
 

Vrije Universiteit Brussel

Open Cross-Document Linking and Browsing based on a Visual Plug-in Architecture
Tayeh, Ahmed; Signer, Beat

Published in:
Proceedings of the 15th International Conference on Web Information System Engineering (WISE 2014),
Thessaloniki, Greece, October, 2014

DOI:
10.1007/978-3-319-11746-1_17

Publication date:
2014

License:
Other

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Tayeh, A., & Signer, B. (2014). Open Cross-Document Linking and Browsing based on a Visual Plug-in
Architecture. In B. Benatallah, A. Bestavros, Y. Manolopoulos, A. Vakali, & Y. Zhang (Eds.), Proceedings of the
15th International Conference on Web Information System Engineering (WISE 2014), Thessaloniki, Greece,
October, 2014 (pp. 231-245). (Information Systems and Applications, incl. Internet/Web, and HCI; Vol. 8787).
Springer. https://doi.org/10.1007/978-3-319-11746-1_17

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 18. Apr. 2024

https://doi.org/10.1007/978-3-319-11746-1_17
https://cris.vub.be/en/publications/open-crossdocument-linking-and-browsing-based-on-a-visual-plugin-architecture(0125c2bd-5d0a-4610-9564-81a773c5e88c).html
https://doi.org/10.1007/978-3-319-11746-1_17


Open Cross-Document Linking and Browsing
based on a Visual Plug-in Architecture

Ahmed A.O. Tayeh and Beat Signer

Web & Information Systems Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{atayeh,bsigner}@vub.ac.be

Abstract. Digital documents often do not exist in isolation but are
implicitly or explicitly linked to parts of other documents. Nevertheless,
most existing document formats only support links to web resources but
not to parts of third-party documents. An open cross-document link
service should address the multitude of existing document formats and
be extensible to support emerging document formats and models. We
present an architecture and prototype of an open cross-document link
service and browser that is based on the RSL hypermedia metamodel. A
main contribution is the specification and development of a visual plug-in
solution that enables the integration of new document formats without
requiring changes to the cross-document browser’s main user interface
component. The presented visual plug-in mechanism makes use of the
Open Service Gateway initiative (OSGi) specification for modularisation
and plug-in extensibility and has been validated by developing data as
well as visual plug-ins for a number of existing document formats.

Keywords: Cross-document linking; hyperlinks; open link service

1 Introduction

As already mentioned by Vannevar Bush in 1945, documents do not exist in iso-
lation but have relationships with other documents [5]. Rather than classifying
documents in hierarchical structures, Bush proposed to mimic the working of
the human brain by supporting associative links or so-called trails between doc-
uments. The trails proposed by Bush were seminal for succeeding hypermedia
models and architectures such as Xanadu [18], the Dexter hypertext reference
model [10] or the resource-selector-link (RSL) metamodel [22]. The concept of
hyperlinks was furthermore instrumental in the success of the World Wide Web
by enabling the referencing, annotation and augmentation of content. Neverthe-
less, existing hypermedia solutions and document formats often only support
simple forms of linking. While many document formats offer the possibility to
link to entire third-party documents, most of the time it is not possible to ad-
dress parts of documents. In an HTML document, we can for example create
hyperlinks targeting an entire PDF or Word document but it is impossible to
link to parts of these documents.



Most of today’s document formats offer a simple embedded unidirectional
link model. Unidirectional linking implies that a target document is not aware
of explicit relationships that have been defined from one or multiple source doc-
uments. Furthermore, the use of embedded links means that only the owner of
a document can add new links to a document. The growth and acceptance of
the Web led to an increasing number of document formats that can be ren-
dered within a browser. More recently, documents of different formats can also
be edited and stored in the cloud and we should investigate ways to link parts
of documents regardless of the used storage platform.

The advent of the Extensible Markup Language (XML) in combination with
its link model (XLink) has been a major step towards advanced linking on the
Web. Similar to early hypermedia systems, the combination of XML and XLink
can be used to separate the document content from its links. Thereby, XLink
provides the typical linking functionality such as bidirectional, multi-directional,
multi-source and multi-target hyperlinks. Unfortunately, XLink does not solve
the problem of cross-document linking since it only deals with XML documents
and does not support other non-XML document models and formats.

A flexible and extensible link model and architecture is not only required
to integrate existing document types, but also to deal with new emerging doc-
ument formats. It should also support more advanced linking features that are
currently lacking in most document formats. In this paper, we outline a number
of requirements for open cross-document linking solutions. We then present our
prototype of a cross-document link service and browser which is based on the
open cross-media link service architecture by Signer and Norrie [24]. We paid
attention to the aspect of openness as defined by Signer and Norrie and provide
a cross-document link solution that does not only provide extensibility on the
model layer but also on the application layer by further investigating the concept
of visual plug-ins introduced by Signer and Norrie [23].

We begin in Sect. 2 by providing an overview of different link models and
mechanisms offered by existing document formats and describe a number of link
services and standards. In Sect. 3, we outline the requirements for an open cross-
document link service and present a cross-document link service and browser
prototype. We discuss a number of data and visual plug-ins that have been
developed in order to support text, PDF, HTML and XML documents. A critical
discussion of the presented solution is followed by some concluding remarks.

2 Background

Despite the multitude of existing document formats and standards, most docu-
ment formats adhere to conservative representations of information. As criticised
by Nelson [19], the “What You See Is What You Get” (WYSIWYG) principle
in document processing degraded the computer to a paper simulator, neglecting
many features that digital document formats could offer in addition to printed
paper. Moreover, many proprietary document formats prevent other documents
and applications from accessing and linking to their content. The Extensible



Markup Language was an important step to open the structure of some docu-
ment formats. The XML Pointer Language (XPointer) [8] and XML Path Lan-
guage (XPath) [7] can be used to address parts of an XML structure, while the
XLink language supports the creation of advanced hyperlinks. However, most
XML-based document formats such as DocBook [25], OpenDocument [26] and
OOXML [1] have sacrificed the rich linking features and adopted a simple unidi-
rectional link model. Moreover, XML and Semantic Web technologies promote
the concept of linked data [14] where data conforming to Semantic Web stan-
dards can be linked.

An overview of the support for hyperlinks in a number of popular document
formats is provided in Tab. 1. Hyperlinks form a basic building block of the
HTML language which offers simple typed and embedded unidirectional links
to address arbitrary web resources and link to entire third-party documents
(e.g. PDF or OOXML). An HTML link target is rendered via a specific web
browser plug-in or opened in a third-party application based on the document’s
MIME type.

Format Hyperlink Type Supported Target Resources

HTML unidirectional web resources, entire third-party documents

LATEX unidirectional web resources, entire third-party documents

PDF unidirectional
web resources, entire third-party documents,

parts of PDF documents

XML
uni-, bi- and

multidirectional
web resources, entire third-party documents,

parts of XML-based documents

DocBook unidirectional
web resources, entire third-party documents,

parts of other DocBook documents

OOXML unidirectional web resources, parts of other OOXML documents

Table 1: Supported link models in existing document formats

The embedded hyperlinks in HTML web documents and other document
formats prevent the management of hyperlinks separately from the underlying
documents. A problem of this approach is that new hyperlinks can only be added
by the author of a document. This limitation of embedded hyperlinks lead to re-
search in open hypermedia systems where hyperlinks are managed externally in
centralised databases or so-called linkbases. Intermedia [11] was an early system
managing hyperlinks in an external linkbase. Another example is Microcosm [13]
which offered a service for linking within arbitrary desktop applications such as
AutoCAD or MS Word. Furthermore, the open hypermedia community tried to
enrich the Web with external hyperlinks by considering the Web as another client
for open hypermedia systems. Examples of this development include Chimera [2]
or Arakne [4]. Open hypermedia systems had a significant impact in enhancing
the management of hyperlinks. However, these types of systems had two major
shortcomings. First of all, they did not investigate the possibilities for creat-
ing hyperlinks between snippets of information in different document formats.
Second, it is not clear how to extend these systems to support cross-document
linking on the model as well as on the application layer.



While the XML language does not provide a mechanism to create hyperlinks,
XLink can be used to create links that go beyond simple embedded unidirectional
hyperlinks. The XLink standard has been developed to improve the linking on
the Web without relying on open hypermedia systems. Besides the simple uni-
directional hyperlinks, XLink also supports so-called extended hyperlinks. With
extended hyperlinks, bi- and multi-directional hyperlinks can be realised. XLink
links can address web resources and parts of XML documents which means that
the cross-document linking is limited to XML-based document formats.

Based on XLink and XPointer, various applications have been built to open
web documents to third-party annotations and associations to external web doc-
uments. Annotea [15] is an RDF-based standard which enhances collaboration
via shared web annotations and bookmarks. These annotations can be notes,
explanations or comments that are externally attached to a webpage. Annotea
uses XPointer to address specific parts of a webpage. A number of tools that
implement the Annotea standard have been developed, including the W3C’s
Amaya1 web browser or the Annozilla2 Firefox extension. MADCOW [3] is an-
other tool that enables the “opening” of webpages to arbitrary users. MADCOW
offers richer media support than Annotea-based tools by enabling the annotation
of parts of images or videos. All these annotation tools do not go beyond the
features offered in XLink and hence the addressing of document parts for link
sources and targets is still limited to XML-based document formats. Moreover,
even if a number of these tools are extensible on the model layer, they lack exten-
sibility on the application and visualisation layer. For example, if a new media
type should be supported in MADCOW which is implemented as a monolithic
component, a new version of the user interface has to be deployed.

Annotation tools for digital libraries are another trend to open different docu-
ment formats for linking to external resources. An example of this family of tools
is the Flexible Annotation Service Tool (FAST) [17], a standalone annotation
system for digital libraries. An interesting feature of FAST is that it separates
the core annotation model from the functionality offered by digital libraries. Any
digital library information management system can benefit from the features of
FAST by creating a new FAST interface (gate). Thereby, FAST does not make
any assumptions about the structure of the annotated resource but defines a
general handle concept for the resource to be annotated. Also FAST does not
explicitly deal with extensibility on the application layer and is mainly targeting
simple annotations rather than richer forms of hyperlinks.

Goate [16] represents another attempt to enhance the HTML link model. It
is based on an HTTP proxy architecture for augmenting HTML documents with
features of the XLink model such as bidirectional and n-ary hyperlinks. Similar
to Goate, XLinkProxy [6] is using a web proxy to augment HTML documents
with XLink features. However, like with other XLink-based solutions the linking
in these systems in limited to XML-based documents.

1 http://www.w3.org/Amaya
2 http://annozilla.mozdev.org



The DocBook and OOXML standards only support simple unidirectional
hyperlinks. DocBook hyperlinks allow us to address any web resource, entire
external documents or parts of another DocBook document. Since the main goal
of OOXML is to facilitate extensibility and interoperability between multiple
office applications and on multiple platforms, it does not go beyond the simple
unidirectional hyperlinks that were already supported in WYSIWYG office doc-
uments. With OOXML hyperlinks it is possible to address any web resource,
parts of the document itself and parts of other OOXML documents.

While various approaches try to improve the linking between documents and
web resources, there is still no single solution that supports arbitrary document
formats (e.g. not only XML-based formats) in combination with easy extensi-
bility. Some approaches can be extended for future emerging document formats
but not without some major development efforts and the redeployment of the
entire application. We present an architecture for open cross-document linking
and browsing that offers rich hypermedia functionality and can be extended via
data and visual plug-ins without having to redeploy the entire application.

3 Open Cross-Document Linking

We outline a number of issues that should be taken into account in order to
achieve a cross-document linking solution. First of all, there exists a variety of
document formats and standards including markup languages and WYSIWYG
formats. These document formats have different logical representations such as
linear document models, unconstrained tree-like document models or constrained
heterogeneous tree-like document models as classified by Furuta [9]. Further-
more, document formats with similar document models can still show differences
in terms of the granularity of the lowest level of atomic objects supported by
the model. An atomic object in a model might, for example, be a text string
representing a paragraph, a sentence or even individual characters. Moreover,
many document formats suffer from the fact that they are adding new layers of
complexity on top of the existing formats when new features have to be sup-
ported. The 5585 pages long specification of OOXML [1] is a testament of this
never-ending growth of complexity of some document formats. The integration of
cross-document linking functionality into existing document formats is a tedious
and complex task since it requires some knowledge about other document for-
mats and their logical structure. Therefore, a cross-document link service should
not require any changes to the specification of existing document formats and
standards. Further, a multitude of media types such as text, images, sound or
video clips are supported in different document formats. These media types are
informative and a selector within these media types can form the source or target
of a hyperlink. One might, for instance, have a hyperlink from a selection of text
in an PDF document to a specific time span of a video clip that is embedded
in an HTML document. A cross-document linking solution should therefore not
only specify how to address specific nodes of a document’s logical structure but
also define how to deal with a node’s media type in order to select parts of it. All



theses issues indicate that it is impossible to make any prior assumptions about
the types of linked document formats and their content. This is also one of the
main reasons why we think that the XLink standard is not suitable for open
cross-document linking since it assumes that the source and target documents
have a tree-like document structure.

A promising approach for cross-documents linking is the use of an external
link service which defines, stores and manages the general hyperlink concepts.
One possible definition could be that hyperlinks can have one or more sources and
one or multiple targets. The source might be a string representing an XPointer
expression for tree-like documents or start and end indices for WYSIWYG for-
mats. However, the definition of sources and targets should be kept abstract and
each document format then has to provide a concrete definition of how parts of
a resource can be addressed by extending the abstract hyperlink concepts via
a plug-in mechanism. The definition of the document addressing part can be
achieved by using third-party document APIs, different programming language
libraries for specific document formats or existing implementations for standards
such as the Document Object Model (DOM). A link service should further be
extensible to support existing as well as emerging new document formats.

An interesting idea that can be adopted to realise such a link service is the
proposal of the general open cross-media annotation and link architecture by
Signer and Norrie [24]. Similar to FAST, its basic idea is the separation of link-
ing and annotation functionality from the annotated media. The annotation and
link service knows how to deal with the core link and annotation model and is
extensible to support new media types. This cross-media annotation and link
architecture by Signer and Norrie shows a number of advantages. First of all,
the annotation and link service is based on the RSL hypermedia metamodel [22]
which is general and flexible enough to support evolving hypermedia systems.
RSL overcomes some limitations of existing hypermedia models mixing techni-
cal and conceptual issues. The RSL model is based on the concept of linking
arbitrary entities, whereby an entity can either be a resource, a selector or a
link. A resource defines a media type such as a text, a video or a complete doc-
ument. The selector is always attached to a resource and used to address parts
of a resource. Finally, a link can be a one-to-one, one-to-many, many-to-one or
many-to-many bidirectional association between any entities. In addition, the
RSL model offers other features such as user management and support for over-
lapping hyperlinks via layering. To the best of our knowledge, the cross-media
annotation and link architecture by Signer and Norrie [24] was the first to pro-
pose the concept of “extensibility on the visualisation layer” of a link service.
Normally, when a link or annotation service is extended to support a new media
type, also the user interface has to be extended to support the visualisation of
the new media type. Signer and Norrie [24] recommend to use visual plug-ins in
order to avoid a re-implementation and deployment of the entire user interface.
In the remaining part of this paper, we elaborate on how we have developed a
cross-document link service based on the ideas of the open cross-media archi-



tecture and discuss a number of plug-ins that have been realised so far for our
cross-document link service and browser.

3.1 General Open Cross-Document Link Service Architecture

The general architecture of the link service is illustrated in Fig. 1. A central
component is the core link service which is based on the RSL metamodel. The
core is extensible to support arbitrary document formats by providing a data
plug-in consisting of a media-specific implementation of the resource and selec-
tor concepts. The extensible visualisation component contains the user interface
in the form of our link browser that visualises the supported document formats.
For each document format to be rendered in the browser, a visual plug-in must
be implemented. The visual plug-in has two main responsibilities. First, it has
to render a specific document format and visualise any selectors that have been
defined. Second, it provides a visual handle for the basic create, read, update and
delete (CRUD) operations for a given document and its selectors. Taking into
account that many document formats come along with their own proprietary
third-party applications, visual plug-ins also have to be provided for these ap-
plications. These third-party visual plug-ins do not directly support the CRUD
operations on the underlying documents but have to communicate with our link
browser component in order to exchange information about selectors to be ac-
tivated or created. Finally, our architecture consists of a data layer that is in
charge of storing all the RSL metadata such as resources, selectors or hyperlinks.

DocFormat3

Database

DocFormat2DocFormat1

DocFormat1 DocFormat3 DocFormat2

Visual Plug-ins

Visualisation

Gateway DocFormat3

RSL

Database Manager

DocFormat3 Application

Third-Party ApplicationsData Plug-ins

Core

Data Layer

V
is

u
a

li
sa

ti
o

n

D
o

cF
o

rm
a

t1

V
is

u
a

li
sa

ti
o

n

D
o

cF
o

rm
a

t2

Browser

Fig. 1: General open cross-document link service architecture



We decided to make use of the Open Service Gateway initiative (OSGi) [12]
for the development of the link service. The OSGi specifications defines a dy-
namic modular system for Java. Various server applications such as IBM Web-
sphere apply the OSGi framework and also the Eclipse IDE uses OSGi to enable
the modularisation of its components as well as to support dynamic extensions
via plug-ins. We decided to use OSGi for several reasons. First of all, apart
from reducing the application complexity, OSGi offers a decent mechanism for
code sharing between different modules. In contrast to Java JAR files, OSGi
modules do not share arbitrary code but explicitly define export packages to be
shared and import packages to be used. Due to the clear definition of exported
functionality, code cannot be “misused” by other installed modules. Second, the
link service should be dynamically extensible to support new document formats
without a need for redeployment. Dynamic extensibility also allows users to
download plug-ins for new document formats on demand and thereby supports
emerging document formats. The dynamic extensibility of the link service can
be realised based on OSGi and its built-in support for the implementation of
dynamic applications. Last but not least, our link service might provide differ-
ent visual plug-ins (versions) for the same document format. Managing different
versions of a module in a pure Java application often causes the so-called “JAR
hell” problem, while the OSGi framework offers a specific mechanism for the
versioning of modules and dependency resolution.

3.2 Communication with Plug-ins

After launching the link service and its link browser, the user can open any
document in a format that is supported by the service. Thereby, documents
can either be stored in the link service database or in the local file system.
Figure 2 shows the main scenarios for interacting with the link service, including
the opening of a document, the navigation of a link as well as the creation
of a link. When a document is selected to be opened, the browser retrieves
supplementary metadata for the given document from the database via the core
RSL component. The retrieved data contains information about the format of
the document as well as its associated selectors. The browser then checks the
type of visual plug-in that is installed for the given document format via a
registry that keeps track of all supported visual plug-ins. The browser forwards
a request to the corresponding visual plug-in in order to visualise the document.
If the intended visual plug-in is installed locally in the browser (DocFormat1
in our example), it visualises the document and its selectors in a panel within
the browser. On the other hand, if the plug-in is an external visual plug-in
(DocFormat3 in our example ), it receives the request via a special gateway
component that is responsible for launching the corresponding external third-
party application and manages any communication between the visual plug-
in and the browser. The external visual plug-in tells its associated third-party
application to open the document and render existing selectors. The question is
what should happen if a user opens a document with a supported third-party
application rather than with the link browser? In this case, the external visual



plug-in notifies its gateway about the document that is currently being visualised.
The gateway then communicates with the browser to retrieve potentially stored
data about the currently visualised document. If any selectors have been defined
for the currently opened document, the gateway returns the list of selectors to
the external visual plug-in in order to visualise them.

Browser RSL Registry DocFormat1 Gateway DocFormat3 DocFormat2 DocFormat3

alt

getDocument(resource)

getPluginType(formatName)

instantiateClass()[visualPlugin==local]

[else]

openDocument(resource, selectors)

instantiateClass()

openDocument(resource, selectors)

openDocument(resource, selectors)

launchApp()

getSelection()

selector

alt

[visualPlugin==local]

[else]

getLinkTarget(selector)

getDocument(resource)

getPluginType(formatName)

instantiateClass()

openDocument(resource, selectors, selector)

instantiateClass()

openDocument(resource, selectors, selector)

openDocument(resource, selectors, selector)

launchApp()

createLink(selector, selector)

[visualPlugin==local]

[else]

alt

instantiateClass()

openDocument(resource, selectors)

selector

createLink(resource, selector)

getDocument(resource)

getPluginType(formatName)

createLink(resource, selector)

openDocumentForSelection()

openDocumentForSelection()

selector

selector

o
p

e
n

 d
o

cu
m

e
n

t
n

a
v

ig
a

te
 l

in
k

cr
e

a
te

 l
in

k

Fig. 2: Communication among different cross-document link service components

When a user clicks on a hyperlink in a document that is visualised in the
browser, the browser communicates with the core RSL component to retrieve
the target document and its selectors including the target selector of the se-
lected link. The target document is then visualised with its selectors and the
target selector of the followed link is highlighted in a different colour than the
other selectors. The two documents can, for example, be visualised next to each
other in the browser (DocFormat1 and DocFormat2) or one in the browser while
the other document is rendered in a third-party application (DocFormat1 and



DocFormat3). In the case that a link is selected in a document that is visualised
in a third-party application, the visual plug-in sends a request to its gateway
with the selected link source (selector) as a parameter. The gateway then for-
wards the request to the browser. From there on the browser handles the request
in the same way as in the previous scenario to either visualise the link target in
the browser or in a third-party application.

In the case of creating a hyperlink in a document that is visualised in a
third-party application, the user selects the option of creating a hyperlink from
the GUI actions supported by the visual-plug-in. The visual plug-in then sends a
request to its gateway with the document and the source selector as a parameter.
The gateway forwards the request to the browser which offers the possibility to
open another document in order to define the link’s target. The target docu-
ment is then visualised in the browser or via an external visual plug-in and the
browser or the external visual plug-in listens for any user selection. The user’s
selection is retrieved and the browser requests the creation of a hyperlink via the
core RSL component. Note that the scenario shown in Fig. 2 assumes that the
external documents have the same format. On the other hand, if the document is
visualised in the browser, the user selects parts of the document and chooses the
option to create a hyperlink from the supported browser actions. The browser
handles the request similar as in the previous case by allowing the user to choose
another document and listening for any target selector.

3.3 Open Cross-Document Link Service Components

A number of modules have been developed to realise the main components of
the architecture. The core link service has been realised in a standalone module
containing the necessary classes to implement the RSL metamodel. This module
further provides a Java API for CRUD operations on resources, selectors or
links. The core RSL package can be imported by any other module which is
reflected by the Export-Package: org.rsl.core metadata in the manifest file.
This allows data plug-ins to extend the RSL resource and selector concepts and
the visualisation component to communicate with the core API.

The visualisation component has been realised as a standalone module. Be-
sides the support for GUI actions for hyperlink CRUD operations and the nav-
igation of hyperlinks between documents, this module is extensible to visualise
arbitrary document formats via the plug-in mechanism mentioned earlier. The
extensibility of the user interface is supported via a specific DefaultDocument

class that has to be extended by the visual plug-ins for individual document
formats. The DefaultDocument class extends the JPanel component and of-
fers the abstract getSelection(), setSelection() and two different abstract
openDocument() methods that are used to open a document with its selectors
to either browse or highlight the target of a hyperlink. In addition to the core
and visualisation module, we realised a separate module for storing documents
and their hyperlinks. This module further offers the flexibility to use different
database management systems for the persistent storage of documents and link



data. In our current implementation, we use the db4o3 object database for stor-
ing system objects.

Last but not least, two plug-ins have to be provided for each document for-
mat as mentioned earlier. The data plug-ins are standalone OSGi modules that
extend the core RSL module, whereas the visual plug-ins are either OSGi mod-
ules that are installed locally in the link service or extensions for third-party
application user interfaces. Each external visual plug-in needs an extra module
(a gateway plug-in) that needs to be installed in the OSGi platform. In order to
manage the different data, gateway and visual plug-ins, we have implemented
a module tracker which maintains a registry of supported document formats
and the necessary metadata to instantiate the corresponding classes. Each plug-
in has to specify its type via the Extension-Type which can be either data,
visual or gateway. Furthermore, a plug-in has to specify the supported format
via the Extension-Format key. Last but not least, local visual plug-ins use the
Extension-Class to define the classpath of the class implementing the abstract
methods of the DefaultDocument class. The same metadata is used in the gate-
way plug-in to define the classpath of the class handling the communication
between the external visual plug-in and the browser.

The data plug-in for a specific document format must provide the definition of
its logical structure by extending the RSL resource class and further define how
to create selectors within this structure by extending the RSL selector class. The
definition of the logical structure can vary even for a single document format.
For example, if the link service communicates with an HTML visual plug-in that
extends the FireFox web browser, a URI string is sufficient to define the HTML
document resource. However, if the browser of our link service should support
the HTML visualisation, sufficient information about the HTML tree syntax has
to be provided.

Any local visual plug-ins has to implement the abstract methods of the
DefaultDocument class which are used by the browser when visualising a doc-
ument. Furthermore, the browser can easily retrieve or highlight a selector
within a document by using the getSelection() and setSelection() methods.
Thereby, third-party visualisation libraries might be used when implementing a
visual plug-in. We have, for example, used the ICEpdf library4 to implement a
visual browser plug-in for PDF documents. In doing so, the visual plug-in pro-
vides a class extending the DefaultDocument class and acts as a proxy between
the link browser and a third-party document visualisation library.

On the other hand, an external visual plug-in has to provide some methods
to get and set selections in a document that is visualised in a third-party ap-
plication. This can be achieved since most document applications provide their
own SDKs or APIs such as the Foxit Reader Plug-in SDK5 or Microsoft’s Office
Developer tools6. Furthermore, the external visual plug-in also has to provide

3 http://www.db4o.com
4 http://www.icesoft.org/java/projects/ICEpdf/overview.jsf
5 http://www.foxitsoftware.com
6 http://msdn.microsoft.com/en-us/library/jj620922.aspx



the GUI actions for the necessary hyperlink CRUD operation which are offered
by the browser for local visual plug-ins.

Last but not least, the gateway plug-in class defined in the Extension-Class
metadata needs to implement three methods: the openDocumentForSelection()
method which listens for any selection in external documents as described in the
link creation scenario and the two openDocument() methods. The gateway also
has to implement methods for handling the communication between the browser
and the visual plug-in.

4 HTML, PDF, Text and XML Plug-ins

Our cross-document link service currently supports the linking of HTML, PDF,
text and XML documents. The browser is able to visualise XML, text and PDF
documents via local visual plug-ins while the visualisation of HTML documents
is delegated to the Google Chrome web browser. Figure 3 shows a bi-directional
hyperlink between a PDF and XML document which are both visualised in our
browser prototype as well as a bi-directional hyperlink between a PDF document
and an HTML document visualised in the external web browser shown in the
lower left part of Fig. 3. Note that we see the support for the XML document
format as a first step towards the integration of different Open Office document
formats.

Fig. 3: Links between an XML and PDF as well as a PDF and HTML document

The data plug-in for the HTML document format defines an HTML resource
by its URI, while the selector consists of an XPointer-like expression. The HTML
visual plug-in has been implemented as Google Chrome extension which uses the
Google Chrome API for accessing documents. Furthermore, the visual plug-in for



HTML offers a number of simple GUI actions within the Chrome browser in order
to create and navigate hyperlinks. Rangy7, a cross-browser JavaScript range
and selection library, is used to retrieve (in an XPointer-like expression) and
highlight selections in HTML documents. To distinguish between the hyperlinks
coming from our link service and embedded HTML hyperlinks, the visual plug-
in uses a different colour for the visualisation of hyperlinks. The communication
between the visual plug-in and its gateway plug-in has been realised by using
the WebSocket protocol.

The data plug-ins for PDF, text and XML documents specify their resources
via the path and name of the documents in the user’s local storage. The selector
within a PDF document is defined through a page index and a rectangular area
within a page. The local PDF visual plug-in uses the viewer of the ICEpdf
library for the rendering of PDF documents. The visual plug-in uses the ICEpdf
methods to get and create rectangular selections in a PDF document.

A selector within an XML document is defined via DOM ranges. Note that
there are also some libraries that use XPointer such as XInclude, but these li-
braries are targeting XML inclusion. The local XML visual plug-in extends the
StyledEditorKit component for a better visualisation of XML documents. Fur-
thermore, it uses the javax.xml.parsers library for reading XML documents.
Last but not least, the XML visual plug-in applies the org.w3c.dom library to
retrieve and highlight nodes and ranges within an XML document.

Finally, a selector within a text document is defined by the start and end
indices of the selection. The local visual plug-in for text uses a JTextPane for
the visualisation of arbitrary text documents.

5 Discussion and Future Work

The open cross-document link service and browser goes beyond the simple an-
notation concept offered by most annotation tools where only the reading, cre-
ation, saving, updating and retrieving of annotations is supported while support
for bi-directional hyperlinks between document content is missing. Furthermore,
different document formats can be integrated in our link service regardless of
their document models. Two features were essential in achieving the presented
prototype of an open cross-document link service. First, similar to early open
hypermedia systems our cross-document link service uses an external link rep-
resentation and storage. This implies that there are no changes necessary to the
specification of existing document formats in order to integrate them with our
link service. Second, through generalisation and the treatment of hyperlinks as
first-class objects in the core link service (RSL), each document format to be
supported can extend the RSL resource for its own logical document model and
specialise the RSL selector with a definition of its selector. Moreover, the link
service overcomes to some extent the issue of broken hyperlinks and consistency
of hyperlinks when documents evolve. When a hyperlink source has been deleted

7 https://code.google.com/p/rangy/



from a document, the link service automatically removes the link target from
the other document. Furthermore, an archive of linked documents is a simple
approach to ensure link consistency. To the best of our knowledge, the presented
open cross-document link service is the first prototype to introduce flexibility and
extensibility on the model as well as on the information visualisation layer as
proposed by Signer and Norrie [24]. The extensibility of our open cross-document
link service is further supported by the dynamic modular OSGi framework.

We also considered to realise our cross-document link service as an Open
Web Platform-based solution. However, for a number of reasons we decided
to go for a Java-based system rather than an Open Web Platform solution.
There are currently only a limited number of Web-based open source libraries
available for different document formats and most of them do not support the
editing of documents. Furthermore, most web browsers offer only limited support
(e.g. WebSockets) for communicating with third-party applications.

We are currently working on a dynamic plug-in extensibility where plug-ins
will be automatically installed on demand. This dynamic extensibility is based
on the well-known OSGi extender pattern which listens for the installation of
new bundles in the OSGi platform by using a Secure Shell or Telnet protocol.
Furthermore, we plan to investigate the extensibility of the link service in a study
with developers and foresee to evaluate the usability of the presented solution in
an end user study. Last but not least, we are planning to integrate some media
plug-ins, for example for video and audio [21, 20], into our link service. These
media plug-ins could then be used for addressing different media types forming
part of specific documents.

6 Conclusion

We have presented a prototype of a cross-document link service and browser
for integrating and linking different document formats. Based on ideas from the
Open Hypermedia community and by using the RSL hypermedia metamodel,
we have realised an extensible cross-media architecture. The presented cross-
document link service prototype does not only support the extensibility on the
data layer but more importantly also on the application and visualisation layer
via visual plug-ins and a modular and extensible architecture that is based on
the OSGi standard. While we have introduced various plug-ins for integrating
HTML, PDF, XML and text documents with our browser as well as with external
third-party applications, the presented cross-document link service and browser
presents an ideal platform for investigating future innovative forms of cross-
document linking.

References

1. Standard ECMA-376: Office Open XML File Formats, 3rd Edition, Jun. 2011.
2. K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chimera: Hypermedia

for Heterogeneous Software Development Environments. ACM Transactions on
Information Systems, 18(2), Jul. 2000.



3. P. Bottoni, R. Civica, S. Levialdi, L. Orso, E. Panizzi, and R. Trinchese. MAD-
COW: a Multimedia Digital Annotation System. In Proc. of AVI 2004, Gallipoli,
Italy, May 2004.

4. N. O. Bouvin. Unifying Strategies for Web Augmentation. In Proc. of Hypertext
1999, Darmstadt, Germany, Feb. 1999.

5. V. Bush. As We May Think. Atlantic Monthly, 176(1), 1945.
6. P. Ciancarini, F. Folli, D. Rossi, and F. Vitali. XLinkProxy: External Linkbases

with XLink. In Proc. of DocEng 2002, McLean, USA, Nov. 2002.
7. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0, Nov. 1999.
8. S. DeRose, E. Maler, and R. Daniel Jr. XML Pointer Language (XPointer) Version

1.0, Jan. 2001.
9. R. Furuta. Concepts and Models for Structured Documents. In Structured Docu-

ments. Cambridge University Press, 1989.
10. K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth. Designing Dexter-based

Cooperative Hypermedia Systems. In Proc. of Hypertext 1993, Seatle, USA, Nov.
1993.

11. B. J. Haan, P. Kahn, V. A. Riley, J. H. Coombs, and N. K. Meyrowitz. IRIS
Hypermedia Services. Comunication of the ACM, 35(1), 1992.

12. R. Hall, K. Pauls, S. McCulloch, and D. Savage. OSGi in Action. Manning Pub-
lications, 2011.

13. W. Hall, H. Davis, and G. Hutchings. Rethinking Hypermedia: The Microcosm
Approach. Kluwer Academic Publishers, 1996.

14. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.
Morgan and Claypool Publishers, 2011.

15. M.-R. Koivunen. Semantic Authoring by Tagging with Annotea Social Bookmarks
and Topics. In Proc. of SAAW 2006, Athens, Greece, Nov. 2006.

16. D. Martin and H. Ashman. Goate: An Infrastructure for New Web Linking. In
Proc. of the International Workshop on Open Hypermedia Systems at HT 2002,
Maryland, USA, Jun. 2002.

17. M. A. Model, Architecturesti, and N. Ferro. A System Architecture as a Support
to a Flexible Annotation Service. In Proc. of the 6th Thematic Workshop of the
EU Network of Excellence DELOS, Cagliari, Italy, Jun. 2004.

18. T. H. Nelson. Literary Machines. Mindful Press, 1982.
19. T. H. Nelson. Geeks Bearing Gifts: How the Computer World Got This Way.

Mindful Press, 2009.
20. B. Signer. Fundamental Concepts for Interactive Paper and Cross-Media Informa-

tion Spaces. Books on Demand GmbH, May 2008.
21. B. Signer and M. C. Norrie. A Framework for Cross-Media Information Mange-

ment. In Proc. of EuroIMSA 2005, Grindelwald, Switzerland, Feb. 2005.
22. B. Signer and M. C. Norrie. As We May Link: A General Metamodel for Hyper-

media Systems. In Proc. of ER 2007, Auckland, New Zealand, Nov. 2007.
23. B. Signer and M. C. Norrie. An Architecture for Open Cross-Media Annotation

Services. In Proc. of WISE 2009, Poznan, Poland, Oct. 2009.
24. B. Signer and M. C. Norrie. A Model and Architecture for Open Cross-Media

Annotation and Link Services. Information Systems, 6(36), May 2011.
25. N. Walsb. DocBook 5 The Definitive Guide. O’Reilly, 2010.
26. R. Weir, M. Brauer, and P. Durusau. Open Document Format for Office Applica-

tions (OpenDocument) Version 1.2, Mar. 2011.


