N

N

An O(n log n) Cutting Plane Algorithm for Structured
Output Ranking
Matthew Blaschko, Arpit Mittal, Esa Rahtu

» To cite this version:

Matthew Blaschko, Arpit Mittal, Esa Rahtu. An O(n log n) Cutting Plane Algorithm for Struc-
tured Output Ranking. German Conference on Pattern Recognition, Sep 2014, Miinster, Germany.
10.1007/978-3-319-11752-2_11 . hal-01020943

HAL Id: hal-01020943
https://inria.hal.science/hal-01020943
Submitted on 15 Jul 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-01020943
https://hal.archives-ouvertes.fr

An O(nlogn) Cutting Plane Algorithm for
Structured Output Ranking

Matthew B. Blaschko', Arpit Mittal?, and Esa Rahtu3

! Inria & Ecole Centrale Paris, France
2 Department of Engineering Science, University of Oxford, United Kingdom
3 Center for Machine Vision Research, University of Oulu, Finland

Abstract. In this work, we consider ranking as a training strategy for
structured output prediction. Recent work has begun to explore struc-
tured output prediction in the ranking setting, but has mostly focused
on the special case of bipartite preference graphs. The bipartite special
case is computationally efficient as there exists a linear time cutting plane
training strategy for hinge loss bounded regularized risk, but it is unclear
how to feasibly extend the approach to complete preference graphs. We
develop here a highly parallelizable O(nlogn) algorithm for cutting plane
training with complete preference graphs that is scalable to millions of
samples on a single core. We explore theoretically and empirically the
relationship between slack rescaling and margin rescaling variants of the
hinge loss bound to structured losses, showing that the slack rescaling
variant has better stability properties and empirical performance with
no additional computational cost per cutting plane iteration. We further
show generalization bounds based on uniform convergence. Finally, we
demonstrate the effectiveness of the proposed family of approaches on
the problem of object detection in computer vision.

1 Introduction

Learning to rank is a core task in machine learning and information retrieval [13].
We consider here a generalization to structured output prediction of the pairwise
ranking SVM introduced in [9]. Similar extensions of ranking to the structured
output setting [3] have recently been explored in [5, 16, 22]. In these works, pair-
wise constraints were introduced between elements in a structured output space,
enforcing a margin between a lower ranked item and a higher ranked item pro-
portional to the difference in their structured output losses. These works consider
only bipartite preference graphs. Although efficient algorithms exist for cutting
plane training in the bipartite special case, no feasible algorithm has previously
been proposed for extending this approach to fully connected preference graphs
for arbitrary loss functions.

Our work makes feasible structured output ranking with a complete prefer-
ence graph for arbitrary loss functions. Joachims previously proposed an algo-
rithm for ordinal regression with 0-1 loss and R possible ranks in O(nR) time
for n samples [10]. This effectively enables a complete preference graph in this
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special setting. In practice, however, for structured output prediction with a suf-
ficiently rich output space, the loss values may not be discrete, and may grow
linearly with the number of samples. In this case, R is O(n). Mittal et al. have
extended Joachims’ O(nR) result to the structured output ranking setting in the
case that there are a discrete set of loss values [15]. A direct extension of these
approaches to the structured output setting with a fully connected preference
graph and arbitrary loss functions results in a O(n?) cutting plane iteration.
One of the key contributions of our work is to show that this can be improved
to O(nlogn) time. This enables us to train an objective with 5 x 107 samples
on standard hardware (Section 5). Furthermore, straightforward parallelization
schemes enable e.g. O(n) computation time on O(logn) processors (Section 3.1).
These results hold not only for the structured output prediction setting, but can
be used to improve the computational efficiency of related ranking SVM ap-
proaches, e.g. [10].

Analogous to the structured output SVM [17, 18], we formulate structured
output ranking in slack rescaling and margin rescaling variants. We show uni-
form convergence bounds for our ranking objective in a unified setting for both
variants. Interestingly, the bounds for slack rescaling are dependent on the range
of the loss values, while those for margin rescaling are not. Further details are
given in Section 4. Structured output ranking is a natural strategy for cascade
learning, in which an inexpensive feature function, ¢, is used to filter a set of
possible outputs y. We show empirical results in the cascade setting (Section 5)
supporting the efficiency, accuracy, and generalization of the proposed solution
to structured output prediction.

2 Structured Output Ranking

The setting considered here is to learn a compatibility function g : X x ) —
R that maps an input-output tuple to a real value indicating the prediction
of how suitable the input is to a given output. We assume that there is an
underlying ground truth prediction for a given input so that every z; € X in
a training set is associated with a y; corresponding to the optimal prediction
for that input. Additionally, we assume that a loss function A : Y x Y — R is
provided that measures the similarity of a hypothesized output to the optimal
prediction A(yF,y) > 0. A training set will consist of input-ground truth-output
tuples, where the input-ground truth pairs may be repeated, and the outputs are
sampled over the output space: S = {(xs, ¥}, ¥i) }1<i<n and (z;,y]) may equal
(zj,y;) for j # i (cf. Section 5). We will use the notation A; to denote Ay}, y;).

In structured output ranking, we minimize with respect to a compatibility
function, g, a risk of the form [1]

R(9) = E(x,.vi).(x,v,)) 1Ay, — Ay, |- (1((Ay, — Ay,)(9(X4, Vi) — 9(X;,Y5)) < 0)
PG Y) =g, ) ()

where 1(-) evaluates to 1 if the argument is true and 0 otherwise, and the term
penalizing equality is multiplied by % in order to avoid double counting the
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penalty over the expectation. Here Ay, is the structured output loss associated
with an output, Y;. In contrast to other notions of risk, we take the expectation
not with respect to a single sample, but with respect to pairs indexed by the
structured output. Given two possible outputs sampled from some prior, the
risk determines whether the samples are properly ordered according to the loss
associated with predicting that output, and if not pays a penalty proportional
to the difference in the losses. This risk penalizes pairs for which sample 7 has
lower loss than sample j and also lower ranking score, i.e. we would like elements
with low loss to be ranked higher than elements with high loss.

Two piecewise linear convex upper bounds are commonly used in structured
output prediction: a margin rescaled hinge loss, and a slack rescaled hinge loss.
The structured output ranking objectives corresponding to regularized risk min-
imization with these choices are

ol M)+ € @

margin rescaling

st S vy (w0, 0 10)) — (W, 6wy p5)) + i — A5) = =€ (3)

(i,5)€€

or Z vij ((w, ¢(zi, yi) — d(xj,y;)) — 1) (4, — Ai) = ¢ (4)
(.)€ slack rescaling
£>0 vu € {0, 1} (5)

where &£ is the edge set associated with a preference graph G,* and {2 is a reg-
ularizer monotonically increasing in some function norm applied to w [12]. We
have presented the one-slack variant here [11]. For a finite sample of (z;, ¥}, v:),
such objectives can be solved using a cutting plane approach [10, 15, 16, 20].

The form of G defines risk variants that encode different preferences in rank-
ing. If an edge exists from node ¢ to node j, this indicates that i should be
ranked higher than j. Of particular interest in this work are bipartite graphs,
which have efficiencies in computation, and fully connected graphs, which at-
tempt to enforce a total ordering on the samples. Structured output ranking
with bipartite preference graphs was previously explored in [16], in which a lin-
ear time algorithm was presented for a cutting plane iteration. The algorithm
presented in that work shares key similarities with previous strategies for cutting
plane training of ranking support vector machines [10], but extends the setting
to rescaled structured output losses. A linear time algorithm for fully connected
preference graphs was presented in [15] in the special case that the loss values
are in a small discrete set. Previous algorithms all degenerate to O(n?) when
applied to fully connected preference graphs with arbitrary loss values.

4 An edge from i to j in G indicates that output ¢ should be ranked above output j.
It will generally be the case that A; > A; for all (z,5) € £.
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3 O(nlogn) Cutting Plane

Algorithm

Algorithm 1 Finding maximally vio-
lated slack-rescaled constraint for struc-
tured output ranking with a complete bi-
partite preference graph.

Algorithm 2 An O(nlogn) recursive al-
gorithm for computing a cutting plane it-
eration for fully connected ranking prefer-
ence graphs.

Input: A, a list of loss values sorted from

Input: A, a list of loss values sorted from

lowest to highest; s, a vector of the cur-
rent estimate of compatibility scores
(su = {w, (Twu, yu))x) in the same or-
der as A; p, a vector of indices such
that s,, > sp, whenever v > u; t, a
threshold such that (u,v) € £ when-
everu <tandwv >t

lowest to highest; s, a vector of the cur-
rent estimate of compatibility scores
(8w = (w, &(Tw, yu))x ) in the same or-
der as A; p, an index such that s,, >
Sp, Whenever v > u

Output: Maximally violated constraint is

& —(w, X2, cid(wi,yi)) <€

Output: Maximally violated constraint is 1: n = length(A)
0 —(w, Y, (s, yi)) <& 2: if Ay = A, then
Lpt = Di{ulpu<t}s P = P{v|py>t} 3:  return (0,0)
2:1=1,0=A4 =0, A"=0,a=0 4: end if
3 AT =A 5.t~ 5
Pn—t L oa

4: for k=n—t—1to 1 descending do  6* P* = Plulp, <1}
5 ACUm — A 4 Acum 7: (a1, 01) = Algorithm 2(A1., s1:¢,p%)

P Pro Pen 8: p” = Plup,>ty
6: end for 9: b — P bv

. : p° = p° —t (subtract ¢t from each ele-
7: for j=1ton—tdo b
8 whiles —+1>s  Ai<t+1do ment of p")

: Py py = 10: (az,d2) = Algo-

9: Oép;r = Ctp;r + A;‘;m - (n —t _j + rithm Q(At+1;n, st+1;n,pb)

DA 4 11: (@, d0) = Algorithm 1(A, s, p,t)

Py . —_ _
100 Av=A+A =i+l g:O‘t*ao+a16+a275*50+51+52
11:  end while ' : return (a,9)
12 o, =a, —((G-DA, -4
13: 6:6+(j—1)Apv_—A+
J

14: end for

15: return (a,9)

Cutting plane optimization of (2)-(5) consists of alternating between opti-
mizing the objective with a finite set of active constraints, finding a maximally
violated constraint of the current function estimate and adding it to the ac-
tive constraint set [11]. Algorithm 1 gives a linear time procedure for finding
the maximally violated constraint in the case of a complete bipartite preference
graph [10,16] and slack rescaling.® This algorithm follows closely the ordinal
regression cutting plane algorithm of [10], and works by performing an initial
sort on the current estimate of the sample scores. The algorithm subsequently
makes use of the transitivity of violated pairwise constraints to sum all violated
pairs in a single pass through the sorted list of samples.

In the case of fully connected preference graphs, Algorithm 2 is a recursive
function that ensures that all pairs of samples are considered. Algorithm 2 uses

5 An analogous algorithm for margin rescaling was given in [16] and has the same
computational complexity.
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a divide and conquer strategy and works by repeatedly calling Algorithm 1 for
various bipartite subgraphs with disjoint edge sets, ensuring that the union of
the edge sets of all bipartite subgraphs is the edge set of the preference graph.
The set of bipartite subgraphs is constructed by partitioning the set of samples
into two roughly equal parts by thresholding the loss function. As the samples
are assumed to be sorted by their structured output loss, we simply divide the
set by computing the index of the median element. In the event that there are
multiple samples with the same loss, the partitioning (Algorithm 2, line 5) may
do a linear time search from the median loss value to find a partitioning of
the samples such that the first set has strictly lower loss than the second. The
notation p® = pyy|p,<¢y indicates that p® contains the elements satisfying the
condition in the subscript in the same order that they occured in p. Source code
is available for download.b

3.1 Complexity

Prior to calling either of the algorithms, the current data sample must be sorted
by its structured output loss. Additionally an index vector, p, must be computed
that encodes a permutation matrix that sorts the training sample by the current
estimate of its compatibility scores, (w, ¢;). Each of these operations has com-
plexity O(nlogn). The serial complexity of computing the most violated 1-slack
constraint is O(nlog, n), matching the complexity of the sorting operation. To
show this, we consider the recursion in Algorithm 2. The computational costs of
each call consist of (i) the processing needed to find the sorted list of scores for
the higher ranked and lower ranked subsets in the bipartite graph, (ii) the cost
of calling Algorithm 1, and (iii) the cost of recursion. We will show that items
(i) and (ii) can be computed in time linear in the number of samples.

That item (i) is linear in its complexity can be seen by noting that an index
p already exists to sort the complete data sample. Rather than pay O(nlogn)
to re-sort the subsets of samples, we may iterate through the elements of p once.
As we do so, if p; < t, we may add this element to the index that sorts the higher
ranked subset. If p; > ¢, we may add p; — ¢ to the index that sorts the lower
ranked subset. Item (ii) is also linear as the algorithm loops once over each data
sample, executing a constant number of operations each time.

We calculate the complexity of Algorithm 2 by a recursive formula R, =
Cp + 2Rn where C), is the O(n) cost of processing items (i) and (ii). It follows
that

logy, 1

R,= ) Cxn2. (6)
=0

Examining the term C’? 2%, we note that C? is O(57) and must be paid 27 times,
resulting in a cost of O(n) per summand. As there are O(log, n) summands, the
total cost is O(nlogn). Graphically, the recursion tree is a binary tree in which
the cost of each node is proportional to %, where d is the depth of the node

5 http://pages.saclay.inria.fr/matthew.blaschko/projects/structrank/
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(Figure 1). A C implementation of the algorithm takes a fraction second for 10°
samples on a 2.13 GHz processor.

Fig. 1. The recursion tree for o @

Algorithm 2. Each node in the

tree corresponds to a set of con- | @ @
straints resulting from a bipar-

tite preference graph. The cost
of computing these constraints 2 @ @ @ @
is labeled in each of the nodes.

A straightforward parallelization scheme can be achieved by placing each
recursive call in its own thread. Doing so results in O(n) computation on O(logn)
processors: each level of a tree at depth ¢ can be computed independently in Ci 20

instructions, and there are O(logn) levels of the tree. Each of logn processors
can be assigned the nodes corresponding to a given level of the tree.

4 Generalization Bounds

In this section, we develop generalization bounds based on the uniform con-
vergence bounds for ranking algorithms presented in [1]. For A € [0,1) we have
tighter bounds for slack rescaling as compared to margin rescaling. For A € [0, o]
where o > 1 bounds are tighter for margin rescaling.

Definition 1 (Uniform loss stability (38)). A ranking algorithm which is
trained on the sample S of size n has a uniform loss stability 8 with respect to
the ranking loss function ¢ if,

6(S) = USM)| < B(n), YneN1<k<n (7)

where S* is a sample resulting from changing the kth element of S, i.e., changing
the input training sample by a single example leads to a difference of at most
B(n) in the loss incurred by the output ranking function on any pair of examples.
Thus, a smaller value of B(n) corresponds to a greater loss stability.

Definition 2 (Uniform score stability (v)). A ranking algorithm with an
output gs on the training sample S of size n, has a uniform score stability v if

lgs(2) — gsr(x)| < v(n), Vne N,1<k<nVrekX (8)

i.e., changing an input training sample by a single example leads to a difference
of at most v(n) in the score assigned by the ranking function to any instance x.

The hinge losses for margin and slack rescaling formulations are given by:

b =(14; = Ai| = (w, ¢(wi, 1) — ¢(x5,9;)) - sign(A; — Ai))+, 9)
b =(14; = Al - (1 = (w, @i, yi) — Gz, 9;)) - sign(4d; — 4))) 4. (10)
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Theorem 1. Let A be a ranking algorithm whose output on a training sample
S € (X, V)" we denote by fs. Let v: N — R be such that A has uniform score
stability v. A has uniform loss stability B with respect to the slack rescaling loss
Ly, where for alln € N

B(n) = 20v(n) (11)

where o > A is an upper bound on the structured output loss function.

Proof. Without loss of generality we assume that £4(S) > £5(S*). There are two
non-trivial cases.
Case (i): Margin is violated by both gs and ggx.

[6(8) = £s(SF) =145 = Al - (1 = (gs (i) — gs(x;)) - sign(4; — Ag))—  (12)
14 = Al - (1= (gs(2:) — gsn(25)) - sign(4; — A4))
<o(lgs(zi) = gsr(xi)| + 9s(25) = gsk(x)]) < 20v(n)  (13)

Case (ii): Margin is violated by either of gs or gsr. This is a symmetric
case, so we assume that the margin is violated by gs.

[€5(S) = £5(S™)| =14; — Ail - (1 = (9s (@) — gs(x))) - sign(4; — 4;))  (14)
<|4; = Al - (1 = (gs(xi) — gs(x;)) - sign(4; — 4i))—  (15)
|45 = Ail - (1 = (gsr () — gsr(x;)) - sign(4; — Ay))

<o(lgs(zi) = gsr (@)l + lgs(z;) — gsx (2;)]) < 20v(n)  (16)

Theorem 2 (Slack Rescaling Generalization Bound). Let H be a RKHS
with a joint-kernel’ k such that ¥(z,y) € X x Y, k((z,y), (z,y)) < k? < oco.
Let A > 0 and £, be a rescaled ramp loss. The training algorithm trained on
sample S of size n oulputs a ranking function gs € H that satisfies gs =
arg mingey {Re, (9;S) + Al|g||3,}. Then for any 0 < & < 1, with probability at

least 1 — & over the draw of S, the expected ranking error of the function is
bounded by:

R(gs) < Ry, (9s;S) +

2,2 1 2,2 1
320°k +( 60%K +J> 21In(1/6) (17)

An A

n

Proof. From [1, Theorem 11], v(n) = 8152. Substituting this value of v(n) in
Equation (11) gB(n) = %. Inequality (17) then follows by an application

of [1, Theorem 6] which gives the generalization bound as a function of 5(n).

The proof of [1, Theorem 6] follows closely that of [6] for regression and classi-
fication, relying at its core on McDiarmid’s inequality [14].

Theorem 3 (Margin Rescaling Generalization Bound). Under the con-
ditions of Theorem 2, and a ranking function fs € H that satisfies fs =
argminsen{ R, (f;S) + M| f13,}. Then for any 0 < & < 1, with probability

" We assume a joint kernel map of the form given in [17,18].
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at least 1 — § over the draw of S, the expected ranking error of the function is
bounded by:

R(fs) < Ry, (fs:8) +

3262 (16/-c2 +U) 2In(1/9) (18)

n A

The proof of Theorem 3 follows the outline given in [1, Section 5.2.1].

5 Experimental Results

Results are presented as an evaluation of a cascade architecture [21], following
the evaluation protocol of Rahtu et al. [16]. The experiments are presented on the
VOC 2007 dataset [7]. The images are annotated with ground-truth bounding
boxes of objects from 20 classes. VOC 2007 train and validation sets are used only
to construct the distribution for the initial window sampling, and the ranking
function is learned using the dataset presented in [2]. This is done in order to
obtain results comparable to those in [2, 16].

The performance is measured using a recall-overlap curve, which indicates the
recall rate of ground truth boxes in the VOC 2007 test set for a given minimum
value of the overlap score [19]

. Area(ynyg)
O(Z/? y) - Area(y U g) ’ (19)
where y and y denote the ground truth and predicted bounding box, respectively.
We also report the area under the curve (AUC) between overlap scores 0.5 and 1,
and normalize its value so that the maximum is 1 for perfect recall. The overlap
limit 0.5 is chosen here since less accurately localized boxes have little practical
importance.

Our framework for creating the set of predicted bounding boxes broadly
follows that of [16]. This setting has three main stages: (i) construction of the
initial bounding boxes, (ii) feature extraction, and (iii) window selection. In the
first stage we generate a pool of approximately 100,000 initial windows per image
using random sampling and superpixel bounding boxes. The random samples are
drawn from a distribution learned using the ground truth object boxes in the
training and validation sets. The superpixels are computed by a graph based
method [8], which is selected for its computational efficiency. At overlap 0.5, the
initial windows achieve approximately 98% recall.

In the second stage, the tentative bounding boxes are scored using several
publicly available features. These features are window symmetry (WS), bound-
ary edge distribution (BE), superpixel boundary integral (BI), color contrast
(CC), superpixel straddling (SS), and multiscale saliency (MS). The WS, BE,
and BI features are described in [16] and SS, CC, and MS are from [2]. The joint
feature map, ¢(z;,y;), applied in learning is the feature vector corresponding to
the bounding box y;.
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Bipartite margin, 1000 (0.39)
Bipartite slack, 1000 (0.38)
Allpairs margin, 1000 (0.36)
Allpairs slack, 1000 (0.38)
Star margin, 1000 (0.35)
Star slack, 1000 (0.38)
—— SOSVM margin, 1000 (0.32)
—— SOSVM slack, 1000 (0.32)
-~ ~-Bipartite margin, 100 (0.25)
----Bipartite slack, 100 (0.25)
Allpairs margin, 100 (0.23)
Allpairs slack, 100 (0.26)
Star margin, 100 (0.17)
~==-Star slack, 100 (0.24)
~=--SOSVM margin, 100 (0.19)
----SOSVM slack, 100 (0.19)
Bipartite margin, 10 (0.10)
= Bipartite slack, 10 (0.10)
Allpairs margin, 10 (0.13)
Allpairs slack, 10 (0.14)
Star margin, 10 (0.06)
-~ Star slack, 10 (0.11)
~+--SOSVM margin, 10 (0.09)
SOSVM slack, 10 (0.09)

03

N 3
02k

0.1

||——Ground truth % i i I - %&
Bost predicti 5 055 06 065 07 075 08 . . . 1
oot predc o Overlap score threshold

(a) Example detections with (b) Overlap/recall curves. Results are presented for vary-
a complete preference graph ing preference graphs, margin and slack rescaling, and
and slack rescaling. This set- various numbers of returned windows. The AUC score is
ting corresponds to “Allpairs given in parentheses (a higher number at a given number
slack, 1000” in Fig. (b). of returned windows indicates better performance).

Fig. 2. Example detections and overlap vs. recall for an object detection task. See
Section 5 for a complete description of the experimental setting. This figure is best
viewed in color.

In the last stage, we select the final set of bounding boxes (10, 100 or 1000)
based on the learned score. The feature weights for the linear combination are
learned by using the structured output ranking framework presented in this
paper and the loss function proposed in [4]. This loss is based on the overlap
ratio (19) and is defined as A; =1 — o(y, v;).

In order to run the proposed algorithm, we further need to define the struc-
ture of the preference graph G. Three variants were considered: a bipartite graph
in which 1000 best samples per image are ranked higher than all other initial
windows (as in [16]), a fully connected graph (denoted “Allpairs” in the leg-
end of Figure 2(b)) where full ranking is pursued, or a bipartite graph in which
only ground truth windows are to be ranked higher than all sampled windows
(denoted “Star” in the legend, as the topology of a bipartite graph with one sin-
gleton set is a star graph). Finally, we have trained a standard structured output
SVM (labeled “SOSVM”) in the same manor as [4]. To ensure a diverse set of
predictions, we have applied the non-maximal suppression approach described
in [19].

The overlap-recall curves are shown in Figure 2. The legend in Figure 2
encodes the experimental setting for each curve. First, the structure of the pref-
erence graph, G, is specified. The second component of the legend indicates
whether slack rescaling or margin rescaling was employed. The third component
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states the number of top ranked windows used for evaluating the recall. Finally,
the fourth component (in parentheses) gives the AUC value.

6 Discussion

The experiments described in Section 5 show that structured output ranking is
a natural objective to apply to cascade detection models.

On average, a bipartite preference graph performs best if we require 1000
windows as output, which matches the training conditions. The bipartite graph
was constructed such that constraints were included between the top 1000 sam-
pled windows, and the remaining 99000 windows. However, when the number of
returned windows deviates from 1000, the relative performance of the bipartite
ranking decreases and other preference graphs give better performance. The ob-
jective is tuned to give the highest performance under a single evaluation setting,
at the expense of other settings.

The complete preference graph ranking, labeled “Allpairs” in Figure 2, gives
good performance and tends to have higher performance at high overlap levels.
While the difference between slack rescaling and margin rescaling was minimal
when using a bipartite preference graph, a much more noticeable difference is
present in the case of a complete preference graph. While the bipartite preference
graph performs better at certain overlap levels when 1000 windows are returned,
the complete preference graph is much more stable across a wide number of
windows, and gives the best performance at all overlap levels if 10 windows
are returned per image. Finally, the standard structured output SVM (labeled
“SOSVM”) performs substantially worse than all ranking variants.

7 Conclusions

In this work, we have explored the use of ranking for structured output predic-
tion. We have analyzed both margin and slack rescaling variants of a ranking
SVM style approach, showing better empirical results for slack rescaling, and
proving generalization bounds for both variants in a unified framework. Further-
more, we have proposed an efficient and parallelizable algorithm for cutting plane
training that scales to millions of data points on a single core. We have shown an
example application of object detection in computer vision, demonstrating that
ranking methods outperform a standard structured output SVM in this setting,
and that fully connected preference graphs give excellent performance across a
range of settings, particularly at high overlap with the ground truth.

The O(nlogn) algorithm presented here can be adapted to a wide variety of
settings, improving the computational efficiency in a range of ranking approaches
and applications. In the setting of [10, 15], the O(nR) approach for ranking with a
complete preference graph and a fixed number, R, of loss values can be improved
in an analogous manner to O(nlog R).
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