Skip to main content

Optic Nerve Head Detection via Group Correlations in Multi-orientation Transforms

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8815))

Included in the following conference series:

Abstract

Optic nerve head detection is a fundamental step in automated retinal image analysis algorithms. In this paper, we propose a new optic nerve head detection algorithm that is based on the efficient analysis of multi-orientation patterns. To this end, we make use of invertible orientation scores, which are functions on the Euclidean motion group. We apply the classical and fast approach of template matching via cross-correlation, however, we do this in the domain of an orientation score rather than the usual image domain. As such, this approach makes it possible to efficiently detect multi-orientation patterns. The method is extensively tested on public and private databases and we show that the method is generically applicable to images originating from traditional fundus cameras as well as from scanning laser ophthalmoscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonas, J.B., Budde, W.M., Panda-Jonas, S.: Ophthalmoscopic evaluation of the optic nerve head. Survey of Ophthalmology 43(4), 293–320 (1999)

    Article  Google Scholar 

  2. Hubbard, L.D., et al.: Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 106(12), 2269–2280 (1999)

    Article  MathSciNet  Google Scholar 

  3. Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. The British Journal of Ophthalmology 83(8), 902–910 (1999)

    Article  Google Scholar 

  4. Aquino, A., Gegundez-Arias, M.E., Marin, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE TMI 29(11), 1860–1869 (2010)

    Google Scholar 

  5. Foracchia, M., et al.: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE TMI 23(10), 1189–1195 (2004)

    Google Scholar 

  6. Lu, S., Lim, J.: Automatic optic disc detection from retinal images by a line operator. IEEE TBME Biomedical Engineering 58(1), 88–94 (2011)

    Article  Google Scholar 

  7. Sekhar, S., Abd El-Samie, F.E., Yu, P., Al-Nuaimy, W.: Automated localization of retinal features. Applied Optics 50(19), 3064–3075 (2011)

    Article  Google Scholar 

  8. Yu, H., et al.: Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE TITB 16(4), 644–657 (2012)

    Google Scholar 

  9. Niemeijer, M., Abràmoff, M.D., van Ginneken, B.: Fast detection of the optic disc and fovea in color fundus photographs. MEDIA 13(6), 859–970 (2009)

    Google Scholar 

  10. Youssif, A., et al.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE TMI 27(1), 11–18 (2008)

    Google Scholar 

  11. Duits, R., Felsberg, M., Granlund, G.H., ter Haar Romeny, B.M.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the euclidean motion group. IJCV 72(1), 79–102 (2007)

    Article  Google Scholar 

  12. Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A Multi-Orientation Analysis Approach to Retinal Vessel Tracking. JMIV 49(3), 583–610 (2014)

    Article  MATH  Google Scholar 

  13. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. MEDIA 9(3), 179–190 (2005)

    Google Scholar 

  14. Hannink, J., Duits, R., Bekkers, E.: Crossing-Preserving Multi-scale Vesselness. In: Barillot, C., Golland, P., Hata, N., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 603–610. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Janssen, B., Duits, R., Florack, L.: Coarse-to-fine image reconstruction based on weighted differential features and background gauge fields. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 377–388. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Bekkers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bekkers, E., Duits, R., ter Haar Romeny, B. (2014). Optic Nerve Head Detection via Group Correlations in Multi-orientation Transforms. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8815. Springer, Cham. https://doi.org/10.1007/978-3-319-11755-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11755-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11754-6

  • Online ISBN: 978-3-319-11755-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics