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Abstract

We study a risk-constrained version of the stochastic sebgath (SSP) problem, where the risk measure
considered is Conditional Value-at-Risk (CVaR). We praptwo algorithms that obtain a locally risk-optimal
policy by employing four tools: stochastic approximatiomini batches, policy gradients and importance sam-
pling. Both the algorithms incorporate a CVaR estimatioacpdure, along the lines pf Bardou et al. [2009],
which in turn is based on Rockafellar-Uryasev's repregemtdor CVaR and utilize the likelihood ratio principle
for estimating the gradient of the sum of one cost functidsjgctive of the SSP) and the gradient of the CVaR of
the sum of another cost function (in the constraint of SSR¢. dlgorithms differ in the manner in which they ap-
proximate the CVaR estimates/necessary gradients - thalfjsrithm uses stochastic approximation, while the
second employ mini-batches in the spirit of Monte Carlo radth We establish asymptotic convergence of both
the algorithms. Further, since estimating CVaR is relatedite-event simulation, we incorporate an importance
sampling based variance reduction scheme into our proggedthms.

1 Introduction

Risk-constrained Markov decision processes (MDPs) haxecééd a lot of attention recently in the reinforcement
learning (RL) community (cf._Borkar and Jain [2010], Tambak [2012], Prashanth and Ghavamzadeh [2013],
Tamar and Mannor [2013]). However, unlike previous workat tfocused mostly on variance of the return as
a measure of risk, we consider Conditional Value-at-RisWa[R) as a risk measure. CVaR has the form of a
conditional expectation, where the conditioning is based oonstraint on Value-at-Risk (VaR).

The aim in this paper is to findrésk-optimalpolicy in the context of a stochastic shortest path (SSH)lpr.
A risk-optimal policy is one that minimizes the sum of onetdosiction (seez?(s°) in (X)), while ensuring that
the conditional expectation of the sum of another cost fongiseeC?(s°) in (@) given some confidence level,
stays bounded, i.e., the solution to the following risk-stomined problem: For a given< (0,1) andK,, > 0,

T7—1 T7—1
géigE mzzog(sm, am) |so = SO‘| subject to CVaR mX::Oc(sm, am) |50 =5 < K,. Q)
G9(sY) Co(sY)

In the aboves? is the starting state and the actians. . ., a,_1 are chosen according to a randomized pofigy
governed byd. Further,g(s,a) andc(s,a) are cost functions that take a statand an actiom as inputs and

is the first passage time to the recurrent state of the undgr§SP (see Sectidn 2 for a detailed formulation). In
Borkar and Jaln [20210], a similar problem is considered iniégefihorizon MDP, though under a strong separability
assumption for the cost functiefs, a).
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Solving the risk-constrained problefd (1) is challenging ¢tutwo reasons:

() Finding a globally risk-optimal policy is intractable evéar a simpler case when the risk is defined as the
variance of the return of an MDP (see Mannor and TsitsikIx ). The risk-constrained MDP that we consider
is more complicated in comparison, since CVaR is a conditierpectation, with the conditioning governed by
an event that bounds a probability.

(i) For the sake of optimization of the CVaR-constrained MDR tha consider in this paper, it is required to
estimate both VaR/CVaR of the total co6t/(s°) in (T)) as well as its gradient. The problem is further cowgtied

by the fact VaR/CVaR concerns the tail of the distributioth&ftotal cost and hence, a variance reduction technique
is required to speed up the estimation procedure.

We avoid the first problem by proposing a policy gradient sti¢hat is proven to converge to a locally optimal
policy, while the second problem is alleviated using twanpipled approaches: stochastic approximation/mini-
batch procedure for estimating VaR/CVaR derived out of d-wsbwn convex optimization problem by
Rockafellar and Uryasev [2000] and likelihood ratio estiesarom the classic policy-gradient algorithm by
Bartlett and Baxter [2011].

The contributions of this paper are summarized as follows:

() First, using the representation of CVaR (and also VaR) asdhéion of a certain convex optimization prob-
lem by|Rockafellar and Uryasev [2000], we develop a stoahagtproximation procedure, along the lines of
Bardou et al.[[2009], for estimating the CVaR of a policy fargSP. In addition, we also propose a scheme based
on the mini-batch principle to estimate CVaR. Mini-batcles in the spirit of Monte Carlo methods and have
been proposed by Atchade et al. [2014] under a differentapéition context for stochastic proximal gradient
algorithms.

(1) Second, we develop two novel policy gradient algorithmsfilading a (locally) risk-optimal policy of the
CVaR-constrained SSP. The first algorithm is a four timdesstinchastic approximation scheme while the second
operates along two time-scales in conjunction with mirtchas. Both algorithms use a procedure to estimate
CVaR and then use the policy-gradient principle with likelbd ratios to estimate the gradient of the total cost
G?(s") as well as CVaR of another cost suifi(s”). Using the CVaR estimates as well as the necessary gradients
(estimated along the fastest two time-scales), the firstralgn updates the policy parameter in the negative de-
scent direction on the intermediate timescale and perfaiumasascent for the Lagrange multiplier on the slowest
timescale. On the other hand, the second algorithm opesatego timescales as it employs mini-batches to esti-
mate the CVaR as well as the necessary gradients.

(111 Third, we adapt our proposed algorithms to incorporate igmze sampling (IS) - a well-known variance-
reduction scheme. This is motivated by the fact that wherctiiéidence leved is close tol, estimating VaR as
well as CVaR takes longer. This is because the interestimgpkes used to estimate CVaR come from the tail of
the distribution of the random variable concerned (in oseg#he total cost’? (s°)) and thus, get rarer asgets
close tol. Importance sampling (IS) is a standard tool to alleviate pmoblem and we employ the IS scheme
proposed by Lemaire and Pages [2010]. However, applyin¢ptter scheme in a SSP setting is non-trivial as it
requires the knowledge of transition dynamics. We proposeuaistic IS variant where we use the randomized
policies to derive sampling ratios for the IS procedure.

To sum up, the core contribution of this paper is twofoldsEiusing a careful synthesis of well-known techniques
from stochastic approximation, likelihood ratios and intpace sampling, we propose a policy gradient algorithm
that is provably convergent to a locally risk-optimal pgliGecond, we propose another algorithm based on the
idea of mini-batches for estimating CVaR from the simulegachples. The latter approach is novel even for policy
gradients in the context of risk-neutral MDPs.

The rest of the paper is organized as follows: In Sedfion 2 avmélize the CVaR-constrained SSP and in
Section 8 describe the structure of our proposed algorithmsSectio 4 we present the first algorithm based
on stochastic approximation and in Sectidn 5 we present tihébatch variant. In Sectiohl 6, we sketch the
convergence of our algorithms and later in Sedtion 7 des¢hie importance sampling variants of our algorithms.
In Sectiorl 8, we review relevant previous works. FinallySictiod ® we provide the concluding remarks.



2 Problem formulation

In this section, we first introduce VaR/CVaR risk measurkesntformalize the stochastic shortest path problem
and subsequently define the CVaR-constrained SSP.

2.1 Background on VaR and CVaR

For any random variabl&, we define the VaR at level € (0,1) as
VaR,(X) = inf {£ | P(X <€) > a} .

If the distribution ofX is continuous, then VaR is the lowest solutiorPtoX < ¢) = «. VaR as arisk measure has
several drawbacks, which precludes using standard stiicbasimization methods. This motivated the definition
of coherent risk measures by Artzner et al. [1999]. A risk suea is coherent if it is convex, monotone, positive
homogeneous and translation equi-variant. CVaR is onelpopsk measure defined by

CVaR,(X) := E[X]X > VaR.(X)].

Unlike VaR, the above is a coherent risk measure.

2.2 Stochastic Shortest Path (SSP)

We consider a SSP with a finite state sp&ce {0, 1,...,r}, where0 is a special cost-free terminal state. The set
of feasible actions in statec S is denoted byA(s). A transition from state to s’ under actioru € A(s) occurs
with probability p,s (a) and incurs the following costsj(s, a) andc(s, a), respectively. The terminal stateis
cost-free and absorbing.

A policy specifies how actions are chosen in each statgtaflonaryrandomized policyr(-|s) maps any state
s to a probability vector ond(s). As is standard in policy gradient algorithms, we paranietethe policy and
assume that the policy is continuously differentiable ia ffarametef. Since a policyr is identifiable by its
parametef, we use them interchangeably in this paper.

As defined by Bertsekas [2007], a proper policy is one whictuess that there is a positive probability that
the terminal stat® will be reached, starting from any initial state, after ughotransitions. This in turn implies
the stated, ..., r are transient. We assume that class of parameterizedgmtonsidered, i.e{sry | § € O}, is
proper.

2.3 CVaR-constrained SSP

As outlined earlier, the risk-constrained objective is:

T—1 71
géiélﬂi Z 9(Sm, am) ‘so = 50] subject to CVaR Z c(Sm, am) ‘so =3 | < K,,
m=0 m=0
GO(sY) Co(s9)
wherer denotes the first visiting time to terminal statd.e.,7 = min{m | s,, = 0}. The actions, ...,a,_1

are chosen according to the randomized potigy Further,o. and K, are constants that specify the confidence
level and constraint bound for CVaR, respectively.

Using the standard trick of Lagrangian relaxation for coaieed optimization problems, we convéit (1) to the
following unconstrained problem:

mimxrlgn [£92(s%) == G?(s") + A(CVaR, (C?(s")) — Ka)] - 2
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Figure 1: Overall flow of our algorithms.

3 Algorithm Structure

In order to solve[(R), a standard constrained optimizatimegdure operates as follows:

Simulation. This is the inner-most loop where the SSP is simulated foersdwepisodes and the resulting costs
are aggregated.

Policy Update. This is the intermediate loop where the gradient of the Liagjien alongd is estimated using
simulated values above. The gradient estimates are thentasgpdate policy parametéralong a descent
direction. Note that this loop is for a given valuegfand

Lagrange Multiplier Update. This is the outer-most loop where the Lagrange multipliés updated along an
ascent direction, using the converged values of the innetdaps.

Using two-timescale stochastic approximation (see Chaptaf Borkar [2008]), the policy and Lagrange
multiplier update can run in parallel as follows:

Ons1 = 0n — 1 VoL (s?) and Nop1 =Ta[An + B VALY (sY)], ()

wherel, is a projection operator that keep the iterafebounded, whiley,,, 8,,,n > 0 are step-sizes that satisfy
the following assumption:

S Brn=00, > Y =00, > (5721—1—7721) <ooand& — 0.
n=1 n=1 n=1 Yn

The last condition above ensures thatecursion proceeds on a faster timescale in comparisafrégursion.

Simulation optimization. No closed form expression for the gradient of the Lagrandién(s°) is available
and moreoverz? (s°) andC?(s°) are observable only via simulation. Observe faiL%*(s%) = V,G?(s°) +
AV4CVaR, (C?(s%)) andV, L9 (s%) = CVaR,(C?(s°)) — K,. Hence, in order to update according[fd (3), we
need to estimate, for any policy parametethe following quantities via simulation:

(i) CVaR,(C?(s%)); (i) VoG?(s%);  and  (iii) VoCVaR,(CY(s")).

In the following sections, we describe two algorithms thifed in the way they estimate each of the above
guantities and subsequently establish that the estimatekshgnce the overall algorithms) converge.



4 Algorithm 1. PG-CVaR-SA

Algorithm [T describes the complete algorithm along with tipelate rules for the various parameters. The al-
gorithm involves the following crucial components - sintida of the SSP, VaR/CVaR estimation and policy
gradients for the objective as well as the CVaR constraiatheof these components is described in detail in the
following.

Algorithm 1 PG-CVaR-SA
Input: parameterized policyy(-|-), step-size§ (.1, Cu.25 Yns B fn>1
Initialization: Starting state?, initial policy 6y, , number of iterationd/ >> 1.
forn=1,2,...,M do
Simulation

Simulate the SSP for an episode using actions, . . . , an. -, —1 generated usingy

n—1

Tn—1 Tn—1
Obtain cost estimatesi,, := Y _ g(snj, an;) ANACy, 1= > ¢(snj, an ;)
3=0 §=0
Tn—1
Obtain likelihood derivative:z, := Z Vlogme(sn,j, an,5)
j=0
VaR/CVaR estimation:
1
VaR: & =8&u-1— (ua (1 - ml{cnz&ll}> ; 4)
CVaR: wn - ¢n71 - Cn,2 (1/)7171 - v(&nflv Cn)) . (5)
Policy Gradient:
Total Cost: G, = Gy,—1 — V(G — Gy,), Gradient: 9G,, = G, z,. (6)
CVaR Gradient:
Total Cost: C, = Crm1 — 7 (C, — Cy),  Gradient: 9C,, = (Cp, — £n)2nl(c, 6.} 7

Policy and Lagrange Multiplier Update:

en - 971—1 - /Yn(aGn + A71—1(6(771))7 An - F)\ (An—l + Bn(z/]n - Ka)) . (8)

end for
Output(b’M S AM ) .

4.1 SSP Simulation

In each iteration of PG-CVaR-SA, an episode of the undegl8P is simulated. Each episode ends with a visit to
the recurrent stat@of the SSP. Let,, denote the time of this visit in episode The actions, ;,7 =0,...,7,—1

Th—1 Tn—1
in episoder are chosen according to the policy, ,. LetG,, := > g(sn.j,an ;) andC, := > c(sp.j,an,;)
§=0 §=0

Th—1
denote the accumulated cost values. Further,Jet= Y~ Vlogms(s,,;, an,;) denote the likelihood derivative
j=0



(see Section 413 below). The tugl€,,, C,, z,,) obtained at the end of theth episode is used to estimate CVaR
as well as policy gradients.

4.2 Estimating VaR and CVaR

A well-known result by Rockafellar and Uryasev [2000] istthath VaR and CVaR can be obtained from the
solution of a certain convex optimization problem and weligbis result next.

Theorem 1 For any random variableX, let

o(E X) = €+ T (X ~ £, andV () = E[u(&, X) ©

Then,VaR, (X) is any point of the setrgmin V = {¢ € R | V'(§) = 0}, whereV" is the derivative o w.r.t. £.
Further,CVaR,(X) = V (&%), where? is aVaR, (X).

From the above, it is clear that in order to estimate VaR/G\@&f needs to find &that satisfied’’(¢) = 0.
Stochastic approximation (SA) is a natural tool to use is gifuation. We briefly introduce SA next and later
develop a scheme for estimating CVaR along the lines of Baed@l. [20009] on the faster timescale of PG-CVaR-
SA.

Stochastic approximation. The aim is to solve the equatidi(f#) = 0 when analytical form of is not known.
However, noisy measuremeritgd,,)+&,, can be obtained, wheég, n > 0 are the input parametersafid n > 0
are zero-mean random variables, that are not necessadly i.

The seminal Robbins Monro algorithm solved this problemimpkying the following update rule:

Ont1 = 0n + 1 (F(0n) + ). (10)

o0 o0
In the aboveyy, are step-sizes that satisfy’ 7, = oo and }_ 42 < oco. Under a stability assumption for the
n=1 n=1

iterates and bounded noise, it can be showndhajoverned by[(1l0) converges to the solutionfq®) = 0 (cf.
Propositior 1L in Section 6).

421 CVaR estimation using SA.

Using the stochastic approximation principle and the tésdlheoreni L, we have the following scheme to estimate
the VaR/CVaR simultaneously from the simulated samglgs

1
VaR:§, = &1 — Gu1(1 = ml{cnzg}% (11)
28 (¢,C,)
CVaR: ¢y, = Yn—1 — G2 (Yn—1 — v(€n=1,Ch)) . (12)

In the above,[(T1) can be seen as a gradient descent rules {@&) can be seen as a plain averaging update.
The scheme above is similar to the one proposed by Bardou[20al], except that the random varialdlé (s°)
(whose CVaR we try to estimate) is a sum of costs obtainedeagitid of each episode, unlike the single-shot r.v.
considered by Bardou etlal. [2009]. The step-sizes, (.2 satisfy

5 G =00, 55 Gz =00, 35 (G2 ) < o0, 2 > 0and 2 0.
n=1 n=1 n=1

n,l n,2
The last two conditions above ensure that VaR estimatioars@mn [11) proceeds on a faster timescale in com-
parison to CVaR estimation recursign{12) and further, th@RCrecursion itself proceeds on a faster timescale as
compared to the policy parameterecursion.
Using the ordinary differential equation (ODE) approack, establish later that the tuplg,, v,,) converges
to VaR, (C?(s")), CVaR, (C?(s")), for any fixed policy parametér(see Sectionl6).



4.3 Policy Gradient

We briefly introduce the technique of likelihood ratios foadient estimation Glynn [1987] and later provide the
necessary estimate for the gradient of total ¢&fts®).

4.3.1 Gradient estimation using likelihood ratios.

Consider a Markov chaifuX, } with a single recurrent stateand transient statés. . ., r. Let P(0) := [[px, x, (0)]]7 ;o
denote the transition probability matrix of this chain. Elgk, x, (¢) denotes the probability of going from state
X, to X; and is parameterized I8y Let r denote the first passage time to the recurrent state

Let X := (Xo,..., X,_1)T denote the sequence of states encountered between visitsrecurrent state.
The aim is to optimize a performance meash@) = E[f (0, X)] for this chain using simulated values &f.
The likelihood estimate is obtained by first simulating tharkbv chain according t&(6) to obtain the samples

Xo, ..., X,_1 and then estimate the gradient as follows:
T—1
Vopx,, X1 (0)
VoF(0) =E | f(X — L lmemtl L
( ) l ( )mZ:O PX Xomia (9)

4.3.2 Policy Gradient for the objective.

For estimating the gradient of the objecti#é(s°), we employ the following well-known estimate (cf. Bartlatid Baxter
[2011)):

T—1
VoGl (s%) =R l(Z 9(sn, an)> Viog P(so,...,8r—1) | so = SO] , (13)
n=0
whereV log P(sy, ..., s,) is the likelihood derivative for a policy parameterizedyefined as
T—1
Viog P(s0,...,8r—1) = Z Vlog mg(am |Sm )- (14)
m=0

The above relation holds owing to the fact that we paranedhe policies and hence, the gradient of the tran-
sition probabilities can be estimated from the policy alofdis is the well-known policy gradient technique
Bartlett and Baxter [2011] that makes it amenable for ediimgagradient of a performance measure in MDPs,
since the transition probabilities are not required and carework with policies and simulated transitions from
the MDP.

4.4 Policy Gradient for the CVaR constraint.

For estimating the gradient of the CvaR 6f (s°) for a given policy parametet, we employ the following
likelihood estimate proposed by Tamar et al. [2014]:

VyCVaR, (C?(s)) (15)
=E[(C?(s°) — VaR,(C?(s°))) Vlog P(so,...,sr—1) | C?(s°) > VaR,(C?(s"))],
whereV log P(so, ..., s;) is as defined before il (1L4).

Since we do not know VaR C?(s?)), in Algorithm[1 we have an online scheme that ugggsee [(11)) to
approximate VaR(C?(s")), which is then used to derive an approximation to the gradigyCVaR, (C?(s°))

(seellD)).
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Figure 2: lllustration of mini-batch principle in PG-CVaRB algorithm.

5 Algorithm 2: PG-CVaR-mB

mini-Batches. As illustrated in Figur€l2, we simulate the SSP for severaages in each iteration of PG-CVaR-
mB. Atthe end of the simulation, we obtain the total costsléetihood derivative estimates,, ;, Cy.j, 2n,; } j24

and using these, the following quantities are approximaB@R,, (C?(s°)),VoCVaR,(C?(s?)) andV,G? (s°).

The latter approximations can be seen as empirical meansicions ofG,, ;, C., ;, z» ;. The complete algorithm
along with the update rules for various parameters is pteden Algorithm2.

mini-Batch size. A simple setting for the batch-size,, is Cn’® for somes > 0, i.e., m,, increases as a func-
tion of n. We cannot have constant batches, ibe= 0, since the bias of the CVaR estimates and the gradient
approximations has to vanish asymptotically.

6 Outline of Convergence

We analyze our algorithms using the theory of multiple tist@le stochastic approximation [Borkar, 2008, Chapter
6]. Both the algorithms comprise of updates to the policyapaeterd on the faster time-scale and to the Lagrange
multiplier A on the slower time-scale. We first provide the analysis for®@R-SA algorithm and later describe
the necessary modification for the mini-batch variant.

Before the main proof, we recall the following well-knowrstét (cf. Chapter 2 af Borkar [2008]) related to
convergence of stochastic approximation schemes undexisience of a so-callddyapunov function

Proposition 1 Consider the following recursive scheme:
Ont1 = + Y (F(0n) + Ent1), (20)

whereF : R — R%is a L-Lipschitz map and,, a square-integrable martingale difference sequence veisipect
to the filtrationF,, := 0(0m, &m, m < n). Moreover,E[HgnHHg | Fno] < K(1+ ||9n|\§) for someK > 0. The
step-sizes, satisfy >~ v, = coand Y 72 < oc.

n=1 n=1

Lyapunov function. Suppose there exists a continuously differentidbteR? — [0, oo) such thatimg, 0o V/(0) =
oo. Writing Z := {6 € R% | V(9) = 0} # ¢, V satisfiesF(9), VV ()) < 0 with equality if and only if) € Z.
Then,d,, governed by20) converges a.s. to an internally chain transitive set camgdiinZ.

The steps involved in proving the convergence of PG-CVaRa&?as follows:

Step 1. CVaR estimation on fastest time-scale

Owing to the time-scale separatiofhand A can be assumed to be constant (quasi-static) while anglykm
VaR/CVaR estimation procedure. We first show that the VaRnase ¢,, converges to the corresponding true
value VaR,(C?(s)). This can inferred by observing thit (see [9)) itself serves as the Lyapunov function and
the fact that the step-sizes satisfy (A3) implies the iesaemain bounded. Thus, by an application of Proposition
[T, it is evident that the recursion{11) converges to a paitthée set{¢ | V(£) = 0}. Since every local minimum

is a global minimum foi/, the iterates,, will converge to VaR (C?(s°)). Establishing the convergence of the
companion recursion ifi{12) to estimate CVAR? (s°)) is easier. This is becauge12) is a plain averaging update
that uses the VaR estimagg from (11).



Algorithm 2 PG-CVaR-mB

Input: parameterized policyy(-|-), step-size§~., 5}, non-negative weightsa,, }, mini-batch size§m,, }.
Initialization: Starting stata, initial policy 6y, number of iterationg/ >> 1.

forn=1,2,...,

Simulation

M do

Simulate the SSP forn.,, episodes using actions generated from the potigy ,

Obtain cost estimates{G,, ;, Cy, ;

] 1

Obtain likelihood derivativesy z, ; } /"

VaR/CVaR estimation:

VaR: &, =

2 (1

Policy Gradient:

Total Cost:G

= m_nZana

CVaR Gradient:

Total Cost:C,

{Cn ]>£’"- 1})

mMn

_ZOHJ?

Policy and L agrange Multiplier Update:

On = 0n_1
end for
Output (91\4 =

Zk 1 kb by

Zk 1 Ok

= (0G4 M—1(0Ch)),  An

o)

R
, CVaR: ¢, = m—nZv(gn_l,c 7)
j=1
Gradient:0G,, = G zp.

Gradient:dC,, = (C,, — fn)znl{cnzgn}-

I5Y (/\nfl + Bn(¥n — Ka))

(16)

17)

(18)

(19)




Step 2: Policy update on intermediate time-scale

We provide the main arguments to show thagoverned by[(8) converges to asymptotically stable eqitiiib
points of the following ODE:

0; = Vo L2 (%) = VG (s°) + AV4CVaR, (C? (s°)) (21)

Since\ is on the slowest timescale, its effect is 'quasi-static’tba §-recursion. Further, since the CVaR
estimation and necessary gradient estimates using ld@dinatios are on the faster timescale, #hgpdate in[(8)
views these gquantities as almost equilibrated. Thusjtinedate in[(B) can be seen to be asymptotically equivalent
to the following in the sense that the difference betweenvleupdates i(1):

Orr1 = 0 — v (VoG (s°) + AVoCVaR, (C?(s°))) ,

Thus, [8) can be seen to be a discretization of the ADE (21yeder,.%* (s°) serves as the Lyapunov function
AL (s .

for the above recursion, smcew = VoLP(s9)0 = VoL (s°)( — VoL (s”)) < 0. Thus, by an

application of Kushner-Clark lemma Kushner and Clark []9#&ecursion in[(B) can be seen to converge to the

asymptotically stable attractor for the OOEX21) .

Step 3: Lagrange multiplier update on slowest time-scale

This is easier in comparison to the other steps and followsgusrguments similar to that used for constrained
MDPs in general by Borkar [2005]. Therecursion view$ as almost equilibrated owing to time-scale separation
and converges to the set of asymptotically stable equlibfthe following system of ODEs:

A o= DA(VaL”' () = Ta(CVaR,(C” (") — Ka) (22)

where#* is the value of the converged policy parameterhen multiplier) is used. T, is a suitably defined
projection operator that keeps evolving according td (22) bounded. Next, the PG-CVaR-S®ethm converges
to the a (local) saddle point af?*(s%), i.e., to a tuple(*, \*) that are a local minimum w.r.f and a local
maximum w.r.t A of £92(s0).

The two claims above related to the convergencg-odécursion and overall convergence follow using argu-
ments similar to that by Borkar [2005], Prashanth and Ghaeal@n|[2013]. In particular, the former claim follows
using standard stochastic approximation by viewiagecursion as performing gradient ascent, whereas the latt
claim requires invocation of the envelope theorem of mattaral economics Mas-Colell etlal. [1995].
PG-CVaR-mB. The proof for mini-batch variant differs only in the first ptd.e., estimation of VaR/CVaR and
necessary gradients. Assume that the numbgof mini-batch samples used for averagindinl (16)}(18)yenses
with n. Thus, a straightforward application of law of large nuntbestablishes that the empirical mean estimates
in (I8)-[I8) converge to their corresponding true valueke Test of the proof follows in a similar manner as
PG-CVaR-SA.

7 Extension to incorporate I mportance Sampling

In this section, we incorporate an importance sampling gulace in the spirit of Lemaire and Pages [2010],
Bardou et al.[[2009] to speed up the estimation procedurédBrCVaR in our algorithms.

7.1 Importance sampling.

Given a random variabl& with densityp(-) and a functionH (-), the aim of an IS based scheme is to estimate
the expectatiof£(H (X)) in a manner that reduces the variance of the estimates. Seppés sampled using
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another distribution with density( X, ) (parameterized by), such thap(X,n) = 0 = p(X) = 0 (an absolute
continuity condition). Then,

p(X) }
E(H(X)) =E |H(X)= . (23)
(HX) [ ( )p(X,n)
The problem is to choose the parametef the sampling distribution so as to minimizes the variaofdbe above
estimate.
A slightly different approach based on mean-translatidéaken in a recent method proposed by Lemaire and Pages
[2010]. By translation invariance, we have

p(X + 77)}
E[HX)|=E |H(X + ) 24
[H(X) [( N (24)
and the objective is to find @that minimizes the following variance term:

Q= [0r+ 25

P(X) (23)

If V@Q can be written as an expectation, i¥Q(n) = E[¢(n, X)], then one can hope to estimate this expectation
(and hence minimiz€)) using a stochastic approximation recursion. Howeves, ithnot straightforward since
lg(n, z)|| is required to be sub-linear to ensure convergence of thudtires schemlé

One can get around this problem by double translatiopad suggested first by Lemaire and Pages [2010] and
later used by Bardou etlal. [2009] for VaR/CVaR estimatioarnfally, under classic log-concavity assumptions
onp(X), it can be shown thap is finite, convex and differentiable, so that

P’(X—n) Vp(X—2n)

VQ(n) :=E |H(X —n)? . (26)
) ( ) p(X)p(X —2n) p(X —21)

- _ _p(X-m) Vp(X-—2n) et ; .
Writing K (n, X) := SO0 (X2 p(X—3;) » ONe can bound (n, X') by a deterministic function af as follows:

|K(n, X)| < e2nl” (A|z|*=1 + A|n|*~! + B), for some constants, A and B. The last piece before present an
IS scheme is related to controlling the growth/{X ). We assume tha (X) is controlled by another function
W(X) that satisfies/z, |H (z)| < W (z), W (z +y) < C(1+W(z))¢(1+W(y))¢ andE [|X|?C-DW (X)*] <
Q.

An IS scheme based on stochastic approximation updatef@sgo

Tn = Tn—1 — 'YnLj(nnflv Xn)v (27)

whereg(n, X) := H(X — n)2e~2l%I" K (n, X). In lieu of the above discussion,
lg(n, X)||, can be bounded by a linear function [bf||, and hence, the recursion {27) converges to the set
{n| VQ(n) = 0} (See Section 2.3 by Bardou et al. [2009] for more details).

7.2 |1Sfor VaR/CVaR estimation.

Let D := (so,a0,-.-,8—1,a-—1) be the random variable corresponding to an SSP episode &g, le=
(1,05 @05 - - - » Sn,r—1,an,r—1) be thenth sample simulated using the distributionf Recall that the objec-
tive is to estimate the VaR/CVaR of the total c@st(s°), for a given policy parametet using samples from
D.

Applying the IS procedure described above to our settingistaightforward, as one requires the knowledge
of the density, say(-), of the random variablé. Notice that the density(D) can be written a®(D) =

asillustrated byl[Bardou et &l.. 2009, Section 2.3], everefetandard Gaussian distribut&d i.e., X ~ A/(0, 1), the functiong(n, =) =
exp(|n|?/2 — nz) H2(z)(n — =) and hence not sub-linear.
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T—1
1T mo(am | $m)P(Sm+1 | Sm,am). As pointed out in earlier works (of._ Sutton and Barto [1998j ratio ”((j,))
m=0

can be computed for two (independent) episatiasdd’ without requiring knowledge of the transition dynamics.

T—1
In the following, we us&(D,,) := [ mo(an.m | sn,m) @s a proxy for the density(D,,) and apply the IS

m=0
scheme described above to reduce the variance of the VaR/E€stimation scheme{IL1)=(12). The update rule of
the resulting recursion is as follows:

b 1 D,, +n,
n=En_1 — Cnae P <1 ey Yic,+nmn1>6n 1}%) , (28)

D (Dn —Nn—1) VP(Dp —21,1)

= N1 — (e 2Plmm=1l"1, _ o £ . 29
o =1~ (Co s 260 5D, 5D, — 20) H(Dr — 2001) #)
1
wn = wnfl - Cn,2 (djnl - gnfl - E(Cn + Hn—1 — gnfl) (30)
{Crntun—1>&n— 1} p(Dn) )
e—20ltn—11" )
MHn = Un—1 — Cn,2 (On — MUn—1 — gnfl) . (31)

1+ W(_Mn—l)% + 5121—1

SR (Do = pin-1) V(Do = 2tin-1)
(Cnmtin1260-} 50D 35Dy, — 2t 1) (Do — 2fim1)

In the above,[(28) estimates the VaR, while](29) attemptsnio ie best variance reducer parameter for VaR
estimation procedure. Similarly, (30) estimates the C\aRile (29) attempts to find the best variance reducer
parameter for CVaR estimation procedure.

Note on convergence. Since we approximated the true densifyD) above using the policy, the convergence
analysis of the above scheme is not straightforward. THiedlif part is to establish that one can use the approxi-
mationp(-) in place of the true density(-). Once this holds, then it can be shown that the tgple y.,,) updated
according to[(209) and(31), converge to the optimal variaedeicergn*, 1*), using arguments similar to that in
Proposition 3.1 of Bardou et al. [2009)*, *) minimize the convex functions

Ql(n7§;§) =K |: 1{09(30)>£*}%:| and
Qa1 €2) = B [(CV(%) = €2)° Lcouoyes) s | - whereg, is a VaR, (C/(s")).

8 Comparison to previouswork

In comparison to Borkar and Jaln [2010] and Tamar et al. [PGAHich are the most closely related contributions,
we would like to point out the following:

(i) The authors by Borkar and Jain [2010] develop an algorithmaffinite horizon) CVaR constrained MDP,
under a separability condition for the single-stage cost.tl@ other hand, without a separability condition, we
devise policy gradient algorithms in a SSP setting and @yorghms are shown to converge as well; and

(if) The authors by Tamar etlal. [2014] derive a likelihood estarfar the gradient of the CVaR of a random
variable. However, they do not consider a risk-constrai@8® and instead optimize only CVaR. In contrast,
we employ a convergent procedure for estimating CVaR thatdgvated by a well-known convex optimization
problem Rockafellar and Uryasev [2000] and then employcpalradients for both the objective and constraints
to find a locally risk-optimal policy.

9 Conclusions

In this paper, we proposed two novel algorithms to compuigkaaptimal policy in a stochastic shortest path prob-
lem. We used Conditional Value-at-Risk (CVaR) as a risk meaand this is motivated by applications in finance
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and energy markets. Both the algorithms incorporated a @g&ihation procedure along the lines of Bardou et al.
[2009], which in turn is based on the well-known convex ojitiation representation by Rockafellar and Uryasev
[2000]. For the purpose of finding a locally risk-optimal jog| our algorithms employed four tools: stochastic
approximation, mini batches, policy gradients and imporéasampling. In particular, stochastic approximation or
mini-batches are used to approximate CVaR estimates/sagegradients in the algorithms, while the gradients
themselves are obtained using the likelihood ratio teamidgrurther, since CVaR is an expectation that conditions
on the tail probability, to speed up CVaR estimation we ipooated an importance sampling procedure along the
lines of Bardou et al! [2009]. We established asymptotiozeogence of both the algorithms.

There are several future directions to be explored sud(i) abtaining finite-time bounds for our proposed
algorithms (ii) handling very large state spaces using function approxmgaand(iii) applying our algorithms
in practical contexts such as portfolio management in finfamergy sectors and revenue maximization in the
re-insurance business.
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