Revisiting Model-driven Engineering for
Run-time Verification of Business Processes

Wei Dou, Domenico Bianculli, and Lionel Briand

SnT Centre - University of Luxembourg, Luxembourg, Luxembourg
{wei.dou,domenico.bianculli,lionel.briand}@uni.lu

Abstract. Run-time verification has been widely advocated in the last
decade as a key technique to check whether the execution of a busi-
ness process and its interactions with partner services comply with the
application requirements. Despite the substantial research performed in
this area, there are very few approaches that leverage model-driven en-
gineering (MDE) methodologies and integrate them in the development
process of applications based on business process descriptions.

In this position paper we describe our vision and present the research
roadmap for adopting MDE techniques in the context of run-time verifi-
cation of business processes, based on our early experience with a public
service partner in the domain of eGovernment. We maintain that within
this context the adoption of MDE would contribute in three ways: 1)
expressing, at a logical level, complex properties to be checked at run
time using a domain-specific language; 2) transforming such properties
in a format that can leverage state-of-the-art, industrial-strength tools
in order to check these properties; 3) integrating such property checker
in run-time verification engines, specific to a target run-time platform,
without user’s intervention.

1 Introduction

Enterprise information systems are usually realized leveraging the principles of
service-oriented architecture [19] and business process modeling. These paradigms
foster the design of systems that rely on composition mechanisms, like service
orchestrations defined in BPEL [24] or BPMN [25], where added-value applica-
tions are obtained by integrating different components, possibly from different
divisions within the same organization or even from third-party organizations.
This emerging scenario is highly dynamic, open, and decentralized. The global
system is not under control and coordination of a single authority. In princi-
ple, and according to an extreme viewpoint, multiple autonomous stakeholders
contribute to the wealth of available resources [5].

Run-time verification has been widely advocated as a key technique to check
whether the execution of a business process and its interactions with partner
services comply with the application requirements [1]. Run-time verification be-
comes very important in the dynamic scenario described above, since it com-
plements traditional design-time verification, which cannot deal with the unex-



pected changes of the system and its environment, typical of open-world soft-
ware [3].

In the last decade, substantial research has been performed in the areas of
design- and run-time verification (see, for example, the surveys in [2,9, 26]) of
business-process-driven, service-based applications. However, we notice there are
very few approaches that leverage model-driven engineering (MDE) methodolo-
gies and integrate them in the development process of applications based on
business process descriptions. We contend that MDE techniques should be re-
visited in the context of run-time verification of business-process-driven, service-
based applications. More specifically, we argue that in this context the adoption
of MDE would contribute in three ways: 1) expressing, at a logical level, com-
plex properties to be checked at run time using a domain-specific language;
2) transforming such properties in a format that can leverage state-of-the-art,
industrial-strength tools in order to check these properties; 3) integrating such
property checker in run-time verification engines, specific to a target run-time
platform, without user’s intervention.

In this paper we outline a research road map for performing run-time veri-
fication of business processes using MDE techniques. This research road map is
based on the early experience gained in the context of a project in collaboration
with a public service partner in the domain of eGovernment.

The rest of this paper is structured as follows. Section 2 introduces our vision
of model-driven run-time verification of business processes, and Sect. 3 describes
the challenges we face and our research roadmap to tackle them. Section 4 dis-
cusses related work; Sect. 5 concludes the paper.

2 Our Vision

In this section, we describe our long-term vision of a model-driven developement
methodology for run-time verification of business processes. As depicted in Fig. 1,
the methodology encompasses both the design-time and run-time phases for
business processes; in addition, there is an additional layer, called meta, which
virtually sits in between the design-time and the run-time ones. These three
layers are described below.

Design-time Layer

At this layer, the analyst designs the business process, based on requirements
specifications. The analyst defines different models, such as use cases, business
process models, and data models. Use cases and process models should be an-
notated with properties to be checked at run time. We envision these properties
to be expressed in Restricted Natural Language (RNL), using some predefined
templates based on property specification patterns (such as the systems defined
in [13], [21], [6], [17]).



Use Case Annotated-with S
Properties
Process Model - P

Requirement
Specifications

Data Model
Analyst ;
........................................................................................ P
Meta Extended OCL oY Trarkiaten
ranslate-into
Map-int Conceptual model Generated-by
OCL templates + |process Model :OCL constraints
Data Model
; Type of properties
iRun-tlme :Process model :Conceptual model
Instantiator
Platforms Observer

\—> Data Collector OCL Checker

Fig. 1. Our Vision of Model-driven, Run-time Verification of Business Processes

Meta Layer

This layer captures the modeling information that is needed to develop a model-
driven approach for run-time verification. Internally to the run-time verification
“machinery”, we plan to represent the properties to verify at run time using
OCL (Object Constraint Language), since it is the standard language in the
MDE community and is supported by industrial-strength tools. We then need
to translate properties expressed in RNL and defined at the upper design-time
layer into plain OCL constraints. This translation can be defined by introducing
an intermediate language, in the form of an extended version of OCL, which
maps RNL templates into corresponding OCL templates.

This layer also defines a conceptual model that captures the information that
is needed for performing run-time checking: this includes the process model, the
data model, the kind of properties to check (e.g., temporal or quality-of-service
properties), the information to be collected at run time at the infrastructure
level.

Run-time Layer

This layer defines the actual environment in which run-time checks happen. We
assume there are different run-time platforms (e.g., business process execution
engines, JavaEE application servers) on which a process model is deployed (pos-
sibly, after several model-transformations) and operated. Each platform contains



a platform-specific data collector that probes and gathers various kinds of run-
time information. The process model instance and the information available from
the data collector are given as input to an Instantiator, which builds a run-time
instance of the conceptual model defined at the meta level. This instance is kept
alive (and updated) at run time, based on the information coming from the pro-
cess execution and the platform. The instance is fed into an Observer, which
receives from the meta level also the OCL constraints to check. The Observer
includes an OCL checker, which performs a check of the constraints against the
model instance, possibly in an incremental way, responding to changes in the
model instance. The output of the Observer, in case of violation of a property,
can then be used to perform activities such as root cause analysis, debugging,
and adaptation (in the form of corrective actions).

3 Research Roadmap

In this section we present our research roadmap for the development of the
methodology presented above, and briefly discuss the challenges faced through
it and how MDE could contribute to tackle them.

3.1 Requirements Specification Language

Specifications play a significant role in the realm of business-process-driven appli-
cations implemented as service compositions. In practice, services are developed
by independent parties and are exposed as black boxes that can only be in-
voked by clients. Their specifications are the only information available to clients,
while their implementations are normally inaccessible. A well-designed specifi-
cation language is thus required to capture and constrain the requirements that
a composite business process and its partner services should guarantee. More
importantly in the context of run-time verification, these requirements specifi-
cations represent the properties to be checked at run time, to assess the correct
behavior and quality-of-service (QoS) provided both by the composite business
process and by its partner services.

Our initial experience with our public service partner shows that such a re-
quirements specification language should support the specification of functional
and non-functional requirements that include the characterization of quantita-
tive aspects of the system, possibly involving temporal constraints. Examples
of these requirements are QoS attributes like response time, throughput, which
can be expressed as bounds on the sequence and/or number of occurrences of
system events, conjuncted with constraints on the temporal distance of events.
More in general, the specification language should support the well-known prop-
erty specification patterns, including temporal [13], real-time [21], and service
provisioning [6] patterns.

One of the challenges in the design of such a specification language is to
find the right balance between expressiveness and usability, while guaranteeing
efficiency for the verification of the properties expressed in this language.



Following this direction, we have developed OCLR (OCL for Runtime Ver-
ification) [12], a novel temporal extension of OCL based on common property
specification patterns, and extended with support for referring to a specific oc-
currence of an event in scope boundaries, and for specifying the distance between
events and/or from boundaries of the scope of a pattern. OCLR extends OCL
in a minimal fashion, complementing it to express temporal properties based on
Dwyer et al.’s property specification patterns [13]. Moreover, the syntax is very
close to English to foster its adoption among practitioners.

3.2 Property Checking

The second step related to run-time verification is how to efficiently verify the
properties that can be expressed in the language detailed in the previous sub-
section.

The efficiency of the verification depends on the expressiveness of the speci-
fication language, on the formal model underlying the language, and on the tool
support for the verification of the corresponding formal models.

In our case, since OCLR is based on OCL, our formal model is actually
OCL itself and the tools that can be used for checking OCLR properties are
represented by existing OCL checkers, such as Eclipse OCL [14].

Our idea is to recast the problem of the verification of OCLR properties at run
time in terms of the checking of OCL constraints on instances of a model (kept
alive at run time, as described in Sect. 2) corresponding to the actual execution
of a business process. This approach leverages existing MDE techniques and
technologies and we believe it is a safer and more efficient choice, with respect
to developing a dedicated checker for OCLR from scratch.

In this regards, we have started assessing the feasibility of checking OCLR
constraints over execution traces by proposing a mapping of OCLR constraints
into OCL, based on a conceptual model for traces. The trace checking problem
has been re-casted in terms of a check of OCL invariants [11]. The results of
our preliminary evaluation using a proof-of-concept tool are encouraging, since
the verification of traces with up to 10 million events takes only few minutes,
depending on the complexity of the properties.

The trace checking approach reported in [11] focuses on offline checking. The
next research steps will focus on tuning up the checking procedure to provide
adequate performance when used for run-time trace checking of OCLR proper-
ties. We will also consider the use of incremental checking techniques of OCL
constraints (see, for example [8] [7] [27] [15] [22], possibly following a syntactic-
semantic approach [4]) as well as techniques for efficiently managing the history
of monitored events [10].

3.3 Integration with Run-time Platforms

The last step of our research roadmap is the integration of the property checking
procedure outlined in the previous section within the actual run-time execution



platforms of business process applications. We plan to support at least two main
execution platforms, which correspond to the ones adopted by our public ser-
vice partner: a) JavaEE for business processes delivered as Web applications;
b) executable BPMN 2.0 process description executed on a process execution
engine.

In both cases, the idea is to embed the property checker (based on an OCL
checker) within the run-time platforms. While the checker is the same across
the platforms, the data collection architecture used to feed the checker will be
different and platform-specific. Based on the expected inputs (and outputs) of
the checker, a data collector should be put in place, for example using message
interceptors in the business process engine or a dedicated middleware component
(for example, implemented with EJB) for the case of JavaEE applications.

4 Related Work

The research on design- and run-time verification of business-process driven,
service-based applications spans for more than a decade (see, for example, the
surveys in [2,9, 26]). However, to the best of our knowledge, the solutions propos-
ing a complete model-driven approach to run-time verification for this applica-
tion domain are very few; in the rest of this section we review them and comment
on their limitations.

The model-driven approach presented in [28] relies on a graph-based model
that includes Key Performance Indicators (KPIs) (e.g., process execution time,
server availability); correlation rules that specify event patterns to be matched;
action policies defining the actions to be taken when a certain event occurs and
when the KPIs have certain values. Based on the correlation rules, this graph
is then decomposed and transformed into several BPEL processes, which are
extended with a logic to monitor KPIs and execute action policies. This approach
focuses on generating business processes with (KPIs) monitoring capabilities, but
it does not provide any mechanisms to link back to high-level requirements and
embeds the monitoring code directly within the process structure.

A fully integrated approach for design and implementation of monitored web
service compositions is presented in [23]. The approach proposes a set of meta-
models for defining performance indicators and their calculation rules, as well as
a set of model transformations that are used to generate an executable imple-
mentation on top of IBM WebSphere Business Monitor. Although the approach
promotes the adoption of reusable calculation templates for specifying custom
indicators, the ones that can be expressed are still limited by the basic proper-
ties of the process activities (e.g., start time) that can be referenced within the
templates.

Reference [20] proposes the ProGoalML language as an extension of BPMN
with additional modeling elements for metrics, KPIs, and goals. Based on these
elements, monitoring CEP (Complex Event Processing) rules are generated to
collect the proper information, which is then used to assess the fulfillment of



the goals. However, the approach allows for only simple metrics and does not
support a temporal dimension for goal fulfillment.

A model-driven approach for transformation from regulatory policies to event
correlation rules is presented in [16]. Policies are expressed using real-time tem-
poral logic and then transformed into IBM ACT rules using some parameterized
temporal patterns. The definition of the policies is disconnected from the mod-
els of the business processes; moreover, the type of policies is limited by the
restricted set of temporal patterns supported during the transformation phase.

The model-aware monitoring approach presented in [18] is also related to
policy compliance checking. The approach correlates low-level monitoring events
with high-level business events by means of traceability information inserted into
business process models. This information is then used at run time by a business
intelligence component to perform the actual check on the process model instance
to which the events refer to. However, the paper does not indicate which kind
of policies can be checked using this approach.

5 Conclusion

In this paper we have presented our vision and the research road map to fol-
low for run-time verification of business processes. This vision is currently being
developed in collaboration with our public service partner CTIE (Centre des
technologies de 'information de I’Etat, the Luxembourg national center for infor-
mation technology), which has developed in-house a model-driven methodology
for designing eGovernment business processes. Our goal is to complement this
methodology with the model-driven run-time verification techniques discussed
in this paper. At the time of writing this paper, CTIE has already started using
OCLR [12] for specifying the requirements of business processes. Our next steps
will focus on the integration of our model-driven trace checking technique [11]
for OCLR within their business process execution platforms.

Acknowledgments. This work has been supported by the National Research
Fund, Luxembourg (FNR/P10/03).

References

1. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Softw. 1(6), 219-232 (December 2007)

2. Baresi, L., Di Nitto, E. (eds.): Test and Analysis of Web Services. Springer (2007)

3. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. IEEE Computer 39(10), 36-43 (2006)

4. Bianculli, D., Filieri, A., Ghezzi, C., Mandrioli, D.: Syntactic-semantic in-
crementality for agile verification. Sci. Comput. Program. N/A(N/A) (2013),
DOI:10.1016/j.scico.2013.11.026

5. Bianculli, D., Ghezzi, C.: Towards a methodology for lifelong validation of service
compositions. In: Proc. of SDSOA 2008. pp. 7-12. ACM (May 2008)



10.

11.

12.

13.
14.
15.

16.

17.
18.
19.

20.

21.

22.

23.

24.
. OMG: BPMN 2.0 specification. http://www.bpmn.org (January 2011)
26.
27.

28.

Bianculli, D., Ghezzi, C., Pautasso, C., Senti, P.: Specification patterns from re-
search to industry: a case study in service-based applications. In: Proc. of ICSE
2012. pp. 968-976. IEEE (2012)

Cabot, J., Teniente, E.: Incremental evaluation of OCL constraints. In: Advanced
Information Systems Engineering. LNCS, vol. 4001, pp. 81-95. Springer (2006)
Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9), 1459-1478 (2009)

Canfora, G., Di Penta, M.: Service oriented architectures testing: a survey. In:
ISSSE 2006-2008, LNCS, vol. 5413, pp. 78-105. Springer (2009)

Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20, 149-186 (June 1995)

Dou, W., Bianculli, D., Briand, L.: A model-based approach to trace checking of
temporal properties with OCL. Tech. Rep. TR-SnT-2014-5, Sn'T Centre - Univer-
sity of Luxembourg (March 2014)

Dou, W., Bianculli, D., Briand, L.: OCLR: a more expressive, pattern-based tem-
poral extension of OCL. In: Proc. of ECMFA 2014. LNCS, vol. 8569. Springer (July
2014), to appear

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. of ICSE 1999. pp. 411-420. IEEE (1999)
Eclipse: Eclipse OCL tools. http://www.eclipse.org/modeling/mdt/?project=
ocl (February 2014)

Garcia, M., Moller, R.: Incremental evaluation of OCL invariants in the essential
MOF object model. In: Proc. of Modellierung 2008. vol. 127, pp. 11-26 (2008)
Giblin, C., Miiller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. Tech. Rep. Research Report
RZ-3662, IBM Research GmbH (2006)

Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci. 153(2), 117-133 (2006)

Holmes, T., Mulo, E., Zdun, U., Dustdar, S.: Model-aware monitoring of SOAs for
compliance service engineering. Service Engineering pp. 117-136 (2011)

Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly
Media, Inc. (2007)

Koetter, F., Kochanowski, M.: Goal-oriented model-driven business process mon-
itoring using ProGoalML. In: Proc. of BIS 2012, LNBIP, vol. 117, pp. 72-83.
Springer (2012)

Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proc. of ICSE
2005. pp. 372-381. ACM (2005)

Menet, L., Lamolle, M., Le D¢, C.: Incremental validation of models in a MDE
approach applied to the modeling of complex data structures. In: OTM Workshops.
LNCS, vol. 6428, pp. 120-129. Springer (2010)

Momm, C., Gebhart, M., Abeck, S.: A model-driven approach for monitoring busi-
ness performance in web service compositions. In: Proc. of ICIW 2009. pp. 343-350
2009

g)ASI)S: Web Services Business Process Execution Language Version 2.0 (2007)

Salaiin, G.: Analysis and verification of service interaction protocols - a brief survey.
In: Proc. of TAV-WEB 2010. EPTCS, vol. 35, pp. 75-86 (2010)

Vajk, T., Mezei, G., Levendovszky, T.: An incremental OCL compiler for modeling
environments. ECEASST 15 (2008)

Yu, T., Jeng, J.: Model driven development of business process monitoring and
control systems. In: Proc. of ICEIS 2005. pp. 161-166 (2005)



