Skip to main content

Convolutional Decision Trees for Feature Learning and Segmentation

  • Conference paper
  • First Online:
Book cover Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

Most computer vision and especially segmentation tasks require to extract features that represent local appearance of patches. Relevant features can be further processed by learning algorithms to infer posterior probabilities that pixels belong to an object of interest. Deep Convolutional Neural Networks (CNN) define a particularly successful class of learning algorithms for semantic segmentation, although they proved to be very slow to train even when employing special purpose hardware. We propose, for the first time, a general purpose segmentation algorithm to extract the most informative and interpretable features as convolution kernels while simultaneously building a multivariate decision tree. The algorithm trains several orders of magnitude faster than regular CNNs and achieves state of the art results in processing quality on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matlab image processing toolbox. http://www.mathworks.com/help/images/

  2. Becker, C., Ali, K., Knott, G., Fua, P.: Learning context cues for synapse segmentation in EM volumes. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 585–592. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks, Monterey (1984)

    MATH  Google Scholar 

  6. Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak, P., Hartenstein, V.: An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8(10), e1000502 (2010)

    Article  Google Scholar 

  7. Ciresan, D., Giusti, A., Schmidhuber, J., et al.: Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural Inf. Process. Syst. 25, 2852–2860 (2012)

    Google Scholar 

  8. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)

    Article  Google Scholar 

  9. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2008)

    Google Scholar 

  10. Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees (1993)

    Google Scholar 

  11. Kreutz-Delgado, K., Murray, J.F., Rao, B.D., Engan, K., Lee, T.W., Sejnowski, T.J.: Dictionary learning algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

    Article  MATH  Google Scholar 

  12. Laptev, D., Vezhnevets, A., Dwivedi, S., Buhmann, J.M.: Anisotropic ssTEM Image segmentation using dense correspondence across sections. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 323–330. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  14. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal image and video closure by superpixel grouping. Int. J. Comput. Vis. 100(1), 99–119 (2012)

    Article  Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  16. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning (2008). arXiv preprint arXiv:0809.3083

  17. Montillo, A., Tu, J., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., Criminisi, A.: Entanglement and differentiable information gain maximization. In: Criminisi, A., Shotton, J. (eds.) Decision Forests for Computer Vision and Medical Image Analysis, pp. 273–293. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sandberg, K., Brega, M.: Segmentation of thin structures in electron micrographs using orientation fields. J. Struct. Biol. 157(2), 403–415 (2007)

    Article  Google Scholar 

  20. Sklansky, J., Michelotti, L.: Locally trained piecewise linear classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 2, 101–111 (1980)

    Article  MATH  Google Scholar 

  21. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  22. Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the International Workshop on Multimedia Information Retrieval, pp. 197–206. ACM (2007)

    Google Scholar 

  23. Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid deformable object parsing. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1029–1043 (2010)

    Article  Google Scholar 

  24. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1491–1498. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Laptev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laptev, D., Buhmann, J.M. (2014). Convolutional Decision Trees for Feature Learning and Segmentation. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics