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Abstract

We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure
considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal
policy by employing four tools: stochastic approximation,mini batches, policy gradients and importance sam-
pling. Both the algorithms incorporate a CVaR estimation procedure, along the lines of Bardou et al. [2009],
which in turn is based on Rockafellar-Uryasev’s representation for CVaR and utilize the likelihood ratio principle
for estimating the gradient of the sum of one cost function (objective of the SSP) and the gradient of the CVaR of
the sum of another cost function (in the constraint of SSP). The algorithms differ in the manner in which they ap-
proximate the CVaR estimates/necessary gradients - the first algorithm uses stochastic approximation, while the
second employ mini-batches in the spirit of Monte Carlo methods. We establish asymptotic convergence of both
the algorithms. Further, since estimating CVaR is related to rare-event simulation, we incorporate an importance
sampling based variance reduction scheme into our proposedalgorithms.

1 Introduction

Risk-constrained Markov decision processes (MDPs) have attracted a lot of attention recently in the reinforcement
learning (RL) community (cf. Borkar and Jain [2010], Tamar et al. [2012], Prashanth and Ghavamzadeh [2013],
Tamar and Mannor [2013]). However, unlike previous works that focused mostly on variance of the return as
a measure of risk, we consider Conditional Value-at-Risk (CVaR) as a risk measure. CVaR has the form of a
conditional expectation, where the conditioning is based on a constraint on Value-at-Risk (VaR).

The aim in this paper is to find arisk-optimalpolicy in the context of a stochastic shortest path (SSP) problem.
A risk-optimal policy is one that minimizes the sum of one cost function (seeGθ(s0) in (1)), while ensuring that
the conditional expectation of the sum of another cost function (seeCθ(s0) in (1)) given some confidence level,
stays bounded, i.e., the solution to the following risk-constrained problem: For a givenα ∈ (0, 1) andKα > 0,

min
θ∈Θ

E

[
τ−1∑

m=0

g(sm, am)
∣
∣s0 = s0

]

︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑

m=0

c(sm, am)
∣
∣s0 = s0

]

︸ ︷︷ ︸

Cθ(s0)

≤ Kα. (1)

In the above,s0 is the starting state and the actionsa0, . . . , aτ−1 are chosen according to a randomized policyπθ
governed byθ. Further,g(s, a) andc(s, a) are cost functions that take a states and an actiona as inputs andτ
is the first passage time to the recurrent state of the underlying SSP (see Section 2 for a detailed formulation). In
Borkar and Jain [2010], a similar problem is considered in a finite horizon MDP, though under a strong separability
assumption for the cost functionc(s, a).

∗prashanth.la@inria.fr

1

http://arxiv.org/abs/1405.2690v1


Solving the risk-constrained problem (1) is challenging due to two reasons:
(i) Finding a globally risk-optimal policy is intractable evenfor a simpler case when the risk is defined as the
variance of the return of an MDP (see Mannor and Tsitsiklis [2011]). The risk-constrained MDP that we consider
is more complicated in comparison, since CVaR is a conditional expectation, with the conditioning governed by
an event that bounds a probability.
(ii) For the sake of optimization of the CVaR-constrained MDP that we consider in this paper, it is required to
estimate both VaR/CVaR of the total cost (Cθ(s0) in (1)) as well as its gradient. The problem is further complicated
by the fact VaR/CVaR concerns the tail of the distribution ofthe total cost and hence, a variance reduction technique
is required to speed up the estimation procedure.
We avoid the first problem by proposing a policy gradient scheme that is proven to converge to a locally optimal
policy, while the second problem is alleviated using two principled approaches: stochastic approximation/mini-
batch procedure for estimating VaR/CVaR derived out of a well-known convex optimization problem by
Rockafellar and Uryasev [2000] and likelihood ratio estimates from the classic policy-gradient algorithm by
Bartlett and Baxter [2011].

The contributions of this paper are summarized as follows:
(I) First, using the representation of CVaR (and also VaR) as thesolution of a certain convex optimization prob-
lem by Rockafellar and Uryasev [2000], we develop a stochastic approximation procedure, along the lines of
Bardou et al. [2009], for estimating the CVaR of a policy for an SSP. In addition, we also propose a scheme based
on the mini-batch principle to estimate CVaR. Mini-batchesare in the spirit of Monte Carlo methods and have
been proposed by Atchade et al. [2014] under a different optimization context for stochastic proximal gradient
algorithms.
(II) Second, we develop two novel policy gradient algorithms forfinding a (locally) risk-optimal policy of the
CVaR-constrained SSP. The first algorithm is a four time-scale stochastic approximation scheme while the second
operates along two time-scales in conjunction with mini-batches. Both algorithms use a procedure to estimate
CVaR and then use the policy-gradient principle with likelihood ratios to estimate the gradient of the total cost
Gθ(s0) as well as CVaR of another cost sumCθ(s0). Using the CVaR estimates as well as the necessary gradients
(estimated along the fastest two time-scales), the first algorithm updates the policy parameter in the negative de-
scent direction on the intermediate timescale and performsdual ascent for the Lagrange multiplier on the slowest
timescale. On the other hand, the second algorithm operateson two timescales as it employs mini-batches to esti-
mate the CVaR as well as the necessary gradients.
(III) Third, we adapt our proposed algorithms to incorporate importance sampling (IS) - a well-known variance-
reduction scheme. This is motivated by the fact that when theconfidence levelα is close to1, estimating VaR as
well as CVaR takes longer. This is because the interesting samples used to estimate CVaR come from the tail of
the distribution of the random variable concerned (in our case, the total costCθ(s0)) and thus, get rarer asα gets
close to1. Importance sampling (IS) is a standard tool to alleviate this problem and we employ the IS scheme
proposed by Lemaire and Pages [2010]. However, applying thelatter scheme in a SSP setting is non-trivial as it
requires the knowledge of transition dynamics. We propose aheuristic IS variant where we use the randomized
policies to derive sampling ratios for the IS procedure.
To sum up, the core contribution of this paper is twofold. First, using a careful synthesis of well-known techniques
from stochastic approximation, likelihood ratios and importance sampling, we propose a policy gradient algorithm
that is provably convergent to a locally risk-optimal policy. Second, we propose another algorithm based on the
idea of mini-batches for estimating CVaR from the simulatedsamples. The latter approach is novel even for policy
gradients in the context of risk-neutral MDPs.

The rest of the paper is organized as follows: In Section 2 we formalize the CVaR-constrained SSP and in
Section 3 describe the structure of our proposed algorithms. In Section 4 we present the first algorithm based
on stochastic approximation and in Section 5 we present the mini-batch variant. In Section 6, we sketch the
convergence of our algorithms and later in Section 7 describe the importance sampling variants of our algorithms.
In Section 8, we review relevant previous works. Finally, inSection 9 we provide the concluding remarks.
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2 Problem formulation

In this section, we first introduce VaR/CVaR risk measures, then formalize the stochastic shortest path problem
and subsequently define the CVaR-constrained SSP.

2.1 Background on VaR and CVaR

For any random variableX , we define the VaR at levelα ∈ (0, 1) as

VaRα(X) := inf {ξ | P (X ≤ ξ) ≥ α} .

If the distribution ofX is continuous, then VaR is the lowest solution toP (X ≤ ξ) = α. VaR as a risk measure has
several drawbacks, which precludes using standard stochastic optimization methods. This motivated the definition
of coherent risk measures by Artzner et al. [1999]. A risk measure is coherent if it is convex, monotone, positive
homogeneous and translation equi-variant. CVaR is one popular risk measure defined by

CVaRα(X) := E [X |X ≥ VaRα(X)] .

Unlike VaR, the above is a coherent risk measure.

2.2 Stochastic Shortest Path (SSP)

We consider a SSP with a finite state spaceS = {0, 1, . . . , r}, where0 is a special cost-free terminal state. The set
of feasible actions in states ∈ S is denoted byA(s). A transition from states to s′ under actiona ∈ A(s) occurs
with probabilitypss′(a) and incurs the following costs:g(s, a) andc(s, a), respectively. The terminal state0 is
cost-free and absorbing.

A policy specifies how actions are chosen in each state. Astationaryrandomized policyπ(·|s) maps any state
s to a probability vector onA(s). As is standard in policy gradient algorithms, we parameterize the policy and
assume that the policy is continuously differentiable in the parameterθ. Since a policyπ is identifiable by its
parameterθ, we use them interchangeably in this paper.

As defined by Bertsekas [2007], a proper policy is one which ensures that there is a positive probability that
the terminal state0 will be reached, starting from any initial state, after utmost r transitions. This in turn implies
the states1, . . . , r are transient. We assume that class of parameterized policies considered, i.e.,{πθ | θ ∈ Θ}, is
proper.

2.3 CVaR-constrained SSP

As outlined earlier, the risk-constrained objective is:

min
θ∈Θ

E

[
τ−1∑

m=0

g(sm, am)
∣
∣s0 = s0

]

︸ ︷︷ ︸

Gθ(s0)

subject to CVaRα

[
τ−1∑

m=0

c(sm, am)
∣
∣s0 = s0

]

︸ ︷︷ ︸

Cθ(s0)

≤ Kα,

whereτ denotes the first visiting time to terminal state0, i.e.,τ = min{m | sm = 0}. The actionsa0, . . . , aτ−1

are chosen according to the randomized policyπθ. Further,α andKα are constants that specify the confidence
level and constraint bound for CVaR, respectively.

Using the standard trick of Lagrangian relaxation for constrained optimization problems, we convert (1) to the
following unconstrained problem:

max
λ

min
θ

[
Lθ,λ(s0) := Gθ(s0) + λ

(
CVaRα(C

θ(s0))−Kα

)]
. (2)
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θn

Using policy πθn ,

simulate an SSP episode

Simulation

Estimate ∇θG
θ(s0)

Policy Gradient

Estimate CVaRα(C
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Estimate
∇θCVaRα(C

θ(s0))

CVaR Gradient

Update θn

using (8) or (19)

Policy Update

θn+1

Figure 1: Overall flow of our algorithms.

3 Algorithm Structure

In order to solve (2), a standard constrained optimization procedure operates as follows:

Simulation. This is the inner-most loop where the SSP is simulated for several episodes and the resulting costs
are aggregated.

Policy Update. This is the intermediate loop where the gradient of the Lagrangian alongθ is estimated using
simulated values above. The gradient estimates are then used to update policy parameterθ along a descent
direction. Note that this loop is for a given value ofλ; and

Lagrange Multiplier Update. This is the outer-most loop where the Lagrange multiplierλ is updated along an
ascent direction, using the converged values of the inner two loops.

Using two-timescale stochastic approximation (see Chapter 6 of Borkar [2008]), the policy and Lagrange
multiplier update can run in parallel as follows:

θn+1 = θn − γn∇θL
θ,λ(s0) and λn+1 = Γλ

[
λn + βn∇λL

θ,λ(s0)
]
, (3)

whereΓλ is a projection operator that keep the iterateλn bounded, whileγn, βn, n ≥ 0 are step-sizes that satisfy
the following assumption:

∞∑

n=1
βn = ∞,

∞∑

n=1
γn = ∞,

∞∑

n=1

(
β2
n + γ2n

)
<∞ and

βn

γn
→ 0.

The last condition above ensures thatθ-recursion proceeds on a faster timescale in comparison toλ-recursion.

Simulation optimization. No closed form expression for the gradient of the LagrangianLθ,λ(s0) is available
and moreover,Gθ(s0) andCθ(s0) are observable only via simulation. Observe that∇θL

θ,λ(s0) = ∇θG
θ(s0) +

λ∇θCVaRα(C
θ(s0)) and∇λL

θ,λ(s0) = CVaRα(C
θ(s0)) −Kα. Hence, in order to update according to (3), we

need to estimate, for any policy parameterθ, the following quantities via simulation:
(i) CVaRα(C

θ(s0)); (ii) ∇θG
θ(s0); and (iii) ∇θCVaRα(C

θ(s0)).
In the following sections, we describe two algorithms that differ in the way they estimate each of the above
quantities and subsequently establish that the estimates (and hence the overall algorithms) converge.
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4 Algorithm 1: PG-CVaR-SA

Algorithm 1 describes the complete algorithm along with theupdate rules for the various parameters. The al-
gorithm involves the following crucial components - simulation of the SSP, VaR/CVaR estimation and policy
gradients for the objective as well as the CVaR constraint. Each of these components is described in detail in the
following.

Algorithm 1 PG-CVaR-SA

Input: parameterized policyπθ(·|·), step-sizes{ζn,1, ζn,2, γn, βn}n≥1

Initialization: Starting states0, initial policy θ0, , number of iterationsM >> 1.
for n = 1, 2, . . . ,M do

Simulation

Simulate the SSP for an episode using actionsan,0, . . . , an,τn−1 generated usingπθn−1

Obtain cost estimates:Gn :=

τn−1∑

j=0

g(sn,j , an,j) andCn :=

τn−1∑

j=0

c(sn,j , an,j)

Obtain likelihood derivative:zn :=

τn−1∑

j=0

∇ log πθ(sn,j , an,j)

VaR/CVaR estimation:

VaR: ξn = ξn−1 − ζn,1

(

1−
1

1− α
1{Cn≥ξn−1}

)

, (4)

CVaR: ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (5)

Policy Gradient:

Total Cost: Ḡn = Ḡn−1 − γn(Gn − Ḡn), Gradient: ∂Gn = Ḡnzn. (6)

CVaR Gradient:

Total Cost: C̃n = C̃n−1 − γn(Cn − C̃n), Gradient: ∂Cn = (C̃n − ξn)zn1{Cn≥ξn}. (7)

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(

λn−1 + βn(ψn −Kα)
)

. (8)

end for
Output(θM , λM ).

4.1 SSP Simulation

In each iteration of PG-CVaR-SA, an episode of the underlying SSP is simulated. Each episode ends with a visit to
the recurrent state0 of the SSP. Letτn denote the time of this visit in episoden. The actionsan,j, j = 0, . . . , τn−1

in episoden are chosen according to the policyπθn−1
. LetGn :=

τn−1∑

j=0

g(sn,j , an,j) andCn :=
τn−1∑

j=0

c(sn,j , an,j)

denote the accumulated cost values. Further, letzn :=
τn−1∑

j=0

∇ log πθ(sn,j , an,j) denote the likelihood derivative
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(see Section 4.3 below). The tuple(Gn, Cn, zn) obtained at the end of thenth episode is used to estimate CVaR
as well as policy gradients.

4.2 Estimating VaR and CVaR

A well-known result by Rockafellar and Uryasev [2000] is that both VaR and CVaR can be obtained from the
solution of a certain convex optimization problem and we recall this result next.

Theorem 1 For any random variableX , let

v(ξ,X) := ξ +
1

1− α
(X − ξ)+ andV (ξ) = E [v(ξ,X)] (9)

Then,VaRα(X) is any point of the setargminV = {ξ ∈ R | V ′(ξ) = 0}, whereV ′ is the derivative ofV w.r.t. ξ.
Further,CVaRα(X) = V (ξ∗α), whereξ∗α is a VaRα(X).

From the above, it is clear that in order to estimate VaR/CVaR, one needs to find aξ that satisfiesV ′(ξ) = 0.
Stochastic approximation (SA) is a natural tool to use in this situation. We briefly introduce SA next and later
develop a scheme for estimating CVaR along the lines of Bardou et al. [2009] on the faster timescale of PG-CVaR-
SA.

Stochastic approximation. The aim is to solve the equationF (θ) = 0 when analytical form ofF is not known.
However, noisy measurementsF (θn)+ξn can be obtained, whereθn, n ≥ 0 are the input parameters andξn, n ≥ 0
are zero-mean random variables, that are not necessarily i.i.d.

The seminal Robbins Monro algorithm solved this problem by employing the following update rule:

θn+1 = θn + γn(F (θn) + ξn). (10)

In the above,γn are step-sizes that satisfy
∞∑

n=1
γn = ∞ and

∞∑

n=1
γ2n < ∞. Under a stability assumption for the

iterates and bounded noise, it can be shown thatθn governed by (10) converges to the solution ofF (θ) = 0 (cf.
Proposition 1 in Section 6).

4.2.1 CVaR estimation using SA.

Using the stochastic approximation principle and the result in Theorem 1, we have the following scheme to estimate
the VaR/CVaR simultaneously from the simulated samplesCn:

VaR:ξn = ξn−1 − ζn,1(1−
1

1− α
1{Cn≥ξ}

︸ ︷︷ ︸
∂v
∂ξ

(ξ,Cn)

), (11)

CVaR:ψn = ψn−1 − ζn,2 (ψn−1 − v(ξn−1, Cn)) . (12)

In the above, (11) can be seen as a gradient descent rule, while (12) can be seen as a plain averaging update.
The scheme above is similar to the one proposed by Bardou et al. [2009], except that the random variableCθ(s0)
(whose CVaR we try to estimate) is a sum of costs obtained at the end of each episode, unlike the single-shot r.v.
considered by Bardou et al. [2009]. The step-sizesζn,1, ζn,2 satisfy

∞∑

n=1
ζn,1 = ∞,

∞∑

n=1
ζn,2 = ∞,

∞∑

n=1

(
ζ2n,1 + ζ2n,2

)
<∞,

ζn,2

ζn,1
→ 0 and

γn

ζn,2
→ 0.

The last two conditions above ensure that VaR estimation recursion (11) proceeds on a faster timescale in com-
parison to CVaR estimation recursion (12) and further, the CVaR recursion itself proceeds on a faster timescale as
compared to the policy parameterθ-recursion.

Using the ordinary differential equation (ODE) approach, we establish later that the tuple(ξn, ψn) converges
to VaRα(C

θ(s0)),CVaRα(C
θ(s0)), for any fixed policy parameterθ (see Section 6).
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4.3 Policy Gradient

We briefly introduce the technique of likelihood ratios for gradient estimation Glynn [1987] and later provide the
necessary estimate for the gradient of total costGθ(s0).

4.3.1 Gradient estimation using likelihood ratios.

Consider a Markov chain{Xn}with a single recurrent state0 and transient states1, . . . , r. LetP (θ) := [[pXiXj
(θ)]]ri,j=0

denote the transition probability matrix of this chain. Here pXiXj
(θ) denotes the probability of going from state

Xi toXj and is parameterized byθ. Let τ denote the first passage time to the recurrent state0.
LetX := (X0, . . . , Xτ−1)

T denote the sequence of states encountered between visits tothe recurrent state0.
The aim is to optimize a performance measureF (θ) = E[f(θ,X)] for this chain using simulated values ofX .
The likelihood estimate is obtained by first simulating the Markov chain according toP (θ) to obtain the samples
X0, . . . , Xτ−1 and then estimate the gradient as follows:

∇θF (θ) = E

[

f(X)

τ−1∑

m=0

∇θpXmXm+1
(θ)

pXmXm+1
(θ)

]

.

4.3.2 Policy Gradient for the objective.

For estimating the gradient of the objectiveGθ(s0), we employ the following well-known estimate (cf. Bartlettand Baxter
[2011]):

∇θG
θ(s0) = E

[(
τ−1∑

n=0

g(sn, an)

)

∇ logP (s0, . . . , sτ−1) | s0 = s0

]

, (13)

where∇ logP (s0, . . . , sτ ) is the likelihood derivative for a policy parameterized byθ, defined as

∇ logP (s0, . . . , sτ−1) =
τ−1∑

m=0

∇ log πθ(am |sm ). (14)

The above relation holds owing to the fact that we parameterize the policies and hence, the gradient of the tran-
sition probabilities can be estimated from the policy alone. This is the well-known policy gradient technique
Bartlett and Baxter [2011] that makes it amenable for estimating gradient of a performance measure in MDPs,
since the transition probabilities are not required and onecan work with policies and simulated transitions from
the MDP.

4.4 Policy Gradient for the CVaR constraint.

For estimating the gradient of the CVaR ofCθ(s0) for a given policy parameterθ, we employ the following
likelihood estimate proposed by Tamar et al. [2014]:

∇θCVaRα(C
θ(s0)) (15)

= E
[(
Cθ(s0)− VaRα(C

θ(s0))
)
∇ logP (s0, . . . , sτ−1) | C

θ(s0) ≥ VaRα(C
θ(s0))

]
,

where∇ logP (s0, . . . , sτ ) is as defined before in (14).
Since we do not know VaRα(Cθ(s0)), in Algorithm 1 we have an online scheme that usesξn (see (11)) to

approximate VaRα(Cθ(s0)), which is then used to derive an approximation to the gradient ∇θCVaRα(C
θ(s0))

(see (7)).
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∇θCVaRα(C
θ(s0)),∇θG

θ(s0)

Averaging

θn

Figure 2: Illustration of mini-batch principle in PG-CVaR-mB algorithm.

5 Algorithm 2: PG-CVaR-mB

mini-Batches. As illustrated in Figure 2, we simulate the SSP for several episodes in each iteration of PG-CVaR-
mB. At the end of the simulation, we obtain the total costs andlikelihood derivative estimates{Gn,j , Cn,j , zn,j}

mn

j=1

and using these, the following quantities are approximated: CVaRα(C
θ(s0)),∇θCVaRα(C

θ(s0)) and∇θG
θ(s0).

The latter approximations can be seen as empirical means of functions ofGn,j , Cn,j , zn,j . The complete algorithm
along with the update rules for various parameters is presented in Algorithm 2.
mini-Batch size. A simple setting for the batch-sizemn is Cnδ for someδ > 0, i.e.,mn increases as a func-
tion of n. We cannot have constant batches, i.e.,δ = 0, since the bias of the CVaR estimates and the gradient
approximations has to vanish asymptotically.

6 Outline of Convergence

We analyze our algorithms using the theory of multiple time-scale stochastic approximation [Borkar, 2008, Chapter
6]. Both the algorithms comprise of updates to the policy parameterθ on the faster time-scale and to the Lagrange
multiplier λ on the slower time-scale. We first provide the analysis for PG-CVaR-SA algorithm and later describe
the necessary modification for the mini-batch variant.

Before the main proof, we recall the following well-known result (cf. Chapter 2 of Borkar [2008]) related to
convergence of stochastic approximation schemes under theexistence of a so-calledLyapunov function:

Proposition 1 Consider the following recursive scheme:

θn+1 = θn + γn(F (θn) + ξn+1), (20)

whereF : Rd → Rd is aL-Lipschitz map andξn a square-integrable martingale difference sequence with respect
to the filtrationFn := σ(θm, ξm,m ≤ n). Moreover,E[‖ξn+1‖

2
2 | Fn] ≤ K(1 + ‖θn‖

2
2) for someK > 0. The

step-sizesγn satisfy
∞∑

n=1
γn = ∞ and

∞∑

n=1
γ2n <∞.

Lyapunov function. Suppose there exists a continuously differentiableV : Rd → [0,∞) such thatlim‖θ‖
2
→∞ V (θ) =

∞. WritingZ := {θ ∈ Rd | V (θ) = 0} 6= φ, V satisfies〈F (θ),∇V (θ)〉 ≤ 0 with equality if and only ifθ ∈ Z.
Then,θn governed by(20)converges a.s. to an internally chain transitive set contained inZ.

The steps involved in proving the convergence of PG-CVaR-SAare as follows:

Step 1: CVaR estimation on fastest time-scale

Owing to the time-scale separation,θ andλ can be assumed to be constant (quasi-static) while analyzing the
VaR/CVaR estimation procedure. We first show that the VaR estimate ξn converges to the corresponding true
value VaRα(Cθ(s0)). This can inferred by observing thatV (see (9)) itself serves as the Lyapunov function and
the fact that the step-sizes satisfy (A3) implies the iterates remain bounded. Thus, by an application of Proposition
1, it is evident that the recursion (11) converges to a point in the set{ξ | V (ξ) = 0}. Since every local minimum
is a global minimum forV , the iteratesξn will converge to VaRα(Cθ(s0)). Establishing the convergence of the
companion recursion in (12) to estimate CVaRα(C

θ(s0)) is easier. This is because (12) is a plain averaging update
that uses the VaR estimateξn from (11).

8



Algorithm 2 PG-CVaR-mB

Input: parameterized policyπθ(·|·), step-sizes{γn, βn}, non-negative weights{an}, mini-batch sizes{mn}.
Initialization: Starting states0, initial policy θ0, number of iterationsM >> 1.
for n = 1, 2, . . . ,M do

Simulation

Simulate the SSP formn episodes using actions generated from the policyπθn−1

Obtain cost estimates:{Gn,j, Cn,j}
mn

j=1

Obtain likelihood derivatives:{zn,j}
mn

j=1

VaR/CVaR estimation:

VaR: ξn =
1

mn

mn∑

j=1

(

1−
1{Cn,j≥ξn−1}

1− α

)

, CVaR: ψn =
1

mn

mn∑

j=1

v(ξn−1, Cn,j) (16)

Policy Gradient:

Total Cost:Ḡn =
1

mn

mn∑

j=1

Gn,j , Gradient:∂Gn = Ḡnzn. (17)

CVaR Gradient:

Total Cost:C̄n =
1

mn

mn∑

j=1

Cn,j , Gradient:∂Cn = (C̃n − ξn)zn1{C̄n≥ξn}. (18)

Policy and Lagrange Multiplier Update:

θn = θn−1 − γn(∂Gn + λn−1(∂Cn)), λn = Γλ

(

λn−1 + βn(ψn −Kα)
)

(19)

end for

Output

(

θ̄M :=

∑M
k=1 akθk
∑M

k=1 ak
, λM

)

.
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Step 2: Policy update on intermediate time-scale

We provide the main arguments to show thatθt governed by (8) converges to asymptotically stable equilibrium
points of the following ODE:

θ̇t = ∇θL
θt,λ(s0) = ∇θG

θt(s0) + λ∇θCVaRα(C
θt(s0)) (21)

Sinceλ is on the slowest timescale, its effect is ’quasi-static’ onthe θ-recursion. Further, since the CVaR
estimation and necessary gradient estimates using likelihood ratios are on the faster timescale, theθ-update in (8)
views these quantities as almost equilibrated. Thus, theθ-update in (8) can be seen to be asymptotically equivalent
to the following in the sense that the difference between thetwo updates iso(1):

θt+1 = θt − γt
(
∇θG

θt(s0) + λ∇θCVaRα(C
θt(s0))

)
,

Thus, (8) can be seen to be a discretization of the ODE (21). Moreover,Lθ,λ(s0) serves as the Lyapunov function

for the above recursion, since
dLθ,λ(s0)

dt
= ∇θL

θ,λ(s0)θ̇ = ∇θL
θ,λ(s0)

(
− ∇θL

θ,λ(s0)
)
< 0. Thus, by an

application of Kushner-Clark lemma Kushner and Clark [1978], θ-recursion in (8) can be seen to converge to the
asymptotically stable attractor for the ODE (21) .

Step 3: Lagrange multiplier update on slowest time-scale

This is easier in comparison to the other steps and follows using arguments similar to that used for constrained
MDPs in general by Borkar [2005]. Theλ recursion viewsθ as almost equilibrated owing to time-scale separation
and converges to the set of asymptotically stable equilibria of the following system of ODEs:

λ̇t = Γ̌λ

(
∇λL

θλt ,λt(s0)
)

= Γ̌λ

(
CVaRα(C

θλt

(s0))−Kα

)
(22)

whereθλ is the value of the converged policy parameterθ when multiplierλ is used. Γ̌λ is a suitably defined
projection operator that keepsλt evolving according to (22) bounded. Next, the PG-CVaR-SA algorithm converges
to the a (local) saddle point ofLθ,λ(s0), i.e., to a tuple(θ∗, λ∗) that are a local minimum w.r.t.θ and a local
maximum w.r.t.λ of Lθ,λ(s0).

The two claims above related to the convergence ofλ-recursion and overall convergence follow using argu-
ments similar to that by Borkar [2005], Prashanth and Ghavamzadeh [2013]. In particular, the former claim follows
using standard stochastic approximation by viewingλ-recursion as performing gradient ascent, whereas the latter
claim requires invocation of the envelope theorem of mathematical economics Mas-Colell et al. [1995].
PG-CVaR-mB. The proof for mini-batch variant differs only in the first step, i.e., estimation of VaR/CVaR and
necessary gradients. Assume that the numbermn of mini-batch samples used for averaging in (16)–(18)), increases
with n. Thus, a straightforward application of law of large numbers establishes that the empirical mean estimates
in (16)–(18) converge to their corresponding true values. The rest of the proof follows in a similar manner as
PG-CVaR-SA.

7 Extension to incorporate Importance Sampling

In this section, we incorporate an importance sampling procedure in the spirit of Lemaire and Pages [2010],
Bardou et al. [2009] to speed up the estimation procedure forVaR/CVaR in our algorithms.

7.1 Importance sampling.

Given a random variableX with densityp(·) and a functionH(·), the aim of an IS based scheme is to estimate
the expectationE(H(X)) in a manner that reduces the variance of the estimates. SupposeX is sampled using

10



another distribution with densitỹp(X, η) (parameterized byη), such that̃p(X, η) = 0 ⇒ p(X) = 0 (an absolute
continuity condition). Then,

E(H(X)) = E

[

H(X)
p(X)

p̃(X, η)

]

. (23)

The problem is to choose the parameterη of the sampling distribution so as to minimizes the varianceof the above
estimate.

A slightly different approach based on mean-translation istaken in a recent method proposed by Lemaire and Pages
[2010]. By translation invariance, we have

E[H(X)] = E

[

H(X + η)
p(X + η)

p(X)

]

, (24)

and the objective is to find aη that minimizes the following variance term:

Q(η) := E

[

H2(X + η)
p2(X + η)

p2(X)

]

. (25)

If ∇Q can be written as an expectation, i.e.,∇Q(η) = E[q(η,X)], then one can hope to estimate this expectation
(and hence minimizeQ) using a stochastic approximation recursion. However, this is not straightforward since
‖q(η, x)‖2 is required to be sub-linear to ensure convergence of the resulting scheme1.

One can get around this problem by double translation ofη as suggested first by Lemaire and Pages [2010] and
later used by Bardou et al. [2009] for VaR/CVaR estimation. Formally, under classic log-concavity assumptions
onp(X), it can be shown thatQ is finite, convex and differentiable, so that

∇Q(η) :=E

[

H(X − η)2
p2(X − η)

p(X)p(X − 2η)

∇p(X − 2η)

p(X − 2η)

]

. (26)

Writing K(η,X) := p2(X−η)
p(X)p(X−2η)

∇p(X−2η)
p(X−2η) , one can boundK(η,X) by a deterministic function ofη as follows:

|K(η,X)| ≤ e2ρ|η|
b

(A|x|b−1 + A|η|b−1 + B), for some constantsρ,A andB. The last piece before present an
IS scheme is related to controlling the growth ofH(X). We assume thatH(X) is controlled by another function
W (X) that satisfies∀x, |H(x)| ≤W (x),W (x+ y) ≤ C(1 +W (x))c(1+W (y))c andE

[
|X |2(b−1)W (X)4c

]
<

∞.

An IS scheme based on stochastic approximation updates as follows:

ηn = ηn−1 − γnq̃(ηn−1, Xn), (27)

whereq̃(η,X) := H(X − η)2e−2ρ|θ|bK(η,X). In lieu of the above discussion,
‖q̃(η,X)‖2 can be bounded by a linear function of‖η‖2 and hence, the recursion (27) converges to the set
{η | ∇Q(η) = 0} (See Section 2.3 by Bardou et al. [2009] for more details).

7.2 IS for VaR/CVaR estimation.

Let D := (s0, a0, . . . , sτ−1, aτ−1) be the random variable corresponding to an SSP episode and let Dn :=
(sn,0, an,0, . . . , sn,τ−1, an,τ−1) be thenth sample simulated using the distribution ofD. Recall that the objec-
tive is to estimate the VaR/CVaR of the total costCθ(s0), for a given policy parameterθ using samples from
D.

Applying the IS procedure described above to our setting is not straightforward, as one requires the knowledge
of the density, sayp(·), of the random variableD. Notice that the densityp(D) can be written asp(D) =

1As illustrated by [Bardou et al., 2009, Section 2.3], even for a standard Gaussian distributedX, i.e.,X ∼ N (0, 1), the functionq(η, x) =
exp(|η|2/2− ηx)H2(x)(η − x) and hence not sub-linear.
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τ−1∏

m=0
πθ(am | sm)P (sm+1 | sm, am). As pointed out in earlier works (cf. Sutton and Barto [1998]), the ratio p(d)

p(d′)

can be computed for two (independent) episodesd andd′ without requiring knowledge of the transition dynamics.

In the following, we usẽp(Dn) :=
τ−1∏

m=0
πθ(an,m | sn,m) as a proxy for the densityp(Dn) and apply the IS

scheme described above to reduce the variance of the VaR/CVaR estimation scheme (11)–(12). The update rule of
the resulting recursion is as follows:

ξn = ξn−1 − ζn,1e
−ρ|η|b

(

1−
1

1− α
1{Cn+ηn−1≥ξn−1}

p̃(Dn + ηn−1)

p̃(Dn)

)

, (28)

ηn = ηn−1 − ζn,1e
−2ρ|ηn−1|

b

1{Cn−ηn−1≥ξn−1}
p̃2(Dn − ηn−1)

p̃(Dn)p̃(Dn − 2η)

∇p̃(Dn − 2ηn−1)

p̃(Dn − 2ηn−1)
. (29)

ψn = ψn−1 − ζn,2

(

ψn−1 − ξn−1 −
1

1− α
(Cn + µn−1 − ξn−1) (30)

1{Cn+µn−1≥ξn−1}
p̃(Dn + µn−1)

p̃(Dn)

)

,

µn = µn−1 − ζn,2
e−2ρ|µn−1|

b

1 +W (−µn−1)2c + ξ2n−1

(Cn − µn−1 − ξn−1)
2
. (31)

× 1{Cn−µn−1≥ξn−1}
p̃2(Dn − µn−1)

p̃(Dn)p̃(Dn − 2µn−1)

∇p̃(Dn − 2µn−1)

p̃(Dn − 2µn−1)
.

In the above, (28) estimates the VaR, while (29) attempts to find the best variance reducer parameter for VaR
estimation procedure. Similarly, (30) estimates the CVaR,while (29) attempts to find the best variance reducer
parameter for CVaR estimation procedure.
Note on convergence. Since we approximated the true densityp(D) above using the policy, the convergence
analysis of the above scheme is not straightforward. The difficult part is to establish that one can use the approxi-
mationp̃(·) in place of the true densityp(·). Once this holds, then it can be shown that the tuple(ηn, µn) updated
according to (29) and (31), converge to the optimal variancereducers(η∗, µ∗), using arguments similar to that in
Proposition 3.1 of Bardou et al. [2009].(η∗, µ∗) minimize the convex functions

Q1(η, ξ
∗
α) := E

[

1{Cθ(s0)≥ξ∗α}
p(D)

p(D−η)

]

and

Q2(µ, ξ
∗
α) := E

[(
Cθ(s0)− ξ∗α

)2
1{Cθ(s0)≥ξ∗α}

p(D)
p(D−µ)

]

, whereξ∗α is a VaRα(Cθ(s0)).

8 Comparison to previous work

In comparison to Borkar and Jain [2010] and Tamar et al. [2014], which are the most closely related contributions,
we would like to point out the following:
(i) The authors by Borkar and Jain [2010] develop an algorithm for a (finite horizon) CVaR constrained MDP,
under a separability condition for the single-stage cost. On the other hand, without a separability condition, we
devise policy gradient algorithms in a SSP setting and our algorithms are shown to converge as well; and
(ii) The authors by Tamar et al. [2014] derive a likelihood estimate for the gradient of the CVaR of a random
variable. However, they do not consider a risk-constrainedSSP and instead optimize only CVaR. In contrast,
we employ a convergent procedure for estimating CVaR that ismotivated by a well-known convex optimization
problem Rockafellar and Uryasev [2000] and then employ policy gradients for both the objective and constraints
to find a locally risk-optimal policy.

9 Conclusions

In this paper, we proposed two novel algorithms to compute a risk-optimal policy in a stochastic shortest path prob-
lem. We used Conditional Value-at-Risk (CVaR) as a risk measure and this is motivated by applications in finance
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and energy markets. Both the algorithms incorporated a CVaRestimation procedure along the lines of Bardou et al.
[2009], which in turn is based on the well-known convex optimization representation by Rockafellar and Uryasev
[2000]. For the purpose of finding a locally risk-optimal policy, our algorithms employed four tools: stochastic
approximation, mini batches, policy gradients and importance sampling. In particular, stochastic approximation or
mini-batches are used to approximate CVaR estimates/necessary gradients in the algorithms, while the gradients
themselves are obtained using the likelihood ratio technique. Further, since CVaR is an expectation that conditions
on the tail probability, to speed up CVaR estimation we incorporated an importance sampling procedure along the
lines of Bardou et al. [2009]. We established asymptotic convergence of both the algorithms.

There are several future directions to be explored such as(i) obtaining finite-time bounds for our proposed
algorithms ,(ii) handling very large state spaces using function approximation, and(iii) applying our algorithms
in practical contexts such as portfolio management in finance/energy sectors and revenue maximization in the
re-insurance business.
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