
Countering Ballot Stuffing and Incorporating
Eligibility Verifiability in Helios

Sriramkrishnan Srinivasan, Chris Culnane1, James Heather2, Steve Schneider1,
Zhe Xia3⋆⋆

1 Department of Computing, University of Surrey, Guildford GU2 7XH, U.K.
{c.culnane,s.schneider}@surrey.ac.uk

2 Secured Intelligence
drfudgeboy@gmail.com

3 Department of Computing, Wuhan University of Technology, 430063, China
xiazhe@whut.edu.cn

Abstract

Helios is a web-based end-to-end verifiable electronic voting system which has
been said to be suitable for low-coercion environments. Although many Internet
voting schemes have been proposed in the literature, Helios stands out for its real
world relevance. It has been used in a number of elections in university campuses
around the world and it has also been used recently by the IACR to elect its
board members. It was noted that a dishonest server in Helios can stuff ballots
and this seems to limit the claims of end-to-end verifiability of the system. In
this work, we investigate how the issue of ballot stuffing can be addressed with
minimum change to the current vote casting experience in Helios and we argue
formally about the security of our techniques. Our ideas are intuitive and general
enough to be applied in the context of other Internet voting scheme and they
also address recent attacks exploiting the malleability of ballots in Helios.

Keywords: End-to-End Verifiable Voting, Helios, Token-Controlled Encryp-
tion;

1 Introduction

A number of end-to-end (e2e) verifiable voting schemes have been proposed in
the literature. It is argued that these schemes provide a number of verifiability
properties.

– Individual Verifiability: the property whereby a voter can check that his
vote has been correctly included in the tally by checking that it has been
published on the election’s bulletin board (BB).

– Universal Verifiability: the property whereby anyone can check that the
outcome of the election corresponds to the list of published ballots.

⋆⋆ Corresponding author

Eligibility Verifiability is a less talked about property of e2e voting sys-
tems. This is the property whereby anyone can check that the published ballots
have been cast by eligible voters and that only one ballot is tallied for each eligi-
ble voter. We argue this is of primary importance as eligibility verifiability (EV)
ensures that ballot stuffing attacks are thwarted. Another property of end-to-
end verifiable voting schemes is ballot independence whereby observing a voter’s
interaction with an election system should not allow an adversary to cast a vote
that is somehow related.

To our knowledge, only a few Internet voting schemes have explicitly incor-
porated EV and provided defenses against ballot stuffing, e.g. JCJ/Civitas [10,5]
and Cobra [7]. These schemes are also coercion-resistant i.e. a voter can appear to
conform to the orders of an adversary while voting as desired. In JCJ/Civitas,
these properties are achieved with the use of asymmetric key pairs for every
voter, individual voter credentials and a framework for managing real and fake
credentials. It can be argued, that although theoretically the gold standards,
schemes like JCJ/Civitas put too much stress on intricate voter knowledge of
the system and for most voters in the real world, the schemes are unusable.

Helios [1,2] takes the approach of catering to elections in low-coercion en-
vironments and aims to achieve usability. Helios stands out for its real world
relevance and it has been used in a number of elections in university campuses
around the world (see for example [2]) and it has also been used in the IACR
presidential elections since 2010 [9]. Our work aims to address what we perceive
to be some shortcomings in the Helios protocol, in particular the lack of eligi-
bility verifiability. A dishonest Helios server can subvert the system by stuffing
ballots i.e. submitting votes for voters who have not done so themselves [12]. A
number of recent attacks [6,11] have also highlighted the fragility of the com-
plex ballot structure in Helios and our work also addresses these attacks that
exploit the malleability of the ballots in Helios. Our work incorporates eligibility
verifiability in Helios, without the need for asymmetric keys-pairs for voters and
ensures that the complexity of the scheme, in particular the voter experience,
remains as close to the current experience as possible and the techniques are
general enough to be applied to other internet voting schemes.

1.1 Structure of this paper

The rest of the paper is structured as follows. In Section 2, we describe a number
of possible methods to incorporate eligibility verifiability in Helios. Our main
solution in Section 3 makes novel use of a primitive known as Token Controlled
Encryption (TCE) [3] and in Section 4 we describe TCE and security models
for TCE with the goal of arguing formally about the security of our proposed
construction. We conclude with some comments in Section 5.

2 Incorporating Eligibility Verifiability in Helios

The basic functionality we would like to achieve, to ensure EV is that ballots are
somehow tied uniquely to voters and we want to ensure that the various parties

running the election are not able to stuff ballots. Anyone can then verify that
ballots are not only tied to legitimate voters but also that they were cast by
legitimate voters themselves and no one else.

To ensure this functionality, it seems necessary to assume some kind of private
voter credential. However, we would like the use of this credential to be as less
onerous on the voter as far as possible. In particular, we do not want voters to
be able to manage and manipulate asymmetric keys. We would like to adhere
to Benaloh’s Ballot Casting Assurance principle [4]. In particular, we would
like to ensure that although we use a private voter credential, no voter specific
information is signaled to or used by the ballot creation device which can be used
to influence its behavior. These requirements rule out the “obvious” solution of
voters signing their existing Helios ballots before posting to the WBB. If a PKI
for voter keys can be assumed to exist and if we assume that voters are able to
use and manipulate these keys, it is unclear what benefits a protocol like Helios
offers over a much more involved protocol like JCJ/Civitas.

We will assume for the remainder of the discussion that the party initiating
the election supplies individual voters with a private one-time voter credential
prior to the voting day. As an example, in the case of the IACR election, this is
the IACR election management committee rather than the Helios server itself.
In addition, voter authentication to the Helios server is leveraged using some
existing system. We will call the one-time credential a token for reasons that will
be described shortly and we will also assume that the party generating the one-
time tokens is not the same party that manages user-authentication to the Helios
server, or the Helios server itself. We note that such natural separation between
the various entities already exists in the existing Helios use case scenarios. Thus,
there are three distinct entities performing distinct functions and we assume that
they do not collude.

We want to ensure that the Helios server and the service providing user
authentication to the Helios server are both unable to stuff ballots. In addition,
we also want security against the party generating the voter credentials and we
want to ensure that this party is not able to violate the privacy of voters or stuff
ballots itself.

In the remainder of this section, we will take a brief detour to describe the
features of a novel primitive called Token Controlled Encryption that we will
employ. Subsequently, we will describe a modified Helios work flow that will
highlight the new setup process as well as the voter’s view of the system.

Token-controlled public key encryption (TCE), introduced by Baek, Safavi-
Naini and Susilo [3] is a cryptographic primitive in which senders encrypt mes-
sages with the public keys of receivers and a secret token. The token is delegated
to a third-party, who is entrusted with releasing the token to the receiver when
some conditions elaborated by the sender are satisfied. Receivers cannot de-
crypt encrypted messages until they obtain the corresponding token and the
third-party who is entrusted with the token is unable to obtain any information
about the original message. In addition, the communication and computational
overheads for releasing the token are small.

2.1 Token Controlled Encryption

A TCE scheme is defined in terms of four probabilistic polynomial time (PPT)
algorithms:

– TCE.KeyGen: A randomized key generation algorithm that on input a secu-
rity parameter 1k, outputs a public key pk and a matching private key sk .
Associated to each public/private key pair are a message space MsgSp, a
ciphertext space CtSp and a token space TokSp.

– TCE.TokenGen: A randomized token generation algorithm that on input a
security parameter 1k, outputs a random token tok ∈ TokSp.

– TCE.Enc: A randomized encryption algorithm that on input pk , tok ∈ TokSp
and message m ∈ MsgSp returns a ciphertext c ∈ CtSp.

– TCE.Dec: A decryption algorithm that on input a secret key sk , a token
tok ∈ TokSp and a ciphertext c ∈ CtSp, returns either a message m ∈ MsgSp
or a failure symbol ⊥.

These algorithms must satisfy the consistency requirement that decryption
with the appropriate token undoes encryption: i.e. ∀(pk , sk)← TCE.KeyGen(1k),
∀tok ∈ TokSp, ∀m ∈ MsgSp, ∀c = Enc(pk , tok ,m), Dec(sk , tok , c) = m.

Note in particular that the token generation algorithm does not require any
inputs other than the security parameter.

To motivate the use of Token Controlled Encryption we describe briefly an
application known as the Millionaire’s will problem. A Millionaire wishes to
write his will and entrust it to his sons, but he does not want them to be able to
read the will till his demise. In the traditional setting, the will is entrusted to a
lawyer, but our millionaire does not wish to reveal the contents of the will to his
lawyer. A solution to this problem is proposed that uses a TCE scheme. The sons
generate key pairs for a TCE scheme and publish the public key. The millionaire
writes a will for his sons, encrypts it using the public key of the TCE scheme
and gives the encrypted will to his sons. He entrusts the token to his lawyer and
trusts that the lawyer will only reveal the token at a pre-appointed time. The
lawyer does not have access to the private keys used to create the encrypted will
and therefore is unable to obtain any information about the contents of the will.
The sons do not have the token till the appointed time and therefore cannot
decrypt the encrypted will. We will use TCE along the lines of the example
above, with some tweaks, to achieve EV in Helios.

2.2 The Modified Helios Workflow to incorporate Eligibility
Verifiability

In the following section we describe a modified Helios workflow to incorporate
EV in Helios. Key differences in the Setup and Voting process from the regular
workflow are highlighted in bold. The Tallying phase now needs a few additional
steps at the start.

Setup

– An election officer and a set of trustees are selected. The election officer is
in charge of running the election server and bulletin board. We will refer
to the election officer as the Helios server in subsequent discussions. The
election officer publishes a set of common system parameters on the BB and
the trustees jointly generate an asymmetric key pair i.e. the joint public key
is generated by combining each trustee’s public key share. The share of the
private key of each trustee is kept secret.

– Each trustee’s public key is published on a BB along with a proof that
the respective trustees know the corresponding private key share. The joint
public key is also published with a proof of correct construction.

– The Helios server also generates an election specific key pair for
a TCE scheme and publishes the public key for the TCE scheme,
and a proof of knowledge of the private key on the BB. The Helios
server keeps the private key for the TCE scheme secret.

– The election officer publishes a candidate list.

– A hash that includes all the above information, called the election fingerprint
is published on the BB.

– The election officer also publishes a list of eligible voters. We note that there
is an implicit assumption here that the list of eligible voters is somehow
made available to the election officer.

– The party in charge of generating the list of eligible candidates also
sends to the individual voters a one-time election specific token. It
commits to a list of tokens against names of eligible voters; it can
do so by supplying a cryptographic hash of a file in which the voter
names and tokens are stored and the Helios server can publish this
on the BB. The token list is kept secret.

Voting Process

– The voter launches a browser script which downloads the global parameters
published by the election officer. The script recomputes the election finger-
print and the voter should check that the fingerprint corresponds to the value
published on the BB.

– The voter inputs his vote to the browser script. The script encrypts the
vote with the joint public key and also generates a proof that the encrypted
vote is constructed correctly i.e. only permitted values are encrypted. In the
discussions that follow, we will call this the regular Helios ballot.

– The voter inputs a token. This may either be the “real” token that
is sent to the voter or a “fake” token.

– The regular Helios ballot is now encrypted using the public key of
the TCE scheme.

– The encrypted ballot is displayed to the voter.

– The voter may choose to either audit the ballot or cast it.

• If the voter decides to audit the encrypted ballot then the script provides
her with the random data used to create the ballot. The voter should then
take this random data and re-create the ballot independently (ideally on
another platform) to verify that it was indeed well formed. Audited votes
cannot be cast and the browser script will prompt the voter to re-create
an encrypted vote.

• If the voter decides to cast the ballot, she submits her login credentials
to the script which submits the ballot to the election officer. The election
officer authenticates the voter, and posts the ballot to the election BB
next to the voter’s identity. The script deletes the randomness used to
create the ballot.

– Voters can check the BB to be assured that their ballots appear on the
bulletin board unchanged.

Tallying Some extra steps are introduced in the tallying phase and these are
outlined below.

– When the voting phase is over, the token list is revealed. The cryptographic
hash can be recomputed and compared to the hash committed to on the BB
and this ensures that the token list is the same committed to at the start of
the election.

– The Helios server publicly reveals the election specific TCE private key.
– Every ballot against a voter’s name is decrypted with the token revealed for

that voter and the TCE private key. All ballots created with “fake” tokens
will be automatically rejected as the decryption will fail. Where multiple
ballots are created with a “real” token, a policy such as “consider last vote
cast” can be used to select one voter per voter. Decryption reveals the regular
Helios ballot.

All other aspects of tallying remain the same. In particular, proofs of all the
ballots revealed from the process above are checked to ensure they are allowed
encryptions. They are then tallied as normal.

2.3 Comments on the New Workflow

– The significant change in the Setup phase is that the Helios server now
generates an election specific key-pair for a TCE scheme. This key-pair can
be thresholded if greater assurance is required in its generation and perhaps
to ensure that a key from an earlier election is not reused. Otherwise a
regular key-pair suffices. The private key is revealed publicly during the
tallying phase, so this TCE key-pair is truly election specific.

– The voting process in this new proposal still adheres to the principle of Ballot
Casting Assurance. Although a voter token is used in the ballot construction
phase, it is not tied to a voter’s identity.
Note that in the spirit of TCE, the token is small, so we can safely assume
that the token can be represented in human understandable form and that

the voter is able to generate “fake” tokens in his head and input them easily
to the ballot creation device. It is possible to envisage that the “real” token
is sent as a QR code to the voter by mail or on a mobile handset, and
that a separate application can generate “fake” tokens etc. It is also possible
to have multiple tokens generated by more than one authority and these
can be combined by the script during cote creation. This ensures that not
too much trust is placed in one authority generating the tokens. We do not
discuss these enhancements except to mention they are possible to keep the
discussion simple.

– The voter is able to submit multiple ballots. This may include multiple
ballots with “fake” tokens, but also multiple ballots with the “real” one.
Ballots created with “fake” tokens will be automatically rejected, while a
policy such as consider last vote submitted with “real” token” can be used
to choose one vote per voter. The general spirit of this approach is in the
lines of JCJ/Civitas. Our contribution lies in incorporating the ideas into
the existing Helios workflow and ensuring a significantly simpler workflow
for the voter without voter asymmetric keys.

– Encrypting the regular Helios ballot with the TCE public key ensures that
individual ballot components of the regular Helios ballot are no longer avail-
able to those observing the BB during the election phase, rendering ballot
malleability attacks infeasible. Replay attacks will also not work as ballots
are bound to private user tokens. The only possibility of exploiting the indi-
vidual ballot components is to somehow re-use them in a subsequent election
after they are revealed in the tallying phase. This is clearly a more remote
threat and one that can be easily mitigated by generating one time election
specific keys as well. It is also possible to incorporating the tokens in the
signature proofs of knowledge. This will enable public checkability of the
proofs once the TCE decryption is completed, as tokens as publicly revealed
while also ensuring that ballots are tied uniquely to election specific voter
tokens.

– The audit process is unchanged and is still designed to assure the voter that
the encrypted vote does in fact correspond to the choices made by the voter
and cannot check attacks due to malware.

– In keeping with the spirit of Helios, we assume that some existing infras-
tructure is used to manage login of voters to the Helios server. Our only
requirement is that this should not be same infrastructure that supplies the
one-time tokens to the voters. In our construction, the Helios server itself
can send out username and passwords to the voters by email and this does
not enable it to stuff ballots. In the existing setup, the Helios server is able
to stuff ballots whether it manages logins of voters to the system or not.

– If the infrastructure that generates the tokens also manages logins to the
Helios server, then this infrastructure may be able to stuff ballots. It can be
argued that this is a lesser threat than the possibility of the Helios server
itself stuffing ballots and one that it is easily mitigated by leveraging login
by an arbitrary existing infrastructure. On the other hand, in the existing
Helios workflow, even when arbitrary infrastructure is leverages to supply

login for voters, the Helios server itself may stuff ballots and it is not clear
how this can be checked.

3 Security of our proposed construction

We will introduce the security notions for TCE scheme more formally in the next
section. Informally, we have the following types of adversaries and the following
security requirements.

– Adversaries without knowledge of the private key and token. In our setting
these correspond to general external adversaries i.e. other than the party
generating the tokens, or the Helios server itself. In the context of TCE
schemes, these are called Type-1 outside adversaries. We will require that
ciphertexts are indistinguishable to these adversaries. This is captured in the
security game TCE.1 in Section 4.1.

– Adversaries without knowledge of the private key, but with access to the
token. In our setting this corresponds to the party generating the tokens. In
the context of TCE schemes these are called Type-2 outside adversaries. We
will require that ciphertexts are indistinguishable to these adversaries. This
is captured in the security game TCE.2 in Section 4.2.
As discussed earlier, this type of adversary is not able to stuff ballots, under
the assumption that they do not control the infrastructure that supplies
login credentials. This is because, with knowledge of the token and public
key, this adversary can create valid ballots for a particular voter. As briefly
discussed earlier, it is also possible to have the tokens generated by more
than one party and delivered to the voter who will supply all tokens to the
browser script. This prevents a single token generating entity from being
able to stuff ballots. In this second scenario, a token generating party may
also supply the authentication infrastructure.

– Adversaries with knowledge of the private key, but without access to the
token. In our setting, this corresponds to the Helios server itself. In the
context of TCE schemes, these are called inside adversaries. We require that
ciphertexts are indistinguishable to these adversaries. This is captured in the
security game TCE.3 in Section 4.3.

– Finally, to prevent ballot stuffing by the Helios sever itself, we require the
much stronger security property that the the inside adversary against the
TCE scheme is not able to make ciphertexts created under one token de-
crypt successfully under another token. This is captured in the security game
TCE.4 in Section 4.4.

To summarize, assuming that the system is instantiated with a concrete TCE
scheme meeting the appropriate security notions outlined above our construction
satisfies the following properties.

– The Helios server, despite possessing the private key that corresponds to
the public key used to encrypt the regular Helios ballot, is unable gain any

information till the token is made available. Although the regular Helios
ballot is already encrypted, the new procedure ensures that the individual
ciphertext components of the regular Helios ballot are not available to anyone
before the tallying phase, including the Helios server.

– The Helios server is also unable to generate valid ciphertexts without knowl-
edge of the voter tokens and this ensures that ballot stuffing attacks are
rendered infeasible as all ballots generated without the legitimate voter to-
ken are automatically rejected.

– Even when the private key for the TCE scheme and voter tokens are made
public, the public decryption only reveals the regular Helios ballots, ensuring
the same privacy and integrity guarantees as in regular Helios.

4 Security Notions for Token Controlled Encryption

Baek, Safavi-Naini and Susilo [3] first proposed security models for TCE schemes.
Galindo and Herranz [8] identified the security models considered in [3] as being
inadequate as the issue of a single ciphertext decrypting to different messages
under different tokens is not addressed. They introduced an improved security
model termed the strong existential token unforgeability model and proposed a
generic construction starting from any trapdoor partial one-way function and
secure in the ROM. Below we give the various security notions for TCE schemes
and in Section 4.5 we talk briefly about concrete instantiations, but leave the
details to the original sources.

As mentioned earlier, two types of adversaries can be considered against TCE
schemes. “Outside” adversaries who do not have access to the private key and
“Inside” adversaries, who possess the receiver’s private key (i.e. the receiver’s
themselves). In addition, Outside adversaries are further categorized as Type 1
Outside adversaries, who do not possess the token and Type 2 Outside adver-
saries who have access to the token (the semi-trusted third party) respectively.

We will capture security against these different types of adversaries in terms
of various security games that the adversary plays against a challenger C. The
adversary will be given access to one or more of the following oracles with suitable
restrictions on their use.

– A token embedded encryption oracle: The adversary can query the token
embedded encryption oracle with a message m and receives the ciphertext
c created with the target token tok∗ and the public key of the receiver i.e.
c = Enc(pk , tok∗,m).

– A decryption oracle: The adversary can query the decryption oracle with a
ciphertext/token pair and receives back the decryption of the ciphertext un-
der the specified token and secret key of the receiver. i.e m = Dec(sk , tok , c).
Here m is either a valid plaintext or ⊥ to indicate failure of decryption.

4.1 TCE.1: Security Against Type-1 Outside Adversaries

We consider the following game between the adversary A and a challenger C,
which captures security against an outside adversaryA whose goal is to break the

confidentiality of the TCE ciphertext created with a fixed token. The adversary
A does not have access to the private key or to the token used to encrypt the
message.

The challenger C takes as input the security parameter 1k and runs algorithm
TCE.KeyGen of the TCE scheme to obtain (pk , sk) i.e. (pk , sk)← TCE.KeyGen(1k).
The challenger C also runs algorithm TCE.TokenGen to obtain a target token tok∗

i.e. tok∗ ← TCE.TokenGen(1k).
The adversary is given the public keys pk but not the corresponding secret

key sk or the target token tok∗. The game proceeds as follows.

– Phase 1: A issues a series of adaptively selected encryption queries on mes-
sages m to the token embedded encryption oracle. A also issues a series of
adaptively selected decryption queries on ciphertext/token pairs (c, tok) to
the decryption oracle.

– Challenge: After A decides to end Phase 1, it outputs two equal length

messages m0 and m1. C selects b
$← {0, 1}, sets c∗ = Enc(pk , tok∗,mb) and

gives c∗ to A.
– Phase 2: This phase proceeds as in Phase 1.
– Guess: A outputs a bit b′ and wins the game if b′ = b.

The advantage of A against the TCE scheme in the above TCE.1 security
game is defined to be:

AdvTCE.1A (k) = |Pr[b′ = b]− 1/2|

where the probability is measured over the random choices of coins of A and C.
A scheme is said to be TCE.1 secure if the advantage of all PPT adversaries

is negligible as a function of the security parameter k.
No restriction is placed on the decryption queries in Phase 1. This is because

the token is not known to the adversary and it is argued that the query on
(c∗, tok∗) must occur with negligible probability, implying that the token must
be chosen from an exponentially large space.

4.2 TCE.2: Security Against Type-2 Outside Adversaries

This is very similar to security against Type-1 outside adversaries except that
now the adversary also has access to the target token. Thus, the adversary can
be thought to be the semi-trusted third party entrusted with the token, who
attempts to break the confidentiality of TCE ciphertexts. Security against Type-
2 adversaries is captured in terms of a game very similar to the security game
stated above with the restriction that the adversary cannot query the decryption
oracle with the challenge ciphertext and target token.

The challenger C takes as input the security parameter 1k and runs algorithm
TCE.KeyGen of the TCE scheme to obtain (pk , sk) i.e. (pk , sk)← TCE.KeyGen(1k).
The challenger C also runs algorithm TCE.TokenGen to obtain a target token tok∗

i.e. tok∗ ← TCE.TokenGen(1k).
The adversary is given the target token tok∗ and the public key pk but not

the corresponding secret key sk . The game proceeds as follows.

– Phase 1: A issues a series of adaptively selected encryption queries on mes-
sages m to the token-embedded encryption oracle . A also issues a series of
adaptively selected decryption queries on ciphertext-token pairs (c, tok) to
the decryption oracle.

– Challenge: After A decides to end Phase 1, it outputs two equal-length

messages m0 and m1. C selects b
$← {0, 1}, sets c∗ = Enc(pk , tok∗,mb) and

gives c∗ to A.
– Phase 2: This phase proceeds as in Phase 1 with the restriction that the

adversary may not query the decryption oracle with (c∗, tok∗).
– Guess: A outputs a bit b′ and wins the game if b′ = b.

The advantage of A against the TCE scheme in the TCE.2 security game is
defined to be:

AdvTCE.2A (k) = |Pr[b′ = b]− 1/2|
where the probability is measured over the random choices of coins of A and C.

A scheme is said to be TCE.2 secure if the advantage of all PPT adversaries
is negligible as a function of the security parameter k.

4.3 TCE.3: Security against inside adversaries

Insider adversaries are those who possess the appropriate private keys but not
the target token and attempt to break the confidentiality of TCE ciphertexts
i.e. they are receivers of TCE ciphertexts to whom the token has not yet been
released by the semi-trusted third party.

The challenger C takes as input the security parameter 1k and runs algorithm
TCE.KeyGen of the TCE scheme to obtain (pk , sk) i.e. (pk , sk)← TCE.KeyGen(1k).
The challenger C also runs algorithm TCE.TokenGen to obtain a target token tok∗

i.e. tok∗ ← TCE.TokenGen(1k).
The adversary is given the public key pk and corresponding secret key sk but

not the target token tok∗. The game proceeds as follows.

– Phase 1: A issues a series of adaptively selected encryption queries on mes-
sages m to the token embedded encryption oracle.

– Challenge: After A decides to end Phase 1, it outputs two equal length

messages m0 and m1. C selects b
$← {0, 1}, sets c∗ = Enc(pk , tok∗,mb) and

gives c∗ to A.
– Phase 2: This phase proceeds as in Phase 1.
– Guess: A outputs a bit b′ and wins the game if b′ = b.

The advantage of A against the TCE scheme in the above TCE.3 security
game is defined to be:

AdvTCE.3A (k) = |Pr[b′ = b]− 1/2|

where the probability is measured over the random choices of coins of A and C.
A scheme is said to be TCE.3 secure if the advantage of all PPT adversaries

is negligible as a function of the security parameter k.

4.4 TCE.4: Strong Existential Token Unforgeability

In the original works by [3], the issue of a ciphertext created with one token de-
crypting correctly with another token was not considered. A new security notion
termed the “Strong Existential Token Unforgeability” capturing this requirement
was first introduced in [8].

The challenger C takes as input the security parameter 1k and runs algorithm
TCE.KeyGen of the TCE scheme to obtain (pk , sk) i.e. (pk , sk)← TCE.KeyGen(1k).

The adversary is given the public key pk but not the corresponding secret
key sk . The game proceeds as follows.

– 1: A issues a series of decryption queries on adaptively selected cipher-
text/token pairs (c, tok) to the decryption oracle.

– 2: A outputs two different tokens tok1 and tok2 and a ciphertext c. The
adversary wins the game if Dec(sk , tok1, c) = m1 and Dec(sk , tok2, c) = m2

with m1 ̸= m2 ̸= ⊥.

The advantage of A against the TCE scheme in the above TCE.4 security
game is defined to be:

AdvTCE.4A (k) = |Pr[Dec(sk , tok1
∗, c) = m1 ∧m2 = Dec(sk , tok2

∗, c) ∧m1 ̸= m2 ̸= ⊥]|

where the probability is measured over the random choices of coins of A and
C.

A scheme is said to be TCE.4 secure if the advantage of all PPT adversaries
is negligible as a function of the security parameter k.

This is a very strong but necessary security requirement. Here we ask that it
should be infeasible for an adversary to make up a new token after the challenge
ciphertext is received, and that this should be the case even if the challenge
ciphertext is created by the adversary.

4.5 Constructions of TCE schemes

As observed in [3] a somewhat intuitive construction for TCE scheme may pro-
ceed as follows. Let (pk , sk) be the keys of a PKE scheme with encryption algo-
rithm E. Let E′ be the encryption algorithm of a symmetric key scheme. Then,
to encrypt a message m to a receiver with public key pk , choose a key k for the
symmetric scheme at random and send ciphertext Enc(pk , Enc′(k,m)). The re-
ceiver is able to decrypt the ciphertext with his secret key sk but cannot obtain
the message till he obtains the symmetric key k.

Intuitively, this basic approach achieves the functionality we desire to achieve
EV in Helios. However, the authors in [3] observe that for this scheme to be
proven secure the symmetric encryption scheme must be IND-CCA secure and
it is not straightforward to analyze the security of the construction.

Two specific instantiations for TCE schemes are proposed in [3] which are
TCE.1, TCE.2 and TCE.3 secure in the Random Oracle Model. However, it is
shown in [8] that these schemes are not TCE.4 secure. A generic construction for
a TCE scheme starting from any trapdoor partial one-way function and secure
in the ROM is proposed in [8].

5 Conclusion

We have discussed the lack of Eligibility Verifiability in Helios which leads to
ballot stuffing attacks and proposed a solution to incorporate EV and counter
ballot stuffing without significantly affecting the existing voter experience. Fur-
thermore, the additional cryptography does not in any way impact the existing
protocol and implementation and can be seamlessly incorporated to the existing
code base. The proposed solution does not introduce any onerous asymmetric
key management for voters as in schemes such as JCJ/Civitas which are the
only schemes that incorporate EV but with much greater usability challenges
for voters. We argue formally about the security of our new ideas which make
novel use of a primitive known as Token Controlled Encryption. Our ideas make
minimal change to the existing voter experience in Helios and in particular, the
principle of Ballot Casting Assurance is retained and in addition, attacks ex-
ploiting the knowledge and malleability of individual ciphertext components in
Helios are thwarted.

Acknowledgement

Dr. Sriramkrishnan Srinivasan was at the University of Surrey when this work
was carried out. This work was funded by the UK Engineering and Physical
Sciences Research Council (EPSRC) under grant EP/G025797/1, and we are
grateful to the anonymous reviewers for their valuable comments on the paper.

References

1. Adida, B. Helios: Web-based open-audit voting. In USENIX Security Symposium
(2008), P. C. van Oorschot, Ed., USENIX Association, pp. 335–348.

2. Adida, B., De Marneffe, O., Pereira, O., and Quisquater, J. Electing a
university president using open-audit voting: analysis of real-world use of helios.
In Proceedings of the 2009 conference on Electronic voting technology/workshop on
trustworthy elections (2009), USENIX Association, pp. 10–10.

3. Baek, J., Safavi-Naini, R., and Susilo, W. Token-controlled public key encryp-
tion. In ISPEC (2005), R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds., vol. 3439
of Lecture Notes in Computer Science, Springer, pp. 386–397.

4. Benaloh, J. Simple verifiable elections. In Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop (2006), USENIX Association, pp. 5–5.

5. Clarkson, M. E., Chong, S., and Myers, A. C. Civitas: A secure remote vot-
ing system. In Frontiers of Electronic Voting (2007), D. Chaum, M. Kutylowski,
R. L. Rivest, and P. Y. A. Ryan, Eds., vol. 07311 of Dagstuhl Seminar Proceed-
ings, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany.

6. Cortier, V., and Smyth, B. Attacking and fixing helios: An analysis of ballot
secrecy. In CSF (2011), IEEE Computer Society, pp. 297–311.

7. Essex, A., Clark, J., and Hengartner, U. Cobra: toward concurrent ballot
authorization for Internet voting. EVT 2012 (2012).

8. Galindo, D., and Herranz, J. A generic construction for token-controlled public
key encryption. In Financial Cryptography (2006), G. D. Crescenzo and A. D.
Rubin, Eds., vol. 4107 of Lecture Notes in Computer Science, Springer, pp. 177–
190.

9. Haber, S., Benaloh, J., and Halevi, S. The helios e-voting demo for
the iacr. International Association for Cryptologic Research. http://www. iacr.
org/elections/eVoting/heliosDemo. pdf (2010).

10. Juels, A., Catalano, D., and Jakobsson, M. Coercion-resistant electronic
elections. In WPES (2005), V. Atluri, S. D. C. di Vimercati, and R. Dingledine,
Eds., ACM, pp. 61–70.

11. Smyth, B. Replay attacks that violate ballot secrecy in helios. Cryptology ePrint
Archive, Report 2012/185, 2012. http://eprint.iacr.org/.

12. Smyth, B., Ryan, M., Kremer, S., and Kourjieh, M. Towards automatic
analysis of election verifiability properties. In ARSPA-WITS (2010), A. Armando
and G. Lowe, Eds., vol. 6186 of Lecture Notes in Computer Science, Springer,
pp. 146–163.

