}$	$=\left(r^{\prime}(\pi)\right)^{*}$
$t^{\prime}([\mathrm{U}, \mathrm{e}] p)$	$=t^{\prime}(\operatorname{pre}(\mathrm{e})) \rightarrow t^{\prime}\left(\mathrm{p}^{\text {sub(e) }}\right)$	
$t^{\prime}([\mathrm{U}, \mathrm{e}] \neg \varphi)$	$=t^{\prime}(\mathrm{pre}(\mathrm{e})) \rightarrow \neg t^{\prime}([\mathrm{U}, \mathrm{e}] \varphi)$	
$t^{\prime}\left([\mathrm{U}, \mathrm{e}]\left(\varphi_{1} \wedge \varphi_{2}\right)\right)$	$=t^{\prime}([\mathrm{U}, \mathrm{e}] \varphi) \wedge t^{\prime}\left([\mathrm{U}, \mathrm{e}] \varphi_{2}\right)$	
$t^{\prime}\left(\left[\mathrm{U}, \mathrm{e}_{i}\right][\pi] \varphi\right)$		
$t^{\prime}\left([\mathrm{U}, \mathrm{e}]\left[\mathrm{U}^{\prime}, \mathrm{e}^{\prime}\right] \varphi\right)$	$=t^{\prime}\left([\mathrm{U}, \mathrm{e}] t^{\prime}\left(\left[\mathrm{U}^{\prime}, \mathrm{e}^{\prime}\right] \varphi\right)\right)$	

Correctness of the new translation

Lemma

Let $\mathrm{U}=\left(\mathrm{E}, \mathrm{R}\right.$, pre, sub) be an action model with $\mathrm{e}_{i}, \mathrm{e}_{j} \in \mathrm{E}$; let π be an LCC program. For any epistemic model M,

$$
\left\|T_{i j}^{U}(\pi)\right\|^{M}=\left\|\mu^{U}(\pi)[i, j]\right\|^{M}
$$

Correctness of the new translation

Lemma

Let $U=\left(E, R\right.$, pre, sub) be an action model with $\mathrm{e}_{i}, \mathrm{e}_{j} \in \mathrm{E}$; let π be an LCC program. For any epistemic model M,

$$
\left\|T_{i j}^{U}(\pi)\right\|^{M}=\left\|\mu^{U}(\pi)[i, j]\right\|^{M}
$$

Corollary

The translation functions t^{\prime}, r^{\prime} reduce the language of LCC to that of PDL. This translation is correct.

Correctness of the new translation

Lemma

Let $\mathrm{U}=\left(\mathrm{E}, \mathrm{R}\right.$, pre, sub) be an action model with $\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}} \in \mathrm{E}$; let π be an LCC program. For any epistemic model M,

$$
\left\|T_{i j}^{U}(\pi)\right\|^{M}=\left\|\mu^{U}(\pi)[i, j]\right\|^{M}
$$

Corollary

The translation functions t^{\prime}, r^{\prime} reduce the language of LCC to that of PDL. This translation is correct.

Fact

The complexity of $T_{i j}^{U}(\pi)$ in (LCC, 2006) is exponential. The complexity of $\mu^{U}(\pi)$ is $O\left(g \cdot n^{3}\right)$, where g is the number of subprograms

New axioms for LCC; soundness and completeness.

Definition (LCC = PDL + reduction axioms)
Propositional tautologies

$$
\begin{aligned}
& \text { (K) }[\pi](\varphi \rightarrow \psi) \rightarrow([\pi] \varphi \rightarrow[\pi] \psi) \quad \text { (top) }[\mathrm{U}, \mathrm{e}] \mathrm{T} \leftrightarrow \mathrm{~T} \\
& \text { (test) }\left[? \varphi_{1}\right] \varphi_{2} \leftrightarrow\left(\varphi_{1} \rightarrow \varphi_{2}\right) \quad \text { (atoms) [U, e] } p \leftrightarrow\left(p r e(e) \rightarrow p^{\text {sub }(e)}\right) \\
& \text { (seq.) }\left[\pi_{1} ; \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right]\left[\pi_{2}\right] \varphi \quad \text { (neg.) }[\mathrm{U}, \mathrm{e}] \neg \varphi \leftrightarrow(\operatorname{pre}(\mathrm{e}) \rightarrow \neg[\mathrm{U}, \mathrm{e}] \varphi) \\
& \text { (choice) }\left[\pi_{1} \cup \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right] \varphi \wedge\left[\pi_{2}\right] \varphi \quad \text { (conj.) }[\mathrm{U}, \mathrm{e}]\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow\left([\mathrm{U}, \mathrm{e}] \varphi_{1} \wedge[\mathrm{U}, \mathrm{e}] \varphi_{2}\right) \\
& \text { (mix) }\left[\pi^{*}\right] \varphi \leftrightarrow \varphi \wedge[\pi]\left[\pi^{*}\right] \varphi \quad \text { (prog.) } \quad\left[\mathrm{U}, \mathrm{e}_{\mathrm{i}}\right][\pi] \varphi \leftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ind.) } \left.\varphi \wedge\left[\pi^{*}\right](\varphi \rightarrow[\pi] \varphi)\right) \rightarrow\left[\pi^{*}\right] \varphi \quad(M P) \vdash \varphi_{1} \text { and } \vdash \varphi_{1} \rightarrow \varphi_{2} \text { imply } \vdash \varphi_{2} \\
& \left(\mathrm{Nec}_{\pi}\right) \vdash \varphi \text { implies } \vdash[\pi] \varphi \text {. }
\end{aligned}
$$

New axioms for LCC; soundness and completeness.

Definition (LCC = PDL + reduction axioms)
Propositional tautologies

$$
\begin{aligned}
& \text { (K) }[\pi](\varphi \rightarrow \psi) \rightarrow([\pi] \varphi \rightarrow[\pi] \psi) \quad \text { (top) }[\mathrm{U}, \mathrm{e}] \mathrm{T} \leftrightarrow \mathrm{~T} \\
& \text { (test) }\left[? \varphi_{1}\right] \varphi_{2} \leftrightarrow\left(\varphi_{1} \rightarrow \varphi_{2}\right) \quad \text { (atoms) [U, e] } p \leftrightarrow\left(p r e(e) \rightarrow p^{\text {sub }(e)}\right) \\
& \text { (seq.) }\left[\pi_{1} ; \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right]\left[\pi_{2}\right] \varphi \quad \text { (neg.) }[\mathrm{U}, \mathrm{e}] \neg \varphi \leftrightarrow(\operatorname{pre}(\mathrm{e}) \rightarrow \neg[\mathrm{U}, \mathrm{e}] \varphi) \\
& \text { (choice) }\left[\pi_{1} \cup \pi_{2}\right] \varphi \leftrightarrow\left[\pi_{1}\right] \varphi \wedge\left[\pi_{2}\right] \varphi \quad \text { (conj.) }[\mathrm{U}, \mathrm{e}]\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow\left([\mathrm{U}, \mathrm{e}] \varphi_{1} \wedge[\mathrm{U}, \mathrm{e}] \varphi_{2}\right) \\
& \text { (mix) }\left[\pi^{*}\right] \varphi \leftrightarrow \varphi \wedge[\pi]\left[\pi^{*}\right] \varphi \quad \text { (prog.) } \quad\left[\mathrm{U}, \mathrm{e}_{\mathrm{i}}\right][\pi] \varphi \leftrightarrow \\
& \wedge_{\substack{0 \leq \leq \leq n-1 \\
\mu(\pi)[i l i l l \perp}}\left[\mu^{U}(\pi)[i, j]\right]\left[U, \mathrm{e}_{\mathrm{j}}\right] \varphi \\
& \text { (ind.) } \left.\varphi \wedge\left[\pi^{*}\right](\varphi \rightarrow[\pi] \varphi)\right) \rightarrow\left[\pi^{*}\right] \varphi \quad(M P) \vdash \varphi_{1} \text { and } \vdash \varphi_{1} \rightarrow \varphi_{2} \text { imply } \vdash \varphi_{2} \\
& \left(\mathrm{Nec}_{\pi}\right) \vdash \varphi \text { implies } \vdash[\pi] \varphi \text {. } \\
& \left(\mathrm{NeC}_{\mathrm{U}}\right) \vdash \varphi \text { implies } \vdash[\mathrm{U}, \mathrm{e}] \varphi
\end{aligned}
$$

Corollary

The new axiom system for LCC is sound and complete.

Outline

(1) Introduction

(2) A brief sketch of LCC

(3) A new translation of LCC to PDL
(4) Summary and future work

Summary

- We presented an alternative definition of the LCC program transformers

Summary

- We presented an alternative definition of the LCC program transformers
instead of Kleene's method, we used Brzozowski's equational method.

Summary

- We presented an alternative definition of the LCC program transformers
instead of Kleene's method, we used Brzozowski's equational method.
- Our proposal generates:

Summary

- We presented an alternative definition of the LCC program transformers
instead of Kleene's method, we used Brzozowski's equational method.
- Our proposal generates:
- A more efficient translation LCC \rightarrow PDL.

Summary

- We presented an alternative definition of the LCC program transformers
instead of Kleene's method, we used Brzozowski's equational method.
- Our proposal generates:
- A more efficient translation LCC \rightarrow PDL.
- A new set of reduction axioms for LCC.

Summary

- We presented an alternative definition of the LCC program transformers
instead of Kleene's method, we used Brzozowski's equational method.
- Our proposal generates:
- A more efficient translation LCC \rightarrow PDL.
- A new set of reduction axioms for LCC.
- A more elegant and simpler implementation to be used with PDL checkers.

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq ? \top=\rho \\ \rho & \text { if } \sigma=? \top\end{cases}
$$

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq \text { ? } \top=\rho \\ \rho & \text { if } \sigma=? \mathrm{~T}\end{cases}
$$

- Simplify the algorithm for the Ard_{k} and Subs $_{k}$ functions

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq \text { ? } \top=\rho \\ \rho & \text { if } \sigma=? \mathrm{~T}\end{cases}
$$

- Simplify the algorithm for the Ard_{k} and Subs $_{k}$ functions disregard the $N[i, j]=$? \perp elements with $j<k$ or $j>n+k$, for any $n \times 2 n$ matrix $N[i, j]$

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq \text { ? } \top=\rho \\ \rho & \text { if } \sigma=? \mathrm{~T}\end{cases}
$$

- Simplify the algorithm for the Ard_{k} and Subs $_{k}$ functions disregard the $N[i, j]=$? \perp elements with $j<k$ or $j>n+k$, for any $n \times 2 n$ matrix $N[i, j]$
- An implementation in Prolog of the proposed translation, to be combined with e.g. pdlProver, to be applied to:

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq ? \top=\rho \\ \rho & \text { if } \sigma=? \top\end{cases}
$$

- Simplify the algorithm for the Ard_{k} and Subs $_{k}$ functions disregard the $N[i, j]=$? \perp elements with $j<k$ or $j>n+k$, for any $n \times 2 n$ matrix $N[i, j]$
- An implementation in Prolog of the proposed translation, to be combined with e.g. pdlProver, to be applied to:
- Verification of epistemic protocols (Russian Cards Problems).

Future Work

- Simplify some of the definitions used in program transformers

$$
\text { e.g. } \quad \sigma \odot \rho= \begin{cases}\sigma & \text { if } \sigma \neq ? \top=\rho \\ \rho & \text { if } \sigma=? \top\end{cases}
$$

- Simplify the algorithm for the Ard_{k} and Subs $_{k}$ functions disregard the $N[i, j]=$? \perp elements with $j<k$ or $j>n+k$, for any $n \times 2 n$ matrix $N[i, j]$
- An implementation in Prolog of the proposed translation, to be combined with e.g. pdlProver, to be applied to:
- Verification of epistemic protocols (Russian Cards Problems).
- Planning algorithms for LCC.

Thank you for your attention!

Bibliography

(1) Johan van Benthem and Jan van Eijck and Barteld Kooi, Logics of communication and change, Information and Computation, 11(204) 1620-1662, (2006)

Bibliography

(1) Johan van Benthem and Jan van Eijck and Barteld Kooi, Logics of communication and change, Information and Computation, 11(204) 1620-1662, (2006)
(2) John H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, (1971)

Bibliography

(1) Johan van Benthem and Jan van Eijck and Barteld Kooi, Logics of communication and change, Information and Computation, 11(204) 1620-1662, (2006)
(2) John H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, (1971)
(3) Janusz A. Brzozowski, Derivatives of Regular Expressions, Journal of the ACM, 11(4), 481-494, (1964),

Bibliography

(1) Johan van Benthem and Jan van Eijck and Barteld Kooi, Logics of communication and change, Information and Computation, 11(204) 1620-1662, (2006)
(2) John H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, (1971)
(3) Janusz A. Brzozowski, Derivatives of Regular Expressions, Journal of the ACM, 11(4), 481-494, (1964),
(4) Dean N. Arden, Delayed-logic and finite-state machines, SWCT (FOCS), 133-151, (1961)

Bibliography

(1) Johan van Benthem and Jan van Eijck and Barteld Kooi, Logics of communication and change, Information and Computation, 11(204) 1620-1662, (2006)
(2) John H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, (1971)
(3) Janusz A. Brzozowski, Derivatives of Regular Expressions, Journal of the ACM, 11(4), 481-494, (1964),
(4) Dean N. Arden, Delayed-logic and finite-state machines, SWCT (FOCS), 133-151, (1961)
(6) S.C. Kleene, Representation of Events in Nerve Nets and Finite Automata, 3-41 in: Automata Studies (Claude E. Shannon and John McCarthy, eds.), Princeton University Press, (1956)

