Skip to main content

A Hierarchical Bayesian Approach for Unsupervised Cell Phenotype Clustering

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

We propose a hierarchical Bayesian model - the wordless Hierarchical Dirichlet Processes-Hidden Markov Model (wHDP-HMM), to tackle the problem of unsupervised cell phenotype clustering during the mitosis stages. Our model combines the unsupervised clustering capabilities of the HDP model with the temporal modeling aspect of the HMM. Furthermore, to model cell phenotypes effectively, our model uses a variant of the HDP, giving preference to morphology over co-occurrence. This is then used to model individual cell phenotype time series and cluster them according to the stage of mitosis they are in. We evaluate our method using two publicly available time-lapse microscopy video data-sets and demonstrate that the performance of our approach is generally better than the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cellcognition.org

  2. 2.

    http://www.mitocheck.org

  3. 3.

    http://www.ilastik.org

References

  1. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden markov model. In: Advances in Neural Information Processing Systems (NIPS), pp. 577–584 (2002)

    Google Scholar 

  2. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, D.M.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)

    Article  Google Scholar 

  3. Gallardo, G.M., Yang, F., Ianzini, F., Mackey, M., Sonka, M.: Mitotic cell recognition with hidden markov models. In: Proceedings of SPIE, vol. 5367, 661–668 (2004)

    Google Scholar 

  4. Harder, N., Mora-Bermúdez, F., Godinez, W.J., Wünsche, A., Eils, R., Ellenberg, J., Rohr, K.: Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 19(11), 2113–2124 (2009)

    Article  Google Scholar 

  5. Held, M., Schmitz, M.H.A., Fischer, B., Walter, T., Neumann, B., Olma, M.H., Peter, M., Ellenberg, J., Gerlich, D.W.: Cellcognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods 7(9), 747–754 (2010)

    Article  Google Scholar 

  6. Huh, S., Chen, M.: Detection of mitosis within a stem cell population of high cell confluence in phase-contrast microscopy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1033–1040 (2011)

    Google Scholar 

  7. Jiang, X., Haase, D., Körner, M., Bothe, W., Denzler, J.: Accurate 3D multi-marker tracking in X-ray cardiac sequences using a two-stage graph modeling approach. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 117–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Kuettel, D., Breitenstein, M.D., Gool, L.V., Ferrari, V.: What is going on? discovering spatiotemporal dependencies in dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  9. Liu, A.A., Li, K., Kanade, T.: Mitosis sequence detection using hidden conditional random fields. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 580–583, April 2010

    Google Scholar 

  10. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., Scott, M.P.: Molecular Cell Biology, 7th edn. W.H.Freeman & Co Ltd, New York (2013)

    Google Scholar 

  11. Neumann, B., Walter, T., Heriche, J.K., Bulkescher, J., Erfle, H., Conrad, C., Rogers, P., Poser, I., Held, M., Liebel, U., Cetin, C., Sieckmann, F., Pau, G., Kabbe, R., Wuensche, A., Satagopam, V., Schmitz, M.H.A., Chapuis, C., Gerlich, D.W., Schneider, R., Eils, R., Huber, W., Peters, J.M., Hyman, A.A., Durbin, R., Pepperkok, R., Ellenberg, J.: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289), 721–727 (2010)

    Article  Google Scholar 

  12. Rematas, K., Leuven, K., Fritz, M., Tuytelaars, T.: Kernel density topic models: visual topics without visual words. In: Modern Non Parametric Methods in Machine Learning, NIPS Workshop (2012)

    Google Scholar 

  13. Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.: Novel cell segmentation and online svm for cell cycle phase identification in automated microscopy. Bioinformatics 24(1), 94–101 (2008)

    Article  Google Scholar 

  15. Wang, X., Ma, X., Grimson, W.: Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 539–555 (2009)

    Article  Google Scholar 

  16. Yang, F., Mackey, M.A., Ianzini, F., Gallardo, G., Sonka, M.: Cell segmentation, tracking, and mitosis detection using temporal context. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 302–309. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Zhong, Q., Busetto, A.G., Fededa, J.P., Buhmann, J.M., Gerlich, D.W.: Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat. Methods 9(7), 711–713 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by ZEISS and would like to thank Christian Wojek and Stefan Saur (ZEISS Corporate Research and Technology) for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Venkata Krishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Krishna, M.V., Denzler, J. (2014). A Hierarchical Bayesian Approach for Unsupervised Cell Phenotype Clustering. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics