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Abstract. The advent of online social networks created new prediction
opportunities for recommender systems: instead of relying on past rating
history through the use of collaborative filtering (CF), they can leverage
the social relations among users as a predictor of user tastes similarity.
Alas, little effort has been put into understanding when and why (e.g., for
which users and what items) the social affinity (i.e., how well connected
users are in the social network) is a better predictor of user preferences
than the interest affinity among them as algorithmically determined by
CF, and how to better evaluate recommendations depending on, for in-
stance, what type of users a recommendation application targets. This
overlook is explained in part by the lack of a systematic collection of
datasets including both the explicit social network among users and the
collaborative annotated items. In this paper, we conduct an extensive
empirical analysis on six real-world publicly available datasets, which
dissects the impact of user and item attributes, such as the density of
social ties or item rating patterns, on the performance of recommenda-
tion strategies relying on either the social ties or past rating similarity.
Our findings represent practical guidelines that can assist in future de-
ployments and mixing schemes.

Keywords: Social affinity, Interest affinity, Recommender systems, Col-
laborative Filtering, Evaluation

1 Introduction

Recommender systems are inescapable in a wide range of web applications, e.g.
Amazon or Netflix, to provide users with books or movies that match their inter-
est. Accurate recommendations generate returns of investments up to 30% due
to increased sales [24]. Many such systems rely on collaborative filtering (CF)
approaches that recommend items based on user rating history. Concomitantly,
the rising popularity of social networks has provided new opportunities to fil-
ter out relevant content for users. For instance, recommendation services like
Epinions, Last.fm or BeerAdvocate are enhanced with virtual social networks.

As a result, existing works have proposed both pure social recommenders
(SR)3 that only leverage the social ties among users [33], and hybrid approaches

3 For readability, social refers to both trust and social.
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that either augment the CF recommendation engine with social guidelines [39,
31] or incorporate CF mechanisms into a social recommendation engine [20].

A common practice in evaluating such approaches is to resort to (i) one [42,
45, 35, 22, 20, 25, 30], sometimes two [39, 31] datasets and (ii) global averages
for the metrics of choice. Alas, this has made it difficult to draw generalizable
conclusions on the effectiveness of leveraging the social ties for recommendations
compared with CF across datasets of different nature.

Furthermore, the use of global metrics4 to evaluate and compare the rec-
ommendation approaches may be inconclusive as they provide little insight into
when and why the approaches succeed or fail [13]. Although the impact of the
parameters of a recommendation strategy has been often inspected [9, 39, 22, 41,
29, 20, 7], little systematic effort has been devoted into understanding how var-
ious user or item attributes are affecting the performance [2], and none of such
analyses, to our knowledge, have included SR approaches.

Orthogonal to designing better hybrid approaches that combine SR and CF
features, our goal is to gain insight into the relative benefits of each of these
approaches that, in turn, can guide future deployments and mixing schemes. To
do so, we perform an extensive empirical analysis that dissects the recommenda-
tion performance, measured by precision and coverage, and does a fine grained
comparison across various user and item classes on six publicly available datasets
including both the ratings information and the social network among users (§3).
All datasets are medium to large-scale and exhibit various properties regarding
user social ties and items ratings. We focus on the two ends of the problem spec-
trum, which places on the one side the interest affinity among users (resp. items),
as algorithmically determined by CF from user rating history, and at the other
side the social affinity as inferred from users social network by pure SR (§2).
Our analysis addresses two main questions:

(1) Are global metrics able to reflect the performance of a given recommen-
dation strategy across various settings? Our analysis shows that one cannot rely
on global metrics to assess a given recommender performance not only across all
datasets but also within each dataset, across different classes of users or items.
Even a slight change in the global average might hide important changes in the
performance distribution across a dataset demographics. One may thus need to
understand and optimize the performance on a specific demographic subset de-
pending on the application specifics (e.g., for a beer recommendation service, it
might be more important to be accurate in the recommendations to experienced
and, thus, harder to please users [34]).

(2) Are there user or item attributes that hint at the CF (interest affinity)
performance with respect to SR (social affinity)? In our results, we find that
when the basis of formulating connections among users stems from plain friend-
ship, rather than from sharing interests, SR leads to less precise recommenda-
tions. Further, items likeability (the rating they received on average) and user
selectiveness are good predictors of the recommendation performance: relying on
social affinity leads to more precise predictions for highly liked items, while for

4 Metrics that are computed or averaged for all predictions.
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indulgent users (that typically give high ratings) leveraging the interest affinity
for items similarity is best. More results are discussed in (§3).

2 Problem Definition

Typically, a recommender task is to predict ratings for unseen items to users.
To do so, a set of items I, a set of users U , and a set of items Iu ⊆ I rated by
each user u with a rating ru,i on a Likert scale from 1 to 5 is considered. If the
recommender system exploits the social ties among users, for each user u a set
of friends Fu is assumed. This paper looks at the predictive capability of social
ties (SR) compared to the one of items or users rating similarity (CF) for items
recommendation.

2.1 Comparison Framework

We conduct our study using a comparison framework that implements a rec-
ommendation template under which, to make a recommendation for user u on
target item i, two main steps are performed5: (1) identify the set of similar users
(resp. items) with u (resp. i) and (2) compute weighted aggregates of their rat-
ings on i (resp. from u) according to the similarity with u (resp.i). On top of it,
we implement the main building blocks of SR and CF as used for comparison
in literature [3, 20, 21, 35, 25, 23]. Specifically, we implement (a) item- and user-
based CF variants as often used as reference point by previous work [20, 35, 38,
25], and (b) a SR approach that aggregates the ratings similarly with CF, yet,
instead of deriving users affinity based on how similar they rated items in the
past, it does so based on their social ties. Next we describe each approach and
motivate our choices.
Collaborative Filtering (CF) approaches are usually grouped in two main
classes: neighborhood- and model-based [12]. Model-based variants have received
lot of attention as their accuracy was considered superior, yet neighborhood-
based CF, though simpler, remains competitive [11]. Further, they exploit dif-
ferent patterns in data, none of them consistently out-perform the other: model-
based CF is typically effective at estimating the overall model related to all items
simultaneously, while neighborhood-based CF better captures local associations
in data [6]. This trait makes neighborhood-based CF suitable for our purpose to
compare the predictive capability of interest affinity (inferred based on implicit
similarity links as determined by CF) and social affinity (computed based on ex-
plicit social links among users). Further, neighborhood-based CF offers a simple
and intuitive template for recommendation to easily implement a pure SR-based
approach on top of it and fairly compare the two under the same setting.

We use common variants of the two main types of neighborhood-based CF:
user- and item-based CF. Briefly, for each user u (resp. item i) a neighborhood
UNu (resp. INi) of users (items) similar with u (resp. i) is built and their ratings
on the target item i (resp. from active user u) are aggregated as:

pu,i =

∑
v∈UNu

sim(u, v)rv,i∑
v∈UNu

sim(u, v)
(1)

5 As in neighborhood-based CF [18]
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for user-based CF, where sim(u, v) is the similarity between users u and v, as
estimated by the Pearson correlation of the ratings given by u and v on the same

items6; respective, pu,i =
∑

j∈INi
sim(i,j)ru,j∑

j∈INi
sim(i,j) for item-based CF, where s(i, j) is

the Pearson correlation of the ratings received by i and j from the same users.
Social Recommendation (SR) In contrast to CF7, when the ratings received
by target item i are aggregated according to Eq. (1), SR weights them based on
the social affinity between the active user (i.e., the user for which we want to
make a prediction) and the users that have rated item i in the past.

Social Affinity (relatedness) of two nodes in a social graph can be estimated
using random walks (RWs) [28], which have been used for both friend [5, 26] and
item recommendations [43, 20, 14]. In short, for each prediction, we run RWs
on the social graph that start at user u needing a recommendation on item i,
and stops when they either reach a user v that have rated the target item i, or
have performed a maximum number of steps kmax

8. We denote a RW stopping
condition with sv,i,k, which is true if i ∈ Iv or k >= kmax, meaning that the RW
stops at v. Then, the social affinity between u and user v that rated the target
item i is the probability to reach v using different paths and number of steps:

P (Xu,i = v) =
∑

k P (Xu,i,k=v)∑
w∈U

∑
k P (Xu,i,k=w) , where the random variable Xu,i represents

the nodes that rated item i and can be reached at any step of the RW starting
at node u, while Xu,i,k represents only the subset of nodes reachable at step k:

P (Xu,i,k = v) =
∑
w∈U

P (Xu,i,k−1 = w)P (Xw = v) (2)

where P (Xu,i,0) = 1 and Xw the random variable to pick a friend of node w. For
unweighted graphs (as those used in our evaluation), we have: P (Xw = v) = 1

|Fw| .

Thus, the probability to step on node v ∈ Fw at step k+1 after being at node
w at step k is P (Xu,i,k+1 = v|Xu,i,k = w, sw,i,k) = P (Xw = v), where Xu,i,k is
the random variable for nodes that can be reached at step k when looking for
i, sw,i,k is the negation of sw,i,k, and P (Xui,k+1 = v|Xu,i,k = u, sw,i,k) = 0 to
complete the probability distribution. To also complete the specification of the
probability distribution in Eq. (2), we define a final state ⊥, to which the RW
goes when it terminates: P (Xu,i,k =⊥) = 1−

∑
v∈U P (Xu,i,k = v).

To determine if we performed enough RWs to make an admissible prediction,

after each RW we compute the variance σ2 =
∑

j=1..T (rj−r)
T in the results of all the

walks [20], where T is the number of successful walks9, rj is the result returned by
the j-th RW, and r is the mean of the results return by the RWs. If the variance
σ2 converges to a constant (i.e., the variance after j+1 walks varies with less than
ε = 0.0001 from the variance after j walks), or the total number of (successful
and unsuccessful) walks reaches the maximum number of walks Tmax = 1000,

6 Note that we also consider only positive correlations [20]
7 For brevity, when referring to both user-based and item-based CF, we use only CF.
8 Set to 6 based on the “six-degree of separation” assumption [36] that most of the

nodes are reachable within 6 hopes [20]
9 A random walk is successful if it encounters a user that have rated the target item.
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Dataset Users Items Ratings Social Links Links Type
Ciao 12,375 99,762 284,086 237,350 direct
Epinions1 49,290 139,738 664,824 487,181 direct
Epinions2 22,166 296,277 922,267 355,813 direct
Epinions 132,000 755,760 13,668,319 841,372 direct
Flixster 786,936 48,794 8,196,077 7,058,819 symmetric
Douban 129,490 58,541 16,830,839 1,692,952 symmetric

Table 1. Datasets Figures

we stop from running more RWs. Then, to make a prediction, in Eq. (1), we
replace the similarity between active user u and user v which have rated item i
with their relatedness in the social network: pu,i =

∑
{v∈U |i∈Rv} P (Xu,i = v)rv,i.

3 Empirical Analysis

In this section we perform an extensive analysis that juxtaposes the SR (so-
cial affinity) and CF (interest affinity) as predictors for item recommendation,
structured in three parts. First, we present a comprehensive characterization of
the datasets. Second, we apply global metrics to evaluate the recommendation
strategies, and examine if they capture the performance variation across various
settings. Finally, we do a fine grained analysis of the impact of user and item
properties on the performance, organized as a set of questions about CF and SR
properties. These questions are largely inspired by admitted properties of CF or
SR, such as, CF performs better on users for which it has more information [15,
4, 8], the recommendation accuracy decreases towards the long-tail items (i.e.,
less popular items) [40], or SRs are superior on cold start users [20, 33].

3.1 Metrics and Experimental Setup

To evaluate the recommendation performance, we use the well-known leave one
out strategy. Specifically, we remove from the dataset only the rating we want
to predict and leave the other ratings and social network unchanged. Then, we
compare CF and SR along two popular metrics: (1) The coverage measures a
recommendation strategy ability to make predictions, and it is the number of
ratings the system succeeded to make divided by the total number of ratings
that it tried to predict. (2) The Root Mean Square Error (RMSE) captures the
average error between the predictions and the real ratings, measuring the recom-

mendation precision: RMSE =
√

1
N

∑
(ru,i − pu,i)2, where N is the number of

predictions, ru,i the real rating given by u to item i, while pu,i is the prediction.
Note that the smaller the RMSE is, the more precise the recommendations are.

Albeit RMSE ability to gauge the performance for pervasive top-k recommen-
dations is debated [10], it best fits our purpose to measure performance shifts
across classes of items/users. The accuracy metrics deemed suitable to evaluate
top-k performance, are biased towards the performance on preferred items (i.e.,
high ratings) [19]. Moreover, many recommender systems that leverage the social
ties optimize for RMSE [44], making our analysis convenient to compare with.

Two approaches are used to report RMSE and coverage values for a set of
users/items: (1) compute the RMSE (resp. coverage) over all the predictions to
users (or for items) in the set; or (2) compute the RMSE (resp. coverage) for each
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Dataset Ratings Per User Ratings Per Item Avg. Degree Mean Rating Median Rating
Ciao 22.9 2.8 19.1 4.16 4
Epinions1 13.4 4.7 9.8 3.99 4
Epinions2 41.6 3.1 16 3.97 4
Epinions 103.5 18.0 6.3 4.67 5
Flixster 10.4 167.9 8.9 3.8 4
Douban 129.9 287.5 13.0 3.84 4

Table 2. Dataset Statistics. Bold marks the highest value per column, while italic the
lowest.

item/user separately and average the results over all users (resp. items) in the set.
While the first measures the overall performance on estimating the ratings, the
second weights each user (resp. item) equally measuring how good the predictions
are on average for each user (resp. item) in the set. We measured both, yet, due
to space limitations, when the two variants lead to similar conclusions we show
only results with the second one; both are included otherwise. Finally, when
measuring how a certain user (resp. item) property impacts the results, we group
the users (resp. items) by logarithmically binning them regarding the property
value, and then compute the performance for each bin10.

3.2 Datasets Characterization

We conduct our analysis on 6 real world publicly available datasets including
both ratings and a social network (figures are summarized in Table 1):

Epinions is a popular product review site where people rate products and
build lists of trusted users whose reviews they find useful. We use two rating
datasets from Epinions: one is collected by the authors of [32] around 2006 (noted
epinions1 ), and one is collected in May 2011 by the authors of [42] (noted epin-
ions2 ). In addition to product ratings, in Epinions, users can also rate product
reviews. We also use a dataset, made available by Epinions.com to the authors
of [32] containing ratings on product reviews, instead of ratings on products
(noted epinions). In all datasets the ratings are on a scale from 1 to 5.

Douban is a Chinese product review site that represents one of the largest
online communities in China. As in Epinions, users rate and review products
in order to receive recommendations. In addition, at the date of crawling, it
provided a Facebook-like social networking service [31].

Ciao defines itself as a multi-million-strong online community in which users
critically review and rate millions of products. It provides the same functionality
as Epinions (i.e., users can both rate products and indicate the trusted users)[41].

Flixster is a large social movie rating service that allows users to create
Facebook-like friendship relations and share ratings [22], which are from 0.5 to
5 (with a step of 0.5). To ensure uniformity across the analyzed datasets, we
round the ratings to the next integer so as to obtain ratings on a 1 to 5 scale.

10 We use logarithmic binning (in base 4) to account for the fact that some values in
the degree, popularity, or activity distributions are frequent while others are not. A
linear binning leads to bins with few or no points.



Comparing Social and Interest Affinity 7

Fig. 1. Distribution of ratings as function of: (a) user activity; (b) item popularity; (c)
user degree; (d) rating value

Data Statistics. We want to understand the properties of the datasets we
analyze, the resemblance among them, as they might explain the performance
variations across them. Table 2 highlights basic statistics for each dataset.

Rating Distributions. Fig. 1 shows the rating distributions across user and
item properties, and the rating value. In Fig. 1(a) we notice similar patterns
across datasets with only little variation (for larger datasets, the level of user
activity at which the peak number of ratings is produced is shifted towards
higher ranges). In contrast, the rating distribution according to item popularity,
Fig. 1(b), varies greatly: while in some datasets (ciao, epinions1, epinions2 ) the
highest fraction of ratings is given to unpopular items, in others (the largest ones)
this is accounted for popular items. Fig. 1(c) also shows that while in flixster and
epinions most ratings are given by moderately social connected users, in other
datasets a higher number of ratings is credited to lower degree users. Looking
at rating distributions according to the rating value, Fig. 1(d), we see that in all
datasets the values are skewed towards higher ranges (peaking around 5).

Item Distributions. We observe similar patterns across all datasets: Fig. 2(a)
illustrates that with only one exception (epinions) the cold start items (with
only few ratings) represent a significant fraction of all items. Fig. 2(b) shows
that in all datasets most of the items received on average a rating of 3 or 4.

User Distributions. SR is believed to address cold start users, as it does not
require them to rate items for making predictions, but only to be connected in
the social network. Given that in some datasets the number of cold start users is

Fig. 2. The distribution of items as a function of (a) item popularity and (b) average
rating per item, and the distribution of users as a function of (c) user activity, (d) user
(out-)degree and (e) average rating per user.
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Dataset User CF Item CF Social
Ciao 1.144 (0.410) 1.285 (0.318) 1.252 (0.626)
Epinions1 1.186 (0.512) 1.428 (0.463) 1.362 (0.663)
Epinions2 1.164 (0.483) 1.361 (0.395) 1.406 (0.365)
Epinions 0.466 (0.930) 0.602 (0.579) 0.559 (0.951)
Flixster 1.013 (0.969) 0.889 (0.991) 1.349 (0.985)
Douban 0.784 (0.996) 0.809 (0.997) 1.037 (0.894)

Table 3. Overall performance. In each cell we report RMSE (Coverage) computed over
all the ratings in the dataset. Bold highlights the best value on each row.

significant (roughly 50% [20]), improving on this set of users might significantly
impact the overall performance. Thus, on average such approaches were found
to outperform CF [20, 33]. Yet, when the percentage of cold start users is not
significant, this might not be the case. Fig. 2(c) shows that while in some datasets
(epinions, flixster) cold start users are a significant percentage, this is clearly not
the case in others (douban, ciao). Additionally, regardless of their fraction, cold
start users always produce a minor fraction of ratings (see Fig. 1). In Fig. 2(d),
we notice that, except flixster, the number of low degree users is larger than the
number of cold start users, which in turn might affect SR overall performance.
Finally, Fig. 2(e) shows that, on average, users tend to give higher rating values.

Correlations. We also check the correlation among item and user properties
(item popularity, user activity and degree, and the average rating received by
an item or given by a user). As in general we found low or no correlation, we
report only on statistically significant (p < 0.01) moderate Pearson correlations
(|r| ≥ 0.2). We found moderate and positive correlations among users degree and
their level of activity in ciao (r = 0.59), epinions1 (r = 0.45) and epinions(r =
0.36). In flixster (r = 0.43), douban (r = 0.35) and epinions (r = 0.30) there
is a positive correlation between items popularity and the ratings they got, i.e,
popular items tend to obtain higher ratings. Item popularity also correlates
negatively with users level of activity in flixster and douban (r = −0.20 in both
datasets), i.e., active users are more inclined to rate unpopular items. While
in douban there is a negative correlation (r = −0.29) between users level of
activity and the ratings they give on average, indicating that active users are
more likely to give lower ratings; in epinions popular items tend to get higher
ratings (r = 0.31).

We will see in the next sections how these varying data properties explain the
different performance numbers obtained when aggregating the results differently
(e.g., user-oriented vs. item-oriented evaluation) within and across datasets.

3.3 Overall Performance Characterization

A common practice in recommender systems evaluation is to show how their per-
formance varies with approach-dependent parameters. Yet, even when there are
correlations between the parameter values and performance level, it is difficult
to know, for instance, if the improvements hold for the entire population, or only
for some subgroups. Thus, we want to observe if there is a trivial relationship be-
tween the experimental results obtained through globally computed metrics that
summarize the performance, typically used to evaluate recommendation systems
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(a) Per-user distributions

(b) Per-item distributions

Fig. 3. Results Distribution: The boxplots divide the data, except outliers (the blue
lines), in four equal buckets. A data point displays the performance on a particular
user (resp. item). The redline splitting the boxplot is the median, while the star is the
average performance (also plotted above each boxplot).

[20, 22, 35, 39], and the averaged performance at user (resp. item) level. Table 3
reports the globally computed metrics (rating-oriented evaluation) per dataset
and approach. For error rates, with only one exception (i.e., flixster), user-based
CF performs best across all the datasets. In terms of coverage, there is no clear
winner: SR performs best for ciao, epinions1 and epinions, while user-based CF
for douban and epinions2, and item-based CF for flixster. Next, we check if these
results are also confirmed by the user (resp. item)-oriented evaluations (§3.1)
which measures how well an approach does on average per user (resp. item). In
Fig. 3 the boxplots show the shape of the average performance distribution for
users (resp. items), its central value, and variability.

User-oriented evaluation. Fig. 3(a) shows the per-user performance variation
across datasets. Though it mostly confirms the overall results (in terms of win-
ners) for most datasets, there are exceptions in which SR, resp. item-CF, fares
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Fig. 4. Performance as a function of user activity: (top) average RMSE per user; (bot-
tom) average coverage per user.

better than the globally computed metrics indicate in Table 3: e.g., the coverage
on flixster, where the fraction of unsocial users is lower than that of cold start
users, and RMSE on epinions, where there is a higher fraction of items with
similar ratings, than of users giving similar ratings.

Item-oriented evaluation. Similarly, barring the coverage on flixster and
douban, Fig. 3(b) also confirms (in terms of winners) the figures in Table 3.
Yet, we notice that except epinions and flixster, in all the other datasets both
the distributions and the average coverage values are significantly shifted to-
wards lower ranges regarding the user-oriented evaluation, which is explained in
part by the much higher fraction of unpopular items than of cold start users
that these datasets exhibit.

This demonstrates that it is difficult to rely on global metrics to assess or
explain a given recommender performance, a finer granularity has to be applied ;
and that indeed no general conclusion can be drawn regarding the relative supe-
riority of a given recommendation method over another, not only across datasets
but also within each dataset.

3.4 In-Depth Performance Characterization

We aim to understand the benefit of each approach under a variety of settings.
In this regard, we address a set of questions about the properties of CF and SR,
some of which are well embedded in the conventional wisdom:

Does CF fare better for users (resp. items) with more ratings? The
belief is that CF does better when a user has rated more items [15, 8]. To test it,
we analyze how CF performs as users are more active (have rated more items).
Fig. 4 shows that users’ level of activity impacts the ability to make predictions
(the coverage) similarly across all approaches: being more active helps only until
some threshold after which rating more items either does not help (epinions,
douban) or can even be harmful (epinions2 ). Further, while rating more items
tends to help user-based CF to make precise prediction (in epinions and flixster
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Fig. 5. Performance as a function of item popularity: (top) average RMSE per item;
(bottom) average coverage per item.

after slightly improving for a while, the error increases again), item-based CF
has a more inconsistent pattern. Looking at the relative performance of CF
regarding SR (barring cold start users, i.e., the first bin on the log4 scale), we
notice that users level of activity impacts user-based CF and SR similarly in
terms of both coverage and RMSE. Exceptions are the coverage results on the
datasets that exhibit no correlation among users social degree and their level of
activity (douban, flixter).

As with more ratings per user, the belief is that more ratings per item help
CF [40]. To challenge it, we look how CF performs with the number of ratings per
item. Fig. 5 shows that the average coverage per item is improving as items are
more popular only until some threshold when they plateau. In contrast, for ciao,
epinions1, epinions2 (datasets with a small number of ratings per item, Table 2)
the predictions are less precise as the items are more popular, invalidating the
belief. Checking the relative performance of CF regarding SR, we notice that
more ratings per item helps CF to increase its precision regarding SR. The only
exception is epinions (to easily spot the patterns, follow on y-axis the distance
between points corresponding to the same bin but with distinct approaches).

Does SR fare better for cold star users? The belief is that SR deals better
with cold start users [20] (with less than 5 items rated [16]) as it only requires
them to be connected to other users to make predictions. Indeed, Fig. 4 shows
that SR achieves better coverage for these users (leftmost bins) across datasets.
Yet, this is not always the case when it comes to precision (RMSE). For in-
stance, we observe that for flixster and douban (when the social ties stem from
friendship), CF attains a better precision for all users, including cold start ones.

Does SR fare better for users with more social connections? Intuitively,
more social information available should help SR. To check this, we study how SR
performs across users with various social degrees. Fig. 6 shows that higher degrees
help improve the coverage only until users are moderately connected (have at
least 5 connections), after which linking to more users seems to bring little or no
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Fig. 6. Performance as a function of node degree: (top) average RMSE per user; (bot-
tom) average coverage per user.

benefit for SR, even declining on ciao. Neither SR’s precision improves as users
are more socially active: it either slightly decreases, or plateau. This means that
having too many friends might also introduce noise. This hints that many social
ties might not reflect as much friendship, similarity or trust. However, on most
datasets higher degrees tend to have a weak to no impact on SR’s precision.
Further, as with the level of activity, baring the low degree users, the social
degree impacts user-based CF and SR in a similar way, in particular for those
datasets in which the degree correlates with the level of activity.

Is CF doing better on low degree nodes? Since CF does not leverage the
social links to make predictions, it should not be affected by their absence, and,
thus, should perform better on unsocial (low-degree) users. Yet, Fig. 6 shows
that CF succeeds to obtain a better coverage on unsocial users only for douban
and epinions2. For RMSE, while on some datasets CF does better on unsocial
users, when there is a correlation between user degrees and how many items they
rate (ciao, epinions1, and epinions), it performs comparable with SR.

Is SR’s Precision re. CF Smaller on Facebook-like Networks? The pro-
cess of creating connections primarily based on “plain” friendship (Facebook-
like) does not necessarily correlate with one’s opinions as it is orthogonal to a
product recommendation task. Yet, when the basis of forming connections is to
connect with people whose opinions one shares, there might be more agreement
in how users rate the same items. Indeed, this distinction is clearly visible in our
results (Fig. 6 to 8): while SR fares comparable with CF in terms of RMSE in
Epinions datasets and ciao, in Facebook-like flixster and douban CF significantly
outperforms SR. In addition, being more socially active has little to no impact
on the results obtained for flixster and douban (Fig. 6). Thus, this indicates that
the underlying nature of the network and whether or not the connections are
related or orthogonal to the recommendation task is an important factor as well.

Is the performance independent of users selectiveness or items like-
ability? Only few studies hint at the relation between user selectiveness [34]
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or items likeability and recommendation performance. Yet, in Fig. 7 we no-
tice consistent patterns across datasets, in particular, for RMSE. In all datasets
item-based CF is less precise when items are either liked (received high ratings),
or disliked (received low ratings), while SR and user-based CF are less precise
for users that are either very selective (giving mostly low ratings) or indulgent
(offering mostly high ratings). Also note how similarly both the user and item
average rating impacts the precision across all datasets (i.e., leading to similar
curves for all datasets). This is surprising as it indicates that the users (resp.
items) average rating is predictive for the recommendation approach precision.
It is also worth noting that user-based CF and SR precision (although with
slightly different values) follow almost identical curves. Yet, as Fig. 7 illustrates,
for coverage the patterns are not consistent across all datasets.

4 Related Work

Collaborative Filtering (CF) has been widely used by major commercial
applications such as Amazon, Movielens, or Netflix [24, 27, 1]. These methods
leverage users rating history and predict the rating of a target item and a source
user by looking at the ratings on the target item given by similar users, user-based
approaches [17], or at what ratings items similar to the target one have received
from the source user, item-based approaches [38]. Yet, relying solely on CF is
ineffective when dealing with large numbers of items, given the sparsity of the
user-item ratings matrix. Cold start users and items are particularly affected, CF
often failing to make predictions in such cases (i.e., leading to a low coverage).

Social recommender systems(SR) In contrast, SR systems leverage users
social ties to make predictions [46, 33, 37, 16, 35], assuming that these reflect
common tastes or interests. SR systems deal better with cold start users, as
they require users only to be connected to other users in the social network, and
do not have to wait for users to grow a rating history to make predictions. Alas,
while these systems tend to achieve better coverage, they can also suffer due to
sparse ratings and sparse trust relations. Thus, in order to consider the ratings
of users that are not directly connected, various approaches propagate the trust
among their users [46, 16, 33, 35]. Yet, in these cases the recommender might end
up considering ratings of weakly trusted users, thus affecting the precision [20].

Social-enhanced collaborative approaches incorporate social factors to the
collaborative framework by tailoring the rating similarity based on the social
ties [25]; making predictions based on friend ratings weighted by the level of
trust, and integrating them in the CF framework [29]; adding social regulariza-
tion factors to matrix factorization recommendation techniques by constraining
a user inferred taste (her feature vector) with the average taste of her friends,
and the similarity with each of them [31], thus making her feature vector depend
on those of her friends [22], or by accounting for the social ties heterogeneity [39].

In contrast, collaborative-enhanced social approaches implement a social-
based framework that falls back on CF when trusted users did not rate the target
item. TrustWalker enhances a social-based approach with item-based CF [20],
and employs a random walk model that first tries to exploit the social network
by looking for the ratings on the target item at trusted nodes (trust-based ap-
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Fig. 7. Performance as a function of average rating value per item and per user.

proach). Yet, as the random walk advances, if a rating on this item is not found,
the likelihood to return the rating of a similar item (item-based approach) in-
creases. TrustWalker acts in extreme settings as a pure SR approach when the
random walk never stops for similar items, and as pure item-based CF when the
walk never starts (navigating the same problem spectrum with us).

5 Concluding Remarks

We conducted an in-depth empirical analysis on six publicly available datasets to
study the respective merits of the interest affinity, as derived by CF, and the so-
cial affinity, reflecting how well connected users are in the social graph, for items
recommendations. We focused on the building blocks of the analyzed strategies,
without aiming to exhaustively inspect all possible implementations, as we ar-
gue that their understanding can better guide more complex deployments. Our
study conveys that the level of user activity, item popularity or the density and
nature of the underlying social network are as many characteristics that can im-
pact the performance of recommendation systems. One needs to understand the
dataset demographics and optimize the performance based on each application
specificities. We make a case for hybrid approaches, that dynamically adapt as
the system evolves and the properties of user and item change over time.
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