Skip to main content

Controllable and Real-Time Reproducible Perlin Noise

  • Conference paper
Smart Graphics (SG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8698))

Included in the following conference series:

  • 1471 Accesses

Abstract

Perlin noise is widely used to render natural phenomena or enrich the variety of motion in computer graphics; however, there is less attention on controlling Perlin noise. We present an approach to modify and control the value of Perlin noise function, which closely follows a user-specified pattern while preserving the original statistical properties of the noise. The problem is formulated as a multi-level optimization process, in which the optimization is performed from low frequency to high frequency bands. Our approach can easily achieve global and local control in designing texture patterns and reproduce same patterns without re-optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing and Modeling: A Procedural Approach. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. Perlin, K.: An Image Synthesizer. In: 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 287–296. ACM, New York (1985)

    Chapter  Google Scholar 

  3. Perlin, K.: Improving noise. In: 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 681–682. ACM, New York (2002)

    Chapter  Google Scholar 

  4. Cook, R.L., De Rose, T.: Wavelet noise. ACM Transaction on Graphics 24, 803–811 (2005)

    Article  Google Scholar 

  5. Lagae, A., Lefebvre, S., Drettakis, G., Dutré: Philip.:Procedural noise using sparse Gabor convolution. ACM Transaction on Graphics 28(54) (2009)

    Google Scholar 

  6. Perlin, K.: Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1, 5–15 (1995)

    Article  Google Scholar 

  7. Bridson, R., Houriham, J., Nordenstam, M.: Curl-noise for procedural fluid flow. ACM Transaction on Graphics 26(46) (2007)

    Google Scholar 

  8. Apodaca, G.L., Barzel, R.: Advanced RenderMan: creating CGI for motion picture. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Lewis, J.P.: Algorithms for solid noise synthesis. In: 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 263–270. ACM, New York (1989)

    Chapter  Google Scholar 

  10. Perlin, K., Neyret, F.: Flow Noise. ACM SIGGRAPH Technical Sketches and Applications 187 (2001)

    Google Scholar 

  11. Hart, J.C.: Perlin noise pixel shaders. In: the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 87–94. ACM, New York (2001)

    Chapter  Google Scholar 

  12. Yoon, J., Lee, I., Choi, J.: Editing noise: Research Articles. Computer Animation and Virtual Worlds 15, 277–287 (2004)

    Article  Google Scholar 

  13. Lewis, J.P.: Generalized stochastic subdivision. ACM Transaction on Graphics 6, 167–190 (1987)

    Article  Google Scholar 

  14. Yoon, J., Lee, I.: Stable and controllable noise. Graphical Models 70, 105–115 (2008)

    Article  Google Scholar 

  15. Knuth, D.E.: The art of computer programming. Addison-Wesley, Redwood City (1998)

    Google Scholar 

  16. Lewis, D., Burke, C.J.: The use and misuse of the chi-square test. Psychological Bulletin 46, 433–489 (1949)

    Article  Google Scholar 

  17. Lieberman, B.: Contemporary problems in statistics; A book of readings for the behavioral sciences. Oxford University Press, New York (1971)

    Google Scholar 

  18. Siegel, S.: Nonparametric statistics for the behavioral sciences. McGraw-Hill Humanities, New York (1956)

    MATH  Google Scholar 

  19. Mitchell, B.: A Comparison of Chi-Square and Kolmogorov-Smirnov Tests. The Royal Geographical Society 3, 237–241 (1971)

    Google Scholar 

  20. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cheng, WC., Lin, WC., Huang, YJ. (2014). Controllable and Real-Time Reproducible Perlin Noise. In: Christie, M., Li, TY. (eds) Smart Graphics. SG 2014. Lecture Notes in Computer Science, vol 8698. Springer, Cham. https://doi.org/10.1007/978-3-319-11650-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11650-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11649-5

  • Online ISBN: 978-3-319-11650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics