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Abstract. Exchange matrices represent spatial weights as symmetric
probability distributions on pairs of regions, whose margins yield regional
weights, generally well-specified and known in most contexts. This contri-
bution proposes a mechanism for constructing exchange matrices, derived
from quite general symmetric proximity matrices, in such a way that the
margin of the exchange matrix coincides with the regional weights. Ex-
change matrices generate in turn diffusive squared Euclidean dissimilari-
ties, measuring spatial remoteness between pairs of regions. Unweighted
and weighted spatial frameworks are reviewed and compared, regarding
in particular their impact on permutation and normal tests of spatial au-
tocorrelation. Applications include tests of spatial autocorrelation with
diagonal weights, factorial visualization of the network of regions, mul-
tivariate generalizations of Moran’s I, as well as “landscape clustering”,
aimed at creating regional aggregates both spatially contiguous and en-
dowed with similar features.
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Weighted unoriented networks are specified by node and edge weights. In
spatial statistics, node weights f represent the relative importance of regions,
normalized to unity, entering into the definition of weighted averages of the form
x̄ =

∑
i fixi. Also, edge weights eij constitute spatial weights, entering in the

definition of spatially autocorrelated models.
Edge weights are weight-compatible if their margins coincide with the set of

regional weights f , generally well-defined and known a priori. Symmetric, weight-
compatible edge weights define an exchange matrix E, whose components can
be interpreted as the probability of selecting a pair of regions.

On one hand, exchange matrices arguably constitute a style of spatial weights
particularly adapted to weighted spatial contexts. On the other hand, exchange
matrices E are hardly ever directly known to the fellow worker. Instead, the
researcher in general only possesses vague, incomplete spatial information, as
expressed in a spatial proximity matrix G, whose components provide a spatial
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measure of proximity between pairs of regions. The proximity or generalized
adjacency matrix G may represent adjacencies, the size of the common boundary,
the inter-regional accessibility, the inter-regional flow of exchanged units (people,
matter, goods, information), as well as many other proxies for neighborhood.

Symmetrizing and normalizing G makes it formally equivalent with a distri-
bution on regional pairs, that is with an exchange matrix - see specification U)
below. However, the marginal distribution γ resulting from G does not coincide
in general with the regional spatial weights f : while f measures regional impor-
tance, γ measures regional centrality. Yet, plainly put, a region can be peripheral
and important, or central and insignificant, thus establishing the necessity of con-
structing weight-compatible exchange matrices E(G, f), that is based upon G,
but with margin f .

This contribution recalls and reviews a few definitions in spatial autocorre-
lation (section 2), in unweighted and weighed settings. Particular emphasis is
devoted to the comparison of their corresponding canonical measures of spatial
autocorrelation, their permutation and normal significance testing, as well as
the handling of off-diagonal spatial weights, occurring not that infrequently in
applications, such as those involving flows and self-interaction.

The central part (section 3) proposes the construction of a one-parameter
family of weight-compatible exchange matrices E(G, f, t) from proximity ma-
trices G. The former, describing a continuous diffusive process generated by
G, turns out to be p.s.d., allowing further the definition of a diffusive squared
Euclidean dissimilarity D(G, f, t) between regions (section 3.3).

Spatial analysis of French elections illustrate the theory (section 4). Possible
applications, briefly outlined in sections (4.1), (4.2) and (4.3), include multivari-
ate generalization of Moran’s I, factorial visualization of spatial versus attribute
dissimilarities between regions, as well as “landscape clustering”, aimed at cre-
ating regional aggregates both spatially contiguous and endowed with similar
characteristics.

2 (Un)weighted measures of spatial autocorrelation

2.1 Unweighted setting: spatial weights from spatial links V (G)

In presence of n regions of equal importance (uniform weighting) characterized
by the density variable x, Moran’s index of spatial autocorrelation is usually
defined as (e.g. Cliff and Ord 1981; Anselin 1995; Tiefelsdorf and Boots 1995;
Dray et al. 2006)

I ≡ I(V, x) :=
n
∑
ij vij(xi − x̄)(xj − x̄)

(
∑
ij vij)

∑
i(xi − x̄)2

x̄ :=
1

n

n∑
i=1

xi (1)

where the spatial weights matrix V = (vij) is non-negative, symmetric or not.

By construction, I ≡ I(V, x) does depend upon on the spatial field x under
investigation, as well as, crucially, upon the specification of spatial weights V :
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see e.g. Tiefelsdorf et al. (1999) for an explicit illustration. The latter authors
also propose and investigate various spatial coding schemes aimed at extracting
a convenient spatial weights matrix V (G) from spatial link or proximity matrices
G = (gij), meant as an immediate, possibly rough but accessible spatial infor-
mation about proximity relationships between regions i and j. Proximities G
between regions may be determined by mutual contiguity, accessibility, inverse
distance, flow, etc. In what follows, we assume G to be symmetric gij = gji as
well as essentially non-negative, that is such that gij ≥ 0 for i 6= j. Typical
choices are

i) gij = aij : binary adjacency or contiguity matrix
ii) gij = nij , where nij counts the number of units (people, matter, money,

information) flowing from i to j
iii) gij = F (dij) where dij is a measure of the distance between i and j and

F (d) ≥ 0 is a distance-deterring, decreasing function
iv) gij = |∂Aij |, the measure of the common boundary between distinct regions

i and j.

In particular, Tiefelsdorf et al. (1999) together with other workers have consid-
ered the following coding schemes V (G):

B) the binary spatial weights vij = 1(gij > 0) taking on value one if gij > 0,
and zero otherwise

W) the row-standardized spatial weights vij := gij/gi• (where • denotes summa-
tion over the replaced index, as in gi• :=

∑
j gij), prevalent in models of

spatial autocorrelation
C) the globally standardized spatial weights vij := ngij/g••
U) the standardized spatial weights vij := gij/g••
S) the variance-stabilizing spatial weights

vij :=
n s∗ij∑
ij s
∗
ij

where s∗ij :=
gij√∑
j g

2
ij

.

The above spatial coding schemes respectively constitute the so-called B, W , C,
U and S schemes, as referred to and used in the spdep R package (Bivand 2002;
Bivand et al. 2006).

2.2 Weighted setting: E-coding scheme E(G, f, t)

In all generality, the importance of the n regions differ, as quantified by their
relative weights fi > 0 with

∑n
i=1 fi = 1. Typically, regional weights fi reflect

the relative population (human geography), relative area (physical geography)
or relative wealth (economic geography) of region i. Regional spatial weights fi
can be interpreted as the probability P (i) of selecting region i.



4

Specifying a symmetric probability P (i, j) = eij to select a pair of neighboring
regions (i, j) defines the exchange matrix E = (eij) (Berger and Snell 1957). By
construction,

eij = eji ≥ 0 ei• = fi > 0
∑
ij

eij = e•• = 1 .

In this weighted setup, Moran’s index of spatial autocorrelation reads (e.g.
Bavaud 2013 and references therein)

I ≡ I(E, x) :=

∑
ij eij(xi − x̄)(xj − x̄)∑

i fi(xi − x̄)2
x̄ :=

n∑
i=1

fixi (2)

In particular, −1 ≤ I(E, x) ≤ 1 with expected value E0(I(E, x)) = −1/(n− 1)
under absence of spatial autocorrelation, provided E contains no diagonal com-
ponents (see section 6 for the general case). Note the equivalent formulation

I(E, x) =
var(x)− varloc(x)

var(x)
(3)

where

var(x) =
1

2

∑
ij

fifj(xi − xj)2 =
∑
i

fi(xi − x̄)2

is the ordinary (weighted) variance and

varloc(x) =
1

2

∑
ij

eij(xi − xj)2

is the local variance, measuring the average dissimilarity between pairs of spa-
tially associated regions (e.g. Lebart 1969; Le Foll 1982; Meot et al. 1993;
Thioulouse et al. 1995). The concept of local variance is related, yet distinct,
to the concept of local indicator of spatial autocorrelation (Anselin 1995), refer-
ring to a weighted decomposition of Moran’s I (3) as in I(E, x) =

∑
i fiIi(E, x).

The row-standardized matrix of spatial weights W = (wij) obtains from the
exchange matrix as wij = eij/fi, and constitutes the transition matrix of a
reversible Markov chain (Bavaud 1998).

3 Obtaining the exchange matrix in two steps (4) and (5)

Given a symmetric and essentially non-negative, “off-positive” proximity ma-
trix G, i.e. whose off-diagonal components are non-negative, as well as a set of
regional weights f , compute the symmetric matrix Ψ = (ψij)

ψij(G, f) =
1√
fifj

δijgi• − gij
(g•• − trace(G))

. (4)
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Then compute the exchange matrix by means of the matrix exponential

E(t) := Π1/2 exp(−t Ψ)Π1/2 where Π = diag(f) and t ≥ 0 . (5)

The free parameter t > 0 interprets as the age of the network. By construction
(proofs below):

1) E(t) in (5) is symmetric and weight compatible: ei•(t) = fi for any t ≥ 0
2) eij(t) ≥ 0 for all i, j and t ≥ 0
3) E(t) is p.s.d. (section 3.2)
4) limt→0 eij(t) = δijfi, expressing complete regional segregation in a “frozen

network”
5) limt→∞ eij(t) = fifj , which expresses absence of distance-deterrence effects

in a “free” or “complete network”.

3.1 Further formal considerations

The numerator in (4) contains the so-called Laplacian of G (e.g. Chung 1997
p.12), defined as (LG)ij := δijgi• − gij , where δij are the components of the
identity matrix (Kronecker’s delta). By construction, LG is positive semi-definite
(p.s.d.) (see section 3.2) and obeys

trace(LG) = sum(G)− trace(G) ≥ 0 sum(LG) = 0 (6)

where sum(C) := c•• and trace(C) :=
∑
i cii. In particular, and L diag(b) = 0 for

any diagonal matrix diag(b) with diagonal b: hence the diagonal elements aii of
the adjacency matrix in (i) (loops), the stayers flow nii in (ii), or self-boundaries
|∂Aii| in (iv) play no role in the construction of LG, Ψ or E(t). Ψ(G) is indeed
invariant with respect to transformations of the form G → a(G + diag(b)), for
any scalar a > 0 and any vector b (cf. (6) and (4)).

Normalizing Ψ(G) as in (4) amounts in normalizing t in (5), in the hope of
making the scale t “intrinsic” or “absolute”, that is hopefully comparable among
differing data sets. As a matter of fact,

Ψ = Π−1/2
LG

trace(LG)
Π−1/2 E(t) = Π − LG

trace(LG)
t + O(t2) (7)

The question of the choice of t itself remains fairly open so far. The “self-
exchange proportion” trace(E(t)) decreases with t, converging to trace(E(∞)) =∑
i f

2
i < 1, with small time expansion trace(E(t)) = 1− t + 0(t2). This propor-

tion could possibly be estimated by trace(N)/sum(N), where N is the inter-
regional flows matrix, or some other measure of spatial interaction. For in-
stance, inter-cantonal migrations between 1985 and 1990 in Switzerland yields
1− t̂ = trace(N)/sum(N) = 0.93 (most people stayed in the same canton during
those five years), yielding the possible estimate t̂ = 0.07.

Equations (4) and (5) constitute a straightforward two-steps procedure gen-
eralizing and simplifying the “proposal B” recipe exposed in Bavaud (2013),



6

based upon the construction of a weight-compatible, time-continuous Markov
chain generated by a rate matrix R = −Π−1/2ΨΠ1/2 = −Π−1LG/trace(LG) re-
flecting direct spatial transitions, as expressed by the proximity matrix G, whose
regional sojourn times are precisely adjusted to make E(t) weight-compatible.

Non-negativity condition 2) above is a direct consequence of the essential
non-positivity of Ψ together with the theorem “exp(−tA) is non-negative for all
t > 0 iff A is essentially non-positive” (see e.g. theorem 8.2 in Varga 2000).

3.2 Spectral decomposition

Solution (5) can be computed by spectral decomposition of Ψ = UMU ′, that is
ψij =

∑
α µαuiαujα. As a matter of fact, Ψ

√
f = 0, thus

√
f is a trivial eigen-

vector u (numbered α = 0) of Ψ with trivial eigenvalue µ0 = 0, demonstrating
in particular the weight-compatibility

E(t)1 = Π1/2
∞∑
r=0

(−t)r

r!
Ψr

√
f = Π1/2

√
f = f

as claimed. The other eigenvalues, increasingly ordered, are non-negative, since
Ψ turns out to be p.s.d. in view of

0 ≤ 1

2

∑
ij

gij(hi − hj)2 =
∑
ij

(δijgi• − gij)hihj

for any h. Thus 0 = µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µn−1 and

E(t) = Π1/2 exp(−tUMU ′)Π1/2 = Π1/2U exp(−Mt)U ′Π1/2

that is

eij(t) =
√
fifj

n−1∑
α=0

uiαujα exp(−µαt) = fifj +
√
fifj

n−1∑
α=1

uiαujα exp(−µαt)

thus proving limits 4) and 5) above. Equivalently,

esij(t) :=
eij − fifj√

fifj
=

n−1∑
α=1

uiαujα exp(−µαt) Es = U exp(−Mt)U ′ (8)

where Es(t) := Π−1/2(E(t) − ff ′)Π−1/2 is the standardised exchange marix.
Es(t) possesses a trivial eigenvalue λ0 = 0 associated with u0 =

√
f , as well

as non-trivial eigenvalues λα(t) = exp(−µαt), decreasingly ordered for α ≥ 1,
lying in [−1, 1], as required by the Perron-Froebenius theorem on the associated
Markov chain W . They even lie in [0, 1], making E(t) p.s.d. or diffusive. Note
the eigenvectors U = (uiα) to be independent of t.
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3.3 Diffusive dissimilarity and multidimensional scaling

The p.s.d. nature of E(t) permits to define a “diffusive dissimilarity” between
regions, namely

Dij(t) :=
eii(t)

f2i
+
ejj(t)

f2j
− 2

eij(t)

fifj
. (9)

D turns out to be squared Euclidean, i.e. of the form Dij = ‖yi − yj‖2 for some
n × p “diffusive coordinates” Y = (yia), where p ≤ n − 1. The squared Eu-
clidean nature of D follows from the conditional negative-definiteness condition∑
ij hihjDij ≤ 0 for any h with

∑
i hi = 0 (see e.g. Cressie 1993). Determining

the diffusive coordinates Y = (yiα) constitutes the classical multidimensional
scaling (MDS) problem, with solutions in the weighted setting

yiα(t) =

√
λα(t)√
fi

uiα α = 1, . . . , n− 1 (10)

where λα(t) = exp(−µαt) is the eigenvalue of Es in (8), and uiα its corresponding
eigenvector (e.g. Cuadras and Fortina 1996; Bavaud 2010). (10) is a member of
a family of vertex coordinates on weighted graphs of the form

yiα(t) = g(λα(t)) ysiα ysiα =
uiα√
fi

α = 1, . . . , n− 1 (11)

where g(λ) is a non-negative function, and ysiα is the standardized or raw coordi-
nate of region i on dimension α ≥ 1 (Bavaud 2010). Raw coordinates also occur
quite naturally in spatial filtering (e.g. Griffith 2000, 2003; Dray et al. 2006;
Bavaud 2013).

3.4 Summary

Any proximity matrix G between regions, together with any set of regional
weights f , yield a one-parameter family of weight-compatible, p.s.d. exchange
matrices E(G, f, t). The latter yield in turn a family of squared Euclidean dis-
similarities Dij(t) between regions (9), from which regional coordinates yiα(t)
(10) or raw coordinates ysiα (11) can be extracted by weighted MDS. Hence, any
pair (G, f) produces a visualization y or ys of the spatial configuration between
regions, conceivably resembling the true geographical configuration (Figure 1).

4 Illustration: political autocorrelation in France

Consider the n = 94 departments of “metropolitan France” (Corsica excluded),
whose binary adjacency matrix A is chosen as the spatial matrix. Consider also
uniform departmental weights fi = 1/n, but also, in parallel, non-uniform “vot-
ers weights” f (section 4.1). Figure 2 depicts the distribution of departmental
degrees ai• and non-uniform weights fi, as well as the non-trivial eigenvalues
λα(t). Figure 1 gives the first two factorial “raw coordinates” (11), in the uni-
form and non-uniform case. The reconstruction of the geographical map from
the adjacency matrix looks fairly adequate.
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Fig. 1. Raw diffusive coordinates ysiα (11) for α = 2 (abscissa) and α = 1 (ordinate),
reconstructing the map of French departments from the adjacency matrix A and de-
partmental weights f . Left: uniform weights fi = 1/n. Right: non-uniform “voters
weights”.
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Fig. 2. Left: distribution of the departmental degrees ai• (average degree = 5.06).
Middle: distribution of the non-uniform departmental “voters weights” fi (section 4.1;
average weight = 1/94=0.011). Right: scree plot of the eigenvalues λα(t) of Es(t) (non-
uniform weights) for t = 0.2 (solid squares), t = 1 (crosses) and t = 5 (circles).
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4.1 Extracting regional features by Correspondence Analysis

In general, regions are characterized by uni- or multivariate features x, whose
variation may or may not be correlated with the diffusive coordinates y in (10);
this issue precisely constitutes the topic of spatial autocorrelation, as exemplified
below. In the sequel, features x will first be computed as regional factor scores,
instead of considering directly available regional variables x.

Consider the votes of the first round of the French presidential 2012 election,
as recorded by the n × p contingency table (Nik), fixing the “number of votes
for candidate k in department i” where n = 94 and k = 1, . . . , p = 10 (Joly,
LePen, Sarkozy, Melenchon, Poutou, Arthaud, Cheminade, Bayrou, Dupont-
Aignan, Hollande). Figure 3 left yields the scree plot of the proportion of ex-
plained chi-square by each of the min(n, p − 1) = 9 factors, whose first and
second ones express together 83% of the inertia. Figure 3 right exposes the
Correspondence Analysis (CA) biplot depicting the department and candidate
coordinates, showing similarities among departments, among candidates, as well
as attraction-repulsion between departments and candidates.

In this context, natural regional weights are provided by fi = Ni•/N••, the
voters weight of department i, measuring its relative share of voters. By construc-
tion, department coordinates xiβ are centered, standardized and uncorrelated
(here β = 1, . . . p− 1 labels the factors produced in Correspondence Analysis):∑

i

fixiβ = 0
∑
i

fix
2
iβ = 1

∑
i

fixiβxiβ′ = 0 for β 6= β′ .

4.2 Spatial autocorrelation of voting pattern

The autocorrelation of each “voting factor” xβ (where β = 1, . . . , p), as extracted
from the CA of section (4.1), can be tested in turn by computing Moran’s indices
I(E, xβ) in (2). Here E = E(A, f, t) is the weight-compatible, time-dependent
exchange matrix constructed in section (3.3), and f stands as before as the
non-uniform voters weight.

Associated p-values are computed from B bootstrapped samples associated
with the weighted permutation test (section 6). The first factorial political score
xi1 extracted in section (4.1) turns out to be strongly autocorrelated (Figure 4,
left), in contrast to the second score xi2 which is not (Figure 4, right).

4.3 Relative inertia

Moran’s I can be generalized to multivariate settings by considering squared
Euclidean dissimilarities Dij between regional profiles, instead of univariate dis-
similarities of the form (xi−xj)2. In the present analysis, the natural candidate
for D is provided by the classical chi-square dissimilarity between departments,
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Fig. 3. Correspondence Analysis on the “department × candidate” votes contingency
table, in the first round of the French presidential 2012 election. Left: eigenvalues
γβ . Right: biplot. The first axis can be interpreted in terms of right- versus left-wing
contrast, but also central-peripheral contrast (53%); the second one seems to oppose
poor to rich departments (31%).
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Fig. 4. p-values associated to the significance test of weighted Moran’s I (3), for var-
ious values of t ∈ [0, 5], based upon B = 1′000 permutations of the so-called spatial
modes (instead of the direct spatial values), in order to take into consideration the
heteroscedasticity associated to the weighted setting (see section 6 and Bavaud 2013
for details). The first political component xi1 turns out to be strongly autocorrelated
(left), in contrast to the second political component xi2 (right).
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which can be defined from the contingency table (Nik) or from the “raw” factor
scores xiβ , as

Dχ
ij =

∑
k

N••
N•k

(
Nik
Ni•
− Njk
Nj•

)2 =
∑
β

γβ(xiβ − xjβ)2 (12)

where γβ are the eigenvalues (the square of the singular values) of the Correspon-
dence Analysis of section 4.1. Recall (and observe) that weighted multidimen-
sional scaling of D precisely yields the so-called principal coordinates

√
γβ xiβ ,

that is CA is equivalent to weighted MDS on chi-square dissimilarities.
As claimed, multivariate generalization of Moran’s index (3) is provided by

the relative inertia δ ∈ [−1, 1] defined (with D = Dχ) as

δ(t) :=
∆−∆loc(t)

∆
∆ =

1

2

∑
ij

fifjDij ∆loc(t) =
1

2

∑
ij

eij(t)Dij

whose significance can be assessed by usual normal approximation, permutation,
or bootstrap tests; see section 6.2. Relative inertia also expresses as (cf. (1))

δ(t) =

∑
ij eij(t)Bij∑

i fiBii

where B are the scalar products of MDS, obeying Dij = Bii + Bjj − 2Bij . In
particular, Bii = Dif is the squared distance between i and the centroid.

Fig. 5. Soft K-means clustering of French departments, from the initial centroid config-
uration determined by them = 6 “Hexagon corners”: spatial clustering (left), attributes
clustering (middle) and landscape clustering (right) defined in (13), with ν = 1/2 and
c(D) = maxij Dij .

4.4 “Landscape clustering”

We are now in possession of two squared Euclidean dissimilarities, namely the
diffusive dissimilarity Dij (9), measuring spatial remoteness between pairs of re-
gions, and the chi-square dissimilarity Dχ

ij (12), measuring the voting attributes
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contrast between regional profiles. This circumstance makes it possible to con-
sider various regional clustering strategies, namely

a) spatial clustering, based upon the diffusive dissimilarity Dij exhibited in
Figure 2 right

b) attributes clustering, based upon the attributes dissimilarity Dχ
ij exhibited

in Figure 3 right

c) a presumably new landscape clustering based upon minimizing the within-
groups inertia associated to the mixed, normalized dissimilarity

Dlan
ij = ν

Dij
c(D)

+ (1− ν)
Dχ
ij

c(Dχ)
(13)

where ν ∈ (0, 1) controls the spatial versus attribute contributions and c(D)
is a normalisation factor, such as 1

2

∑
ij fifjDij or maxij Dij . Landscape

clustering aims at creating regional aggregates both spatially contiguous and
possessing similar features - a natural aim in Quantitative Geography, Spatial
Econometrics and Geographic Information Science.

Figures 5 and 6 illustrate spatial clustering (left), attributes clustering (mid-
dle) and landscape clustering (right) for the mixed normalised dissimilarities
Clusterings result from soft K-means (section 6.3), with initial centroid con-
figuration determined by the m = 6 “Hexagon corners” (Bas-Rhin, Nord, Fin-
istère, Pyrénées-Atlantiques, Pyrénées-Orientales, Alpes-Maritimes: Figure 5),
or by the m = 7 most populated departments (Nord, Bouches-du-Rhône, Paris,
Rhône, Pas-de-Calais, Gironde, Loire-Atlantique: Figure 6).

Fig. 6. Soft K-means clustering of French departments, from the initial centroid con-
figuration determined by the m = 7 most populated departments: spatial clustering
(left), attributes clustering (middle) and landscape clustering (right) defined in (13),
with ν = 1/2 and c(D) = maxij Dij .
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5 Discussion and Conclusions

Dealing with regions of unequal importance requires a weighted formalism, which
arguably helps unifying mathematical enquiries and proposals. For instance,
Moran’s I and Geary’s c appear to be simply related as c = 1− I in the present
“E-scheme”.

After briefly reviewing the differences between the unweighted and weighted
approaches to spatial autocorrelation, this paper proposes a straight, general
prescription aimed at constructing exchange matrices E both compatible with
given proximity relations G and regional weights f . The solution contains a freely
adjustable parameter t, the age of the network, controlling the importance of
direct adjacency, distance deterrence, or inverse bandwidth, when 0 < t < ∞.
At the extremes, the network becomes independent of G, namely with the frozen
network E(0) = Π and the completely mobile network E(∞) = ff ′.

Solution E(t) turns out to be p.s.d., that is modeling a diffusive network. This
circumstance permits to define a squared Euclidean dissimilarity on the network,
and hence, by MDS, a network visualisation. This presumably new proximity-
based dissimilarity can in turn be compared to some other features-based squared
Euclidean dissimilarity: this constitutes the very issue of spatial autocorrelation.
Both similarities can also be mixed, and fed to partitionning algorithms, yielding
“landscape clustering”, sensitive to both regional proximities and attributes.

More case studies are most welcome. Further investigations could examine
the impact of E(G, f, t) on weighted SAR or CAR models, on the construction
of mobility indices, or on the construction of local indicators of relative inertia,
in the spirit of the well-known proposal of Anselin (1995).

6 Appendix: autocorrelation tests and soft clustering

The first part of the appendix derives, under the null hypothesis H0 of no auto-
correlation, the expected value of Moran’s I and its variance in the general case
of spatial weights, possibly containing non-zero diagonal components vii 6= 0, a
case little confronted with in the literature. Both unweighted (section 6.1) and
weighted settings (section 6.2) are addressed.

6.1 Unweighted permutation test

Equation (1) shows that V can be taken as symmetric and normalized, that
is obeying vij = vji and v•• = 1. Moran index thus expresses as (e.g. Griffith
2003; Dray et al. 2006)

I(V, x) =
n
∑
ij vij(xi − x̄)(xj − x̄)∑

i(xi − x̄)2
= n

x′HVHx

x′Hx
H = I − J/n .

Here I is the identity matrix, J = 11′ is the constant unit matrix and H = H2

is the centering projection matrix, each of order n× n.
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The spectral decomposition HVH = UΛU ′ with U orthogonal and Λ di-
agonal makes appear a trivial dimension α = 0, with constant eigenvector
ui0 = 1/

√
n and null eigenvalue λ0 = 0. Also, Huα = uα for higher-order,

non-trivial dimensions α = 1, . . . n− 1.
Define the unweighted spatial modes (see e.g. Griffith 2003 and Bavaud 2013)

as y = U ′x, that is x = Uy. In particular, y0 =
√
n x̄. Moran’s index then reads

I(V, x) = n

∑
α≥1 λαy

2
α∑

α≥1 y
2
α

= n
∑
α≥1

λαbα bα :=
y2α∑
β≥1 y

2
β

(14)

In the present unweighted setting, the spatial variables Xi are, under H0, i.i.d.
with mean µ and variance σ2. The resulting spatial modes Y = U ′X are uncor-
related with E(Yα) = δα0

√
nµ and Cov(Yα, Yβ) = δαβσ

2. In particular, the n−1
quantities bα (α ≥ 1) in (14) are arguably identically distributed under H0, yet
not independently in view of

∑
α≥1 bα = 1. Denoting by Eπ(.) the expectation

under modes permutation, one gets, by symmetry

Eπ(bα) =
1

n− 1
Eπ(b2α) =

∑
β≥1 b

2
β

(n− 1)
=:

t(y)

(n− 1)2
Eπ(bαbβ) =

1− t(y)/(n− 1)

(n− 1)(n− 2)

for α 6= β. Taking into account∑
α≥1

λα =
∑
α≥0

λα = trace(HVH) = trace(V )− 1

n
and

∑
α≥1

λ2α =
∑
α≥0

λ2α = trace(HVHHVH) = trace(V HV H) = trace(V 2)− 2

n

∑
i

v2i•+
1

n2

finally yields

Eπ(I) =
n trace(V )− 1

n− 1
unweighted setting

Varπ(I) =
t(y)− 1

(n− 1)(n− 2)
[n2trace(V 2)− 2n

∑
i

v2i• + 1− (n trace(V )− 1)2

n− 1
] (15)

where t(y) = (n−1)
∑
α≥1 y

4
α/(

∑
α≥1 y

2
α)2 ≥ 1 is a measure of modes dispersion,

taking on its minimum value t(y) = 1 for yα = const for α ≥ 1. In particular,
Eπ(I) > −1/(n−1) whenever spatial weights V contain off-diagonal components.

Under the additional normal assumption Xi ∼ N(µ, σ2), one gets Yα ∼
N(0, σ2) for α ≥ 1, as well as E(t(y)) = 3(n − 1)/(n + 1) (e.g. Cliff and Ord
1983, p.43). Then

E(Varπ(I)) =
2

n2 − 1
[n2trace(V 2)− 2n

∑
i

v2i• + 1− (n trace(V )− 1)2

n− 1
] (16)

=
1

(n2 − 1)S2
0

[n2S1 − nS2 +
2(n− 2)S2

0 + 4nS0trace(V )− 2n2trace2(V )

n− 1
]
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where, for comparison’s sake, the normalization condition v•• = 1 has been
relaxed in the last equation (while retaining the symmetry of V ), and the familiar
notations

S0 :=
∑
ij

vij S1 := 2
∑
ij

v2ij S2 := 4
∑
i

v2i•

have been introduced. The last identity in (16) turns out to coincide, up to the
terms involving trace(V ), with the formulas proposed in Cliff and Ord (1981,
p.44).

6.2 Weighted permutation test

In the weighted setup, the spatial field Xi represents a regional aggregate as-
sociated to region i. Under H0, its mean is constant but its variance is in-
versely proportional to the weight of the region (heteroscedasticity). Hence,
Xi ∼ N(µ, σ2/fi) under normal assumption. The expected value of the weighted
Moran coefficient (2) and its variance read (Bavaud 2013)

Eπ(I) =
trace(W )− 1

n− 1
weighted setting

E(Varπ(I)) =
2

n2 − 1
[trace(W 2)− 1− (trace(W )− 1)2

n− 1
] (17)

where W = (wij) with wij := eij/fi is the row-normalized, weight-compatible
matrix of spatial weights (section 2.2), and constitutes the transition matrix of
a Markov chain, possessing off-diagonal components in general (Bavaud 1998).

Unweighted average and variance formulas (15) and (16) should coincide with
their weighted analogs (17) whenever V = E constitutes a symmetric, normal-
ized spatial weight matrix with uniform weights ei• = fi = 1/n. Indeed, W = nV
with vi• = 1/n in that case, thus demonstrating the expected agreement.

Small time limit In the limit t → 0, (7) and (17) together with W (t) =

I + tR+ t2

2 R
2 + 0(t2), where R = −Π−1LG/trace(LG) is the rate matrix, yield

I − Eπ(I) =
t

trace(LG)
[
trace(Π−1LG)

n− 1
−

∑
ij gij(xi − xj)2

2 var(x)
] + 0(t2)

E(Varπ(I)) =
2t2

n2 − 1
[trace(R2)− trace2(R)

n− 1
] + 0(t3) weighted setting, t→ 0

Interestingly enough, for uniform weights fi = 1/n, the decision variable of the
normal test expresses, up to order 0(t), as

z =
I − Eπ(I)√
E(Varπ(I))

=
Ĩ − Eπ(Ĩ)√
E(Varπ(Ĩ))
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where

Ĩ(x) := 1− 1

var(x)

1
2

∑
ij gij(xi − xj)2

g•• − trace(G)

is time-independent, and constitutes an alternative to unweighted Moran’s index
I(x) (1).

6.3 Soft K-means

Consider a n×m membership matrix Z with components zig ≥ 0 with zi• = 1,
expressing the probability that region i belongs to group g. The group weight
is ρg[Z] =

∑
i fizig and the squared Euclidean dissimilarity Dg

i between region
i and centroid g is derived form the inter-individual squared dissimilarities Dij

as (Huygens principle)

Dg
i [Z] =

∑
j

fgjDij −
1

2

∑
ij

fgi f
g
jDij where fgi [Z] =

fizig
ρg

.

where Dij is a squared Euclidean dissimilarity. Memberships are iteratively com-
puted (e.g. Celeux and Govaert 1992, Rose 1998, Bavaud 2010) as

z
(r+1)
ig =

ρg[Z
(r)] exp(−βDg

i [Z(r)])∑
h ρh[Z

(r)] exp(−βDh
i [Z

(r)])

where the inverse temperature β has been set to 1 in section 4.4, where two
variants for the m initial centroids are investigated. After convergence, region i

is finally attributed to group g = arg maxh z
(∞)
ih . The alternative iteration

f
g(r+1)
i =

fi exp(−βDg
i [Z(r)])∑

j fj exp(−βDg
j [Z

(r)])

works as well, as expected.
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