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Abstract. The expected supremum of a Gaussian process indexed by
the image of an index set under a function class is bounded in terms of
separate properties of the index set and the function class. The bound
is relevant to the estimation of nonlinear transformations or the analysis
of learning algorithms whenever hypotheses are chosen from composite
classes, as is the case for multi-layer models.

1 Introduction

Rademacher and Gaussian averages ([1], see also [5],[11]) provide an elegant
method to demonstrate generalization for a wide variety of learning algorithms
and are particularly well suited to analyze kernel machines, where the use of
more classical methods relying on covering numbers becomes cumbersome.

To briefly describe the use of Gaussian averages (Rademacher averages will
not concern us), let Y ⊆ R

n and let γ be a vector γ = (γ1, ..., γn) of independent
standard normal variables. We define the (expected supremum of the) Gaussian
average of Y as

G (Y ) = E sup
y∈Y

〈γ,y〉 , (1)

where 〈., .〉 denotes the inner product in R
n. Consider a loss class F of functions

f : X → R, where X is some space of examples (such as input-output pairs), a
sample x = (x1, ..., xn) ∈ Xn of observations and write F (x) for the subset of
R

n given by F (x) = {(f (x1) , ..., f (xn)) : f ∈ F}. Then we have the following
result [1].

Theorem 1. Let the members of F take values in [0, 1] and let X,X1, ..., Xn be
iid random variables with values in X , X = (X1, ..., Xn). Then for δ > 0 with
probability at least 1− δ we have for every f ∈ F that

Ef (X) ≤ 1

n

∑

f (Xi) +

√
2π

n
G (F (X)) +

√

9 ln 2/δ

2n
,

where the expectation in the definition (1) of G (F (X)) is conditional to the
sample X.
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The utility of Gaussian averages is not limited to functions with values in
[0, 1]. For real functions φ with Lipschitz constant L (φ) we have G ((φ ◦ F ) (x))
≤ L (φ) G (F (x)) (see also Slepian’s Lemma, [6], [4]), where φ ◦ F is the class
{x 7→ φ (f (x)) : f ∈ F}.

The inequality G ((φ ◦ F ) (x)) ≤ L (φ) G (F (x)), which in the above form
holds also for Rademacher averages [10], is extremely useful and in part respon-
sible for the success of these complexity measures. For Gaussian averages it holds
in a more general sense: if φ : Rn → R

m has Lipschitz constant L (φ) with re-
spect to the Euclidean distances, then G (φ (Y )) ≤ L (φ)G (Y ). This is a direct
consequence of Slepian’s Lemma and can be applied to the analysis of clustering
or learning to learn ([9] and [8]).

But what if we also want some freedom in the choice of φ after seeing the
data? If the class of Lipschitz functions considered has small cardinality, a union
bound can be used. If it is very large one can try to use covering numbers, but
the matter soon becomes quite complicated and destroys the elegant simplicity
of the method.

These considerations lead to a more general question: given a set Y ⊂ R
n

and a class F of functions f : Rn→ R
m, how can we bound the Gaussian average

G (F (Y )) = G ({f (y) : f ∈ F, y ∈ Y }) in terms of separate properties of Y and
F , properties which should preferably very closely resemble Gaussian averages?
If H is some class of functions mapping samples to R

n and Y = H (x), then
the bound is on G (F (Y )) = G ((F ◦ H) (x)), so our question is relevant to the
estimation of composite functions in general. Such estimates are necessary for
multitask feature-learning, where H is a class of feature maps and F is vector-
valued, with components chosen independently for each task. Other potential
applications are to the currently popular subject of deep learning, where we
consider functional concatenations as in FM◦FM−1◦... ◦ F1.

The present paper gives a preliminary answer. To state it we introduce some
notation. We will always take γ = (γ1, ...) to be a random vector whose compo-
nents are independent standard normal variables, while ‖.‖ and 〈., .〉 denote norm
and inner product in a Euclidean space, the dimension of which is determined
by context, as is the dimension of the vector γ.

Definition 1. If Y ⊆ R
n we set

D (Y ) = sup
y,y′∈Y

‖y − y′‖ and G (Y ) = E sup
y∈Y

〈γ,y〉 .

If F is a class of functions f : Y → R
m we set

L (F, Y ) = sup
y,y′∈Y, y 6=y′

sup
f∈F

‖f (y) − f (y′)‖
‖y − y′‖ and

R (F, Y ) = sup
y,y′∈Y, y 6=y′

E sup
f∈F

〈γ, f (y) − f (y′)〉
‖y − y′‖ .
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We also write F (Y ) = {f (y) : f ∈ F,y ∈ Y }. When there is no ambiguity we
write L (F ) = L (F, Y ) and R (F ) = R (F, Y ).

Then D (Y ) is the diameter of Y , and G (Y ) is the Gaussian average already
introduced above. L (F ) is the smallest Lipschitz constant acceptable for all
f ∈ F , and the more unusual quantity R (F ) can be viewed as a Gaussian
average of Lipschitz quotients. In section 3.1 we give some properties of R (F ).
Our main result is the following chain rule.

Theorem 2. Let Y ⊂ R
n be finite, F a finite class of functions f : Y → R

m.
Then there are universal constants C1 and C2 such that for any y0 ∈ Y

G (F (Y )) ≤ C1L (F )G (Y ) + C2D (Y )R (F ) +G (F (y0)) . (2)

We make some general remarks on the implications of our result.

1. The requirement of finiteness for Y and F is a simplification to avoid issues
of measurability. The cardinality of these sets plays no role.

2. The constants C1 and C2 as they result from the proof are rather large,
because they accumulate the constants of Talagrand’s majorizing measure the-
orem and generic chaining [6][14][15][16]. This is a major shortcoming and the
reason why our result is regarded as preliminary. Is there another proof of a
similar result, avoiding majorizing measures and resulting in smaller constants?
This question is the subject of current research.

3. The first term on the right hand side of (2) describes the complexity
inherited from the bottom layer Y (which we may think of as H (x)), and it
depends on the top layer F only through the Lipschitz constant L (F ). The
other two terms represent the complexity of the top layer, depending on the
bottom layer only through the diameter D (Y ) of Y . If Y has unit diameter and
the functions in F are contractions, then the two layers are completely decoupled
in the bound. This decoupling is the most attractive property of our result.

4. Apart from the large constants the inequality is tight in at least two situ-
ations: first, if Y = {y0} is a singleton, then only the last term remains, and we
recover the Gaussian average of F (y0). This also shows that the last term can-
not be eliminated. On the other hand if F consists of a single Lipschitz function
φ, then we recover (up to a constant) the inequality G (φ (Y )) ≤ L (φ)G (Y )
above.

5. The bound can be iterated to multiple layers by re-substitution of F (Y ) in
place of Y . A corresponding formula is given in Section 3, where we also sketch
applications to vector-valued function classes.

The next section gives a proof of Theorem 2, then we explain how our result
can be applied to machine learning. The last section is devoted to the proof of
a technical result encapsulating our use of majorizing measures.
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2 Proving the chain rule

To prove Theorem 2 we need the theory of majorizing measures and generic
chaining. Our use of these techniques is summarized in the following theorem,
which is also the origin of our large constants.

Theorem 3. Let Xy be a random process indexed by a finite set Y ⊂ R
n. Sup-

pose that there is a number K ≥ 1 such that for any distinct members y,y′ ∈ Y
and any s > 0

Pr {Xy −Xy′ > s} ≤ K exp

(

−s2

2 ‖y − y′‖2

)

(3)

Then for any y0 ∈ Y

E

[

sup
y∈Y

Xy −Xy0

]

≤ C′G (Y ) + C′′D (Y )
√
lnK,

where C′ and C′′ are universal constants.

This is obtained from Talagrand’s majorizing measure theorem (Theorem 6
below) combined with generic chaining [16]. An early version of a similar result
is Theorem 15 in [13], where the author remarks that his method of proof (which
we also use) is very indirect, and that a more direct proof would be desirable. In
Section 4 we do supply a proof, largely because the dependence on K, which can
often be swept under the carpet, plays a crucial role in our arguments below.

We also need the following Gaussian concentration inequality (Tsirelson-
Ibragimov-Sudakov inequality, Theorem 5.6 in [4]).

Theorem 4. Let F : Rn → R be L-Lipschitz. Then for any s > 0

Pr {F (γ) > EF (γ) + s} ≤ e−s2/(2L2).

To conclude the preparation for the proof of Theorem 2 we give a simple
lemma.

Lemma 1. Suppose a random variable X satisfies Pr {X −A > s} ≤ e−s2 , for
any s > 0. Then

∀s > 0 , Pr {X > s} ≤ eA
2

e−s2/2.

Proof. For s ≤ A the conclusion is trivial, so suppose that s > A. From s2 =
(s−A+A)

2 ≤ 2 (s−A)
2
+ 2A2 we get (s−A)

2 ≥
(

s2/2
)

−A2, so

Pr {X > s} = Pr {X −A > s−A} ≤ e−(s−A)2 ≤ eA
2

e−s2/2.

�
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Proof (of Theorem 2). The result is trivial if F consists only of constants, so we
can assume that L (F ) > 0. For y,y′ ∈ Y define a function F : Rm → R by

F (z) = sup
f∈F

〈z, f (y) − f (y′)〉 .

F is Lipschitz with Lipschitz constant bounded by supf∈F ‖f (y) − f (y′)‖ ≤
L (F ) ‖y − y′‖. Writing Zy,y′ = F (γ), it then follows from Gaussian concentra-
tion (Theorem 4) that

Pr {Zy,y′ > EZy,y′ + s} ≤ exp

(

−s2

2L (F )
2 ‖y − y′‖2

)

.

Since by definition EZy,y′ ≤ R (F ) ‖y − y′‖, Lemma 1 gives

Pr {Zy,y′ > s} ≤ exp

(

R (F )
2

2L (F )
2

)

exp

(

−s2

4L (F )
2 ‖y − y′‖2

)

.

Now define a process Xy, indexed by Y , as

Xy =
1√

2L (F )
sup
f∈F

〈γ, f (y)〉 .

Since Xy −Xy′ ≤ Zy,y′/
(√

2L (F )
)

we have

Pr {Xy −Xy′ > s} ≤ Pr
{

Zy,y′ >
√
2L (F ) s

}

≤ exp

(

R (F )2

2L (F )
2

)

exp

(

−s2

2 ‖y − y′‖2

)

and by Theorem 3, with K = exp
(

R (F )
2
/
(

2L (F )
2
))

≥ 1,

E sup
y∈Y

(Xy −Xy0
) ≤ C′G (Y ) + C′′D (Y )

R (F )√
2L (F )

.

Multiplication by
√
2L (F ) then gives

E sup
y∈Y

(

sup
f∈F

〈γ, f (y)〉 − sup
f∈F

〈γ, f (y0)〉
)

≤ C1L (F )G (Y ) + C2D (Y )R (F )

with C1 =
√
2C′ and C2 = C′′. �

3 Applications

We first give some elementary properties of the quantity R (F, Y ) which appears
in Theorem 2. Then we apply Theorem 2 to a two layer kernel machine and give
a bound for multi-task learning of low-dimensional representations.
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3.1 Some properties of R (F )

Recall the definition of R (F, Y ). If Y ⊆ R
nand F consists of functions f : Y →

R
m

R (F, Y ) = sup
y,y′∈Y, y 6=y′

E sup
f∈F

〈γ, f (y)− f (y′)〉
‖y − y′‖ .

R (F ) is itself a supremum of Gaussian averages. For y,y′ ∈ Y let ∆F (y,y′) ⊆
R

m be the set of quotients

∆F (y,y′) =

{

f (y)− f (y′)

‖y − y′‖ : f ∈ F

}

.

It follows from the definition that R (F, Y ) = supy,y′∈Y, y 6=y′ G (∆F (y,y′)). We
record some simple properties. Recall that for a set S in a real vector space the
convex hull Co (S) is defined as

Co (S) =

{

n
∑

i=1

αizi : n ∈ N, zi ∈ S, αi ≥ 0,
∑

i

αi = 1

}

.

Theorem 5. Let Y ⊆ R
n and let F and H be classes of functions f : Y → R

m.
Then

(i) If F ⊆ H then R (F, Y ) ≤ R (H, Y ).

(ii) If Y ⊆ Y ′ then R (F, Y ) ≤ R (F, Y ′).

(iii) If c ≥ 0 then R (cF, Y ) = cR (F, Y ) .

(iv) R (F +H, Y ) ≤ R (F, Y ) +R (H, Y ).

(v) R (F, Y ) = R (Co (F ) , Y ).

(vi) If Z ⊆ R
K and φ : Z → R

n has Lipschitz constant L (φ) and the members
of F are defined on φ (Z), then R (F ◦ φ, Z) ≤ L (φ)R (F, φ (Z)).

(vii) R (F ) ≤ L (F )
√

2 ln |F |.

Remarks:

1. From (ii) we get R (F, Y ) ≤ R (F,Rn). In applications where Y = H (x)
the quantity R (F,H (x)) is data-dependent, but R (F,Rn) is sometimes easier
to bound.

2. We see that the properties of R (F ) largely parallel the properties of the
Gaussian averages themselves, except for the inequality G (φ (Y )) ≤ L (φ)G (Y ),
for which there doesn’t seem to be an analogous property of R (F ). Instead we
have a ’backwards’ version of it with (vi) above, with a rather trivial proof below.

3. Of course (vii) is relevant only when ln |F | is reasonably small and serves
the comparison of Theorem 2 to alternative bounds.

Proof. (i)-(iii) are obvious from the definition. (iv) follows from linearity of the
inner product and the triangle inequality for the supremum. To see (v) first note
that R (F ) ≤ R (Co (F )) follows from (i), while the reverse inequality follows
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from

sup
αi≥0,

∑
αi=1

sup
f1,f2,...∈F

〈

γ,
∑

i

αifi (y)−
∑

i

αifi (y
′)

〉

= sup
αi≥0,

∑
αi=1

sup
f1,f2,...∈F

∑

i

αi 〈γ, fi (y) − fi (y
′)〉

≤ sup
αi≥0,

∑
αi=1

∑

i

αi sup
f∈F

〈γ, f (y) − f (y′)〉

= sup
f∈F

〈γ, f (y)− f (y′)〉 .

For (vi) we may chose y and y′ such that φ (y) 6= φ (y′), since otherwise both
sides of the inequality to be proved are zero. But then

E sup
f∈F◦φ

〈γ, f (y) − f (y′)〉
‖y − y′‖ =

‖φ (y) − φ (y′)‖
‖y − y′‖ E sup

f∈F

〈γ, f (φ (y))− f (φ (y′))〉
‖φ (y) − φ (y′)‖

≤ L (φ)E sup
f∈F

〈γ, f (φ (y))− f (φ (y′))〉
‖φ (y) − φ (y′)‖ .

To see (vii) note that for every y and y′ and every f ∈ F it follows from Gaussian
concentration (Theorem 4) that

Pr

{ 〈γ, f (y) − f (y′)〉
‖y − y′‖ > s

}

≤ e−s2/2L2

.

The conclusion then follows from standard estimates (e.g. [4], section 2.5). �

3.2 A double layer kernel machine

We use the chain rule to bound the complexity of a double-layer kernel machine.
The corresponding optimization problem is clearly non-convex and we are not
aware of an efficient optimization method. The model is chosen to illustrate the
application of Theorem 2. It is defined as follows.

Assume the data to lie in R
m0 and fix two real numbers ∆1 and B1. On

R
m0 × R

m0 define a (Gaussian radial-basis-function) kernel κ by

κ (z, z′) = exp

(

−‖z − z′‖2
2∆2

1

)

, z, z′ ∈ R
m0 ,

and let φ : Rm0 → H be the associated feature map, where H is the associated
RKHS with inner product 〈., .〉H and norm ‖.‖H (for kernel methods see . Now
we let H be the class of vector valued functions h : Rm0 → R

m1 defined by

H =

{

z ∈ R
m0 7→ (〈w1, φ (z)〉H , ..., 〈wm1

, φ (z)〉H) :
∑

k

‖wk‖2H ≤ B2
1

}

.
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This can also be written as H = {z ∈ R
m0 7→Wφ (z) : ‖W‖HS ≤ B1}, where

‖W‖HS is the Hilbert-Schmidt norm of an operator W : H → R
m1 .

For the function class F , which we wish to compose with H, we proceed
in a similar way, defining an analogous kernel of width ∆2 on R

m1 × R
m1 , a

corresponding feature map ψ : Rm1 → H and a class of real valued functions

F = {z ∈ R
m1 7→ 〈v, ψ (z)〉H : ‖vl‖H ≤ B2} .

We now want high probability bounds on the estimation error for functional
compositions f ◦ h, uniform over F ◦ H. To apply our result we should really
restrict to finite subsets of F and H a requirement which we simply ignore. In
machine learning we could of course always restrict all representations to some
fixed, very high but finite precision.

Fix a sample x ∈ R
nm0 . Then Y = H (x) ⊂ R

nm1 . To use Theorem 2 we
define a class F ′ of functions from R

nm1 to R
n by

F ′ = {(y1, ..., yn) ∈ R
nm1 7→ (f (y1) , ..., f (yn)) ∈ R

n : f ∈ F} .

Since the first feature map φ maps to the unit sphere of H we have

D (H (x)) ≤ 2B1

√
n and

G (H (x)) = E sup
W

∑

ik

γik 〈wk, φ (xi)〉H ≤ B1
√
nm1.

The feature map corresponding to the Gaussian kernel∆2 has Lipschitz constant
∆−1

2 . For y,y′ ∈ R
nm1 we obtain

sup
v

(

∑

i

(〈v, φ (yi)〉H − 〈v, φ (y′i)〉H)
2

)1/2

≤ B2

(

∑

i

‖φ (yi)− φ (y′i)‖
2
H

)1/2

≤ B2∆
−1
2 ‖y − y′‖ ,

so we have L (F ′,Rnm1) ≤ B2∆
−1
2 .

On the other hand

E sup
v

∑

i

γi (〈v, φ (yi)〉H − 〈v, φ (y′i)〉H) ≤ B2E

∥

∥

∥

∥

∥

n
∑

i=1

γi (φ (yi)− φ (y′
i))

∥

∥

∥

∥

∥

≤ B2

(

∑

i

‖φ (yi)− φ (y′i)‖
2
H

)1/2

≤ B2∆
−1
2 ‖y − y′‖ ,

so we have R (F ′,Rnm1) ≤ B2∆
−1
2 . Furthermore

G (F ′ (h0 (x))) ≤ B2

√
n,

similar to the bound for G (H (x)).
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For the composite network Theorem 2 gives us the bound

G (F ′ (H (x))) ≤ C1B1B2∆
−1
2

√
nm1 + 2C2B1B2

√
n∆−1

2 +B2

√
n.

Dividing by n and appealing to Theorem 1 one obtains the uniform bound: with
probability at least 1− δ we have for every h ∈ H and every f ∈ F that

Ef (h (X)) ≤ 1

n

∑

f (h (Xi)) +

+

√

2π

n
B2

(

B1∆
−1
2 (C1

√
m1 + 2C2) + 1

)

+

√

9 ln 2/δ

2n
.

Remarks.
1. One might object that the result depends heavily on the intermediate

dimension m1 so that only a very classical relationship between sample size
and dimension is obtained. In this sense our result only works for intermediate
representations of rather low dimension. The mapping stages ofH and F however
include nonlinear maps to infinite dimensional spaces.

2. Clearly the above choice of the Gaussian kernel is arbitrary. Any positive
semidefinite kernel can be used for the first mapping stage, and the application
of the chain rule requires only the Lipschitz property for the second kernel in
the definition of F . The Gaussian kernel was only chosen for definiteness.

3. Similarly the choice of the Hilbert-Schmidt norm as a regularizer for W in
the first mapping stage is arbitrary, one could equally use another matrix norm.
This would result in different bounds for G (H (x)) and D (H (x)), incurring a
different dependency of our bound on m1.

3.3 Multitask learning

As a second illustration we modify the above model to accommodate multitask
learning [2][3]. Here one observes a T ×n sample x =(xti : 1 ≤ t ≤ T, 1 ≤ i ≤ n)
∈ XnT , where (xti : 1 ≤ i ≤ n) is the sample observed for the t-th task. We
consider a two layer situation where the bottom-layer H consists of functions
h : X → R

m, and the top layer function class is of the form

FT =
{

x ∈ R
m1 7→ f (x) = (f1 (x) , ..., fT (x)) ∈ R

T : ft ∈ F
}

,

where F is some class of functions mapping R
m1 to R. The functions (or rep-

resentations) of the bottom layer H are optimized for the entire sample, in the
top layer each function ft is optimized for the represented data corresponding
to the t-th task. In an approach of empirical risk minimization one selects the
composed function f̂ ◦ ĥ which minimizes the task-averaged empirical loss

min
f∈Fn,h∈H

1

nT

n
∑

i=1

T
∑

t=1

ft (h (xit)) .

We wish to give a general explanation of the potential benefits of this method
over the separate learning of functions from F ◦ H, as studied in the previous
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section. Clearly we must assume that the tasks are related in the sense that
the above minimum is small, so any possible benefit can only be a benefit of
improved estimation.

For the multitask model a result analogous to Theorem 1 is easily obtained
(see e.g. [7]). Let X =(Xti) be a vector of independent random variables with
values in X , where Xti is iid to Xtj for all ijt, and let Xt be iid to Xti. Then
with probability at least 1− δ we have for every f ∈ Fn and every h ∈ H

1

T

∑

t

Eft (h (Xt)) ≤
1

nT

∑

ti

ft (h (Xti)) +

√
2π

nT
G
(

FT ◦ H (X)
)

+

√

9 ln 2/δ

2nT
.

Here the left hand side is interpreted as the task averaged risk and

G
(

FT ◦ H (x)
)

= E sup
f∈FT ,h∈H

∑

ti

γtift (h (xti)) .

For a definite example we take H and F as in the previous section and
observe that now there is an additional factor T on the sample size. This implies
the modified bounds G (H (x)) ≤ B1

√
Tnm1 and D (H (x)) ≤ 2B1

√
Tn. Also

for y,y′ ∈ R
Tnm1 with yti, y

′
ti ∈ R

m1

sup
f∈FT

∑

ti

(ft (yti)− ft (y
′
ti))

2 ≤
∑

t

sup
f∈F

∑

i

(ft (yti)− ft (y
′
ti))

2

≤ L2 (F,Rnm1 )
∑

t

∑

i

‖yti − y′ti‖
2
,

so
L
(

FT ,RTnm1

)

= L (F,Rnm1) . (4)

Therefore L
(

FT ,RTnm1

)

≤ B2∆
−1
2 . Similarly

E sup
f∈FT

∑

ti

γti (ft (yti)− ft (y
′
ti))

=
∑

t

E sup
f∈F

∑

i

γti (ft (yti)− ft (y
′
ti))

≤
√
T





∑

t

(

E sup
f∈F

∑

i

γti (ft (yti)− ft (y
′
ti))

)2




1/2

≤
√
T

(

∑

t

R2 (F,Rnm1)
∑

i

‖yti − y′ti‖
2

)1/2

=
√
TR (F,Rnm1) ‖y − y′‖ .

We conclude that
R
(

FT ,RnmT
)

≤
√
TR (F,Rnm) , (5)

in the given case
R
(

FT ,RnmT
)

≤
√
TB2∆

−1
2 .
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Also

G
(

FT (h0 (x))
)

= E sup
f∈FT

∑

ti

γtift (h0 (xti))

=
∑

t

E sup
f∈F

∑

i

γtif (h0 (xti))

≤ TG (F (h0 (x))) , (6)

so that here G
(

FT (h0 (x))
)

≤ B2T
√
n. The chain rule then gives

G (F ◦ H (x)) ≤ C1B1B2∆
−1
2

√

Tnm1 +
(

2C2B1∆
−1
2 + 1

)

B2T
√
n,

where the first term represents the complexity of H and the second that of FT .
Dividing by nT we obtain as the dominant term for the estimation error

C1B1B2∆
−1
2

√

m1

nT
+

(

2C2B1∆
−1
2 + 1

)

B2√
n

.

This reproduces a general property of multitask learning [3]: in the limit T →
∞ the contribution of the common representation (including the intermediate
dimension m1) to the estimation error vanishes. There remains only the cost of
estimating the task specific functions in the top layer.

We have obtained this result for a very specific model. The relations (4), (5)
and (6) for L

(

FT
)

, R
(

FT
)

and G
(

FT (h0 (x))
)

are nevertheless independent
of the exact model, so the chain rule could be made the basis of a fairly general
result about multitask feature learning.

3.4 Iteration of the bound

We apply the chain rule to multi-layered or ”deep” learning machines, a subject
which appears to be of some current interest. Here we have function classes
F1, ..., FK , where Fk consists of functions f : Rnk−1 → R

nk and we are interested
in the generalization properties of the composite class

FK ◦ ... ◦ F1 = {x ∈ R
n0 7→ fK (fK−1 (... (f1 (x)))) : fk ∈ Fk} .

To state our bound we are given some sample x in R
n0 and introduce the notation

Y0 = x

Yk = Fk (Yk−1) = Fk ◦ ... ◦ F1 (x) ⊆ R
nk , for k > 0

Gk = min
y∈Yk−1(x)

G (Fk (y)) .

Under the convention that the product over an empty index set is 1, induction
shows that

G (YK) ≤
K
∑

k=1



CK−k
1

K
∏

j=k+1

L (Fj)



 (C2D (Yk−1)R (Fk) +Gk) .
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Clearly the large constants are prohibitive for any useful quantitative prediction
of generalization, but qualitative statements are possible. Observe for exam-
ple that, apart from C1 and the Lipschitz constants, each layer only makes an
additive contribution to the overall complexity. More specifically, for machine
learning with a sample of size n, we can make the assumptions nk = nmk, where
mk is the dimension of the k-th intermediate representations, and it is reason-
able to postulate max {Gk, D (Yk)R (Fk)} ≤ Cnp, where C is some constant not
depending on n and p is some exponent p < 1 (for multi-layered kernel machines
with Lipschitz feature maps we would have p = 1/2 - see above). Then the above
expression is of order np and Theorem 1 yields a uniform law of large numbers for
the multi-layered class, with a uniform bound on the estimation error decreasing
as np−1.

4 Proof of Theorem 3

Talagrand has proved the following result ([14]).

Theorem 6. There are universal constants r ≥ 2 and C such that for every
finite Y ⊂ R

n there is an increasing sequence of partitions Ak of Y and a
probability measure µ on Y , such that, whenever A ∈ Ak then D (A) ≤ 2r−k

and

sup
y∈Y

∞
∑

k>k0

r−k

√

ln
1

µ (Ak (y))
≤ C G (Y ) ,

where Ak (y) denotes the unique member of Ak which contains y, and k0 is the
largest integer k satisfying

2r−k ≥ D (Y ) = sup
y,y′∈Y

‖y − y′‖

Observe that 2r−k0 ≥ D (Y ), so we can assume Ak0
= {Y }. As explained in

[14], the above Theorem is equivalent to the existence of a measure µ on Y such
that

sup
y∈Y

∫ ∞

0

√

ln
1

µ (B (y,ǫ))
dǫ ≤ C G (Y ) ,

where C is some other universal constant and B (y,ǫ) is the ball of radius ǫ
centered at y. The latter is perhaps the more usual formulation of the majorizing
measure theorem.

We will use Talagrand’s theorem to prove Theorem 3, but before please note
the inequality

D (Y ) ≤
√
2πG (Y ) , (7)

which follows from

sup
y,y′∈Y

‖y − y′‖ =

√

π

2
sup
y,y′

E |〈γ,y − y′〉|

≤
√

π

2
E sup

y,y′

|〈γ,y − y′〉| =
√

π

2
E sup

y,y′

〈γ,y − y′〉 .
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In the first equality we used the fact that ‖v‖ =
√

π/2E |〈γ, v〉| for any vector
v.

Proof (of Theorem 3.). Let µ and Ak be as determined for Y by Theorem 6.
First we claim that for any δ ∈ (0, 1)

Pr

{

∃y ∈ Y : Xy −Xy0
>
∑

k>k0

r−k+1

√

8 ln

(

2k−k0K

µ (A (y)) δ

)

}

< δ. (8)

For every k > k0 and every A ∈ Ak let π (A) be some element chosen from A.
We set π (Y ) = y0. We denote πk (y) = π (Ak (y)). This implies the chaining
identity:

Xy −Xy0
=
∑

k>k0

(

Xπk(y) −Xπk−1(y)

)

.

For k > k0 and A ∈ Ak use Â to denote the unique member of Ak−1 such that

A ⊆ Â. Since for A ∈ Ak both π (A) and π
(

Â
)

are members of Â ∈ Ak−1

we must have
∥

∥

∥π (A)− π
(

Â
)∥

∥

∥ ≤ 2r−k+1. Also note πk−1 (y) = π
(

Âk (y)
)

=

π ((Ak (πk (y))) ˆ). For k ≥ k0 we define a function ξk : Ak → R+ as follows:

ξk (A) = r−k+1

√

8 ln

(

2k−k0K

µ (A) δ

)

.

To prove the claim we have to show that

Pr

{

∃y ∈ Y : Xy −Xy0
−
∑

k>k0

ξk (Ak (y)) > 0

}

< δ.

Denote the left hand side of this inequality with P . By the chaining identity

P ≤ Pr

{

∃y :
∑

k>k0

(

Xπk(y) −Xπk−1(y) − ξk (Ak (y))
)

> 0

}

.

If the sum is positive, at least one of the terms has to be positive, so

P ≤ Pr
{

∃y, k > k0 :
(

Xπk(y) −Xπk−1(y) − ξk (Ak (y))
)

> 0
}

.

The event on the right hand side can also be written as

{

∃k > k0, ∃A ∈ Ak : Xπ(A) −Xπ(Â) > ξk (A)
}

,
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and a union bound gives

P ≤
∑

k>k0

∑

A∈Ak

Pr
{

Xπ(A) −Xπ(Â) > ξk (A)
}

≤
∑

k>k0

∑

A∈Ak

K exp







−ξk (A)2

2
∥

∥

∥π (A)− π
(

Â
)∥

∥

∥

2







≤
∑

k>k0

∑

A∈Ak

K exp

(

−ξk (A)
2

2 (2r−k+1)
2

)

,

where we used the bound (3) in the second and the bound on
∥

∥

∥π (A)− π
(

Â
)∥

∥

∥

in the third inequality. Using the definition of ξk (A) the last expression is equal
to

δ
∑

k>k0

1

2k−k0

∑

A∈Ak

µ (A) = δ
∑

k>k0

1

2k−k0

= δ,

because µ is a probability measure. This establishes the claim.
Now, using

√
a+ b ≤ √

a+
√
b for a, b ≥ 0, with probability at least 1− δ

sup
y

Xy −Xy0
≤ r

∑

k>k0

r−k

√

8 ln

(

1

µ (Ak (y))

)

+ r−k0+1
∑

k>0

r−k+1

√

8 ln

(

2kK

δ

)

≤
√
8rC G (Y ) +

√
8r−k0+1

∑

k>0

√
kr−k+1

√

ln

(

2K

δ

)

,

where we used Talagrand’s theorem and the fact that K > 1. By the definition
of k0 we have r−k0+1 ≤ r2D (Y ) /2, so this is bounded by

C′′′G (Y ) + C′′′′D (Y )

√

ln

(

2K

δ

)

,

with C′′′ =
√
8rC and C′′′′ =

√
8
(

r2/2
)
∑

k>0

√
kr−k+1. Converting the last

bound into a tail bound and integrating we obtain

E

[

sup
y

Xy −Xy0

]

≤ C′′′G (Y ) + C′′′′D (Y )

(√
ln 2K +

√
π

2

)

≤ C′′′G (Y ) + 3C′′′′D (Y )
√
ln 2K

≤
(

C′′′ + 3
√
2π ln 2C′′′′

)

G (Y ) + 3C′′′′D (Y )
√
lnK,

where we again usedK ≥ 1 in the second inequality and (7) in the last inequality.
This gives the conclusion with C′ = C′′′ + 3

√
2π ln 2C′′′′ and C′′ = 3C′′′′. �
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