Skip to main content

RCC*-9 and CBM*

  • Conference paper
Book cover Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

Abstract

In this paper we introduce a new logical calculus of the Region Connection Calculus (RCC) family, RCC*-9. Based on nine topological relations, RCC*-9 is an extension of RCC-8 and models topological relations between multi-type geometric features: therefore, it is a calculus that goes beyond the modeling of regions as in RCC-8, being able to deal with lower dimensional features embedded in a given space, such as linear features embedded in the plane. Secondly, the paper presents a modified version of the Calculus-Based Method (CBM), a calculus for representing topological relations between spatial features. This modified version, called CBM*, is useful for defining a reasoning system, which was difficult to define for the original CBM. The two new calculi RCC*-9 and CBM* are introduced together because we can show that, even if with different formalisms, they can model the same topological configurations between spatial features and the same reasoning strategies can be applied to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aref, W.G., Samet, H.: Optimization Strategies for Spatial Query Processing. In: 17th International Conference on Very Large Databases, Barcelona, Spain, pp. 81–90 (1991)

    Google Scholar 

  2. Bennett, B.: Logical Representations for Automated Reasoning about Spatial Relationships. Ph.D. Thesis, School of Computer Studies, University of Leeds (1997)

    Google Scholar 

  3. Clementini, E., Di Felice, P.: A Comparison of Methods for Representing Topological Relationships. Information Sciences 3, 149–178 (1995)

    Article  Google Scholar 

  4. Clementini, E., Di Felice, P.: A Model for Representing Topological Relationships Between Complex Geometric Features in Spatial Databases. Information Sciences 90, 121–136 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clementini, E., Di Felice, P., van Oosterom, P.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Clementini, E., Skiadopoulos, S., Billen, R., Tarquini, F.: A reasoning system of ternary projective relations. IEEE Transactions on Knowledge and Data Engineering 22, 161–178 (2010)

    Article  Google Scholar 

  7. Codd, E.F.: A relational model for large shared data banks. Communications of the ACM 13, 377–387 (1970)

    Article  MATH  Google Scholar 

  8. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.: Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica 1, 275–316 (1997)

    Article  Google Scholar 

  9. Cohn, A.G., Renz, J.: Qualitative Spatial Representation and Reasoning. In: Harmelen, F.V., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 1, pp. 551–596. Elsevier (2007)

    Google Scholar 

  10. Cohn, A.G., Varzi, A.C.: Mereotopological connection. Journal of Philosophical Logic 32, 357–390 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cui, Z., Cohn, A.G., Randell, D.A.: Qualitative and Topological Relationships in Spatial Databases. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 296–315. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  12. Egenhofer, M.J.: Deriving the composition of binary topological relations. Journal of Visual Languages and Computing 5, 133–149 (1994)

    Article  Google Scholar 

  13. Egenhofer, M.J., Clementini, E., Di Felice, P.: Topological relations between regions with holes. International Journal of Geographical Information Systems 8, 129–142 (1994)

    Article  Google Scholar 

  14. Egenhofer, M.J., Franzosa, R.D.: Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5, 161–174 (1991)

    Article  Google Scholar 

  15. Egenhofer, M.J., Herring, J.R.: Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases. Department of Surveying Engineering, University of Maine, Orono, ME Technical Report (1990)

    Google Scholar 

  16. Gabrielli, N.: Investigation of the Tradeoff between Expressiveness and Complexity in Description Logics with Spatial Operators. Ph.D. Thesis: University of Verona (2009)

    Google Scholar 

  17. Galton, A.: Modes of overlap. Journal of Visual Languages and Computing 9, 61–79 (1998)

    Article  Google Scholar 

  18. Galton, A.: Multidimensional Mereotopology. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Whistler, BC, Canada, June 2-5, pp. 45–54. American Association for Artificial Intelligence (2004)

    Google Scholar 

  19. Galton, A.P.: Taking dimension seriously in qualitative spatial reasoning. In: Proceedings of the Twelfth European Conference on Artificial Intelligence (ECAI 1996), Budapest, Hungary, August 11-16 (1996)

    Google Scholar 

  20. Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artificial Intelligence 137, 1–42 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gotts, N.M.: Formalizing Commonsense Topology: The INCH Calculus. pp. In: Proceedings of the Fourth International Symposium on Artificial Intelligence and Mathematics (1996)

    Google Scholar 

  22. Isli, A., Cabedo, L.M., Barkowsky, T., Moratz, R.: A Topological Calculus for Cartographic Entities. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 225–238. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. OGC Open Geospatial Consortium Inc. OpenGIS Simple Features Implementation Specification for SQL. vol. OGC 99–049 (1999)

    Google Scholar 

  24. Wölfl, S., Mossakowski, T., Schröder, L.: Qualitative constraint calculi: Heterogeneous verification of composition tables. In: 20th International FLAIRS Conference (FLAIRS 2007), pp. 665–670 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Clementini, E., Cohn, A.G. (2014). RCC*-9 and CBM*. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics