Skip to main content

A Dense Pipeline for 3D Reconstruction from Image Sequences

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

We propose a novel pipeline for 3D reconstruction from image sequences that solely relies on dense methods. At no point sparse features are required. As input we only need a sequence of color images capturing a static scene while following a continuous path. Furthermore, we assume that an intrinsic camera calibration is known. Our pipeline comprises three steps: (1) First, we jointly estimate correspondences and stereo geometry for each two consecutive images. (2) Subsequently, we connect the individual pairwise estimates and globally refine them through bundle adjustment. As a result, all camera poses are merged into a consistent global model. This allows us to create accurate depth maps. (3) Finally, these depth maps are merged using variational range image integration techniques. Experiments show that our dense pipeline is an interesting alternative to sparse approaches. It yields accurate camera poses as well as 3D reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Black, M.J.: Robust incremental optical flow. Ph.D. thesis, Yale University, Department of Computer Science, New Haven, CT (1992)

    Google Scholar 

  4. Fraundorfer, F., Scaramuzza, D., Pollefeys, M.: A constricted bundle adjustment parameterization for relative scale estimation in visual odometry. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1899–1904 (2010)

    Google Scholar 

  5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pp. 559–568. ACM, New York (2011)

    Google Scholar 

  7. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR ’07, pp. 1–10. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  10. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: Proceedings of Tenth IEEE International Symposium on Mixed and Augmented Reality, ISMAR ’11, pp. 127–136. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  11. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2320–2327. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  12. Schroers, C., Zimmer, H., Valgaerts, L., Bruhn, A., Demetz, O., Weickert, J.: Anisotropic range image integration. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 73–82. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. IEEE Computer Society, Seattle, WA (1994)

    Google Scholar 

  14. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms’99. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Valgaerts, L., Bruhn, A., Mainberger, M., Weickert, J.: Dense versus sparse approaches for estimating the fundamental matrix. Int. J. Comput. Vis. 96(2), 212–234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Viscoda: Voodoo camera tracker 1.2.0 (2012). http://www.viscoda.com/index.php/en/products/non-commercial/voodoo-camera-tracker. Accessed 30 Oct 2013

  18. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE-based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  19. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  20. Zach, C.: Simple sparse bundle adjustment 3.0 source code (2011). http://www.inf.ethz.ch/personal/chzach/opensource.html. Accessed 30 Oct 2013

  21. Zhou, Q.Y., Koltun, V.: Dense scene reconstruction with points of interest. ACM Trans. Graph. 32(4), 112:1–112:8 (2013)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge partial funding by the Cluster of Excellence for Multimodal Computing and Interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Schneevoigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schneevoigt, T., Schroers, C., Weickert, J. (2014). A Dense Pipeline for 3D Reconstruction from Image Sequences. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics