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Abstract. A proposal for particles’ initialization in PSO is presented
and discussed, with focus on costly global unconstrained optimization
problems. The standard PSO iteration is reformulated such that the
trajectories of the particles are studied in an extended space, combining
particles’ position and speed. To the aim of exploring effectively and
efficiently the optimization search space since the early iterations, the
particles are initialized using sets of orthogonal vectors in the extended
space (orthogonal initialization, ORTHOinit). Theoretical derivation and
application to a simulation-based optimization problem in ship design
are presented, showing the potential benefits of the current approach.

Keywords: Global Optimization, Derivative-free Optimization, Deter-
ministic PSO, Particles’ Initial Position and Velocity.

1 Introduction

In this paper we consider the solution of the global unconstrained optimization
problem

min
x∈IRn

f(x), (1)

where f : IRn → IR is continuous and possibly nondifferentiable. In particular,
we aim at detecting a global minimum x∗ of (1), satisfying f(x∗) ≤ f(x), for any
x ∈ IRn. Of course we assume that (1) admits solution, which may be guaranteed
under mild assumptions on f(x) (e.g., f(x) is coercive with lim‖x‖→∞ f(x) =
+∞). Furthermore, we also assume that the function f(x) is computationally ex-
pensive, which possibly discourages the use of asymptotically convergent meth-
ods (i.e., iterative methods that only eventually ensure convergence properties
to stationary points).
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PSO is an iterative method for global optimization, based on updating a pop-
ulation of points (namely particles). Preliminary numerical tests performed in
[1], for 60 standard problems, suggest that the initial choice of particles’ posi-
tion/velocity may affect significantly the performance of PSO, giving motivation
for further investigation of apparently basic and well stated issues for PSO (such
as the choice of the initial particles’ position/velocity).

Herein, we study the trajectories of particles in an extended space, so that
analytical indications will be available in order to suggest the setting of initial
particles position and velocity. The current approach starts from considering the
results obtained in [2,3,4,5,6], though our partial conclusions in Sections 4-5 are,
to the best of our knowledge, novel in the literature.

In Sections 2-3 we first recall the reformulation of PSO, detailed in [7] and [8],
while the new proposal of this paper is in Sections 4-5. Conclusions and future
work are presented in Section 6. In the following, ‘I’ indicates the identity matrix
and ‘ei’ is the i-th unit vector. The Euclidean norm is simply indicated by ‖ · ‖.
2 A Reformulation of PSO Iteration

Consider the following standard (and complete) iteration of PSO:
⎧
⎪⎨

⎪⎩

vk+1
j = χ

[
wkvkj + ckj r

k
j (p

k
j − xk

j ) + ckgr
k
g (p

k
g − xk

j )
]
, k ≥ 0,

xk+1
j = xk

j + vk+1
j , k ≥ 0,

(2)

where j = 1, ..., P indicates the j-th particle, P is finite, vkj and xk
j are the velocity

and the position of particle j at step k, and the coefficients χ,wk, ckj , r
k
j , c

k
g , r

k
g

are bounded. Finally, pkj and pkg satisfy

pkj = argmin
0≤h≤k

{f(xh
j )}, j = 1, . . . , P, pkg = argmin

0≤h≤k, j=1,...,P
{f(xh

j )}. (3)

We can also generalize (2) and the analysis in this paper by assuming that
possibly the velocity vk+1

j depends on all the terms pkh − xk
j , h = 1, . . . , P ,

obtaining the so called fully informed PSO (FIPS) [9]. This corresponds to allow
a more general social contribution in PSO iteration. Notwithstanding the latter
choice, we prefer to keep the notation as simple as possible, considering the
recurrence (2) as is. Without loss of generality at present we focus on the j-
th particle and omit the subscript in the recurrence (2), so that pkj = pk and

vkj = vk.

Assumption 1. We assume in (2) that ckj = c, rkj = r for any j = 1, ..., P ,

ckg = c̄, rkg = r̄ and wk = w, for any k ≥ 0.

Using the latter position the iteration (2) is equivalent to the dynamic, linear
and stationary system1

X(k + 1) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠X(k) +

⎛

⎝
χ(crpk + c̄r̄pkg)

χ(crpk + c̄r̄pkg)

⎞

⎠ , (4)

1 See also [7,8], whose terminology and symbols are simply reported in this brief section
and in the next one. Then, in Section 4 we extend the latter results to our purposes.
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where

X(k) =

⎛

⎝
vk

xk

⎞

⎠ ∈ IR2n, k ≥ 0.

The sequence {X(k)} identifies a trajectory in the state space IR2n, and since
(4) is a linear and stationary system, we may consider the free response XL(k)
and the forced response XF (k) of the trajectory {X(k)}. Then, considering (4)
we explicitly obtain, at step k ≥ 0, X(k) = XL(k) +XF (k), where

XL(k) = Φ(k)X(0), XF (k) =

k−1∑

τ=0

H(k − τ )U(τ ), (5)

and, after some calculations

Φ(k) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠

k

, H(k − τ ) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠

k−τ−1

, (6)

U(τ ) =

⎛

⎝
χ(crpk + c̄r̄pkg)

χ(crpk + c̄r̄pkg)

⎞

⎠ . (7)

A remarkable observation from the latter formulae is thatXL(k) in (5) uniquely
depends on the initial point X(0), and is not affected by the vector pkg . On the

contrary, XF (k) in (5) is independent of X(0), being strongly dependent on pkg .
This implies that the quantities XL(k) and XF (k) can be separately computed.

3 Structural Properties of Matrix Φ(k) and Computation
of XL(k)

In order to simplify our analysis, provided that Assumption 1 holds, hereafter
we consider the following position in (6)

a = χw, ω = χ(cr + c̄r̄). (8)

Now, we first recall (see [7,2,4]) that in order to ensure necessary conditions
which avoid divergence of the trajectories of particles, the relations

0 < |a| < 1, 0 < ω < 2(a+ 1) (9)

must hold. Moreover, the only two eigenvalues λ1 and λ2 of Φ(1) coincide if and
only if ω = (1 ± √

a)2. Thus, if ω 	= (1 ± √
a)2 then the results in [7] can be

applied, so that XL(k) = [Φ(1)]
k
X(0) can be computed by simply introducing

the eigenvalues λ1 and λ2 of Φ(1), yielding the formula

[Φ(1)]k X(0) =

⎡

⎣
γ1(k)v

0 − γ2(k)x
0

γ3(k)v
0 − γ4(k)x

0

⎤

⎦ , (10)

where
γ1(k) =

λk
1 (a−λ2)−λk

2 (a−λ1)

λ1−λ2
γ2(k) =

ω(λk
1−λk

2 )

λ1−λ2

γ3(k) =
(λk

1−λk
2 )(a−λ1)(a−λ2)

ω(λ1−λ2)
γ4(k) =

λk
1 (a−λ1)−λk

2 (a−λ2)

λ1−λ2
.



ORTHOinit: A Novel PSO Particles’ Initialization 129

4 A Novel Starting Point for Particles in PSO

In this section we study a novel strategy to possibly improve the efficiency of
PSO, based on the idea of widely exploring the search space in the early iter-
ations, while maintaining the PSO iteration (2). As stated in the Introduction,
our analysis seems more promising when each function evaluation is particu-
larly expensive and time resources are scarce, so that a few iterations of PSO
are allowed. We start our analysis using the reformulation in Section 2, in order
to impose a novel condition for the choice of initial particles’ position/velocity
(namely the next relation (14)).

Consider two particles, namely particle j and particle h, such that 1 ≤ j 	=
h ≤ P ; using the theory in Section 2 we can consider their trajectories in the
space IR2n, so that their initial position and free response are respectively given
by (see (10))
Particle j:

X(0)(j) =

⎛

⎝
v0j

x0
j

⎞

⎠ ⇒ XL(k)
(j) = [Φ(1)]k X(0)(j) =

⎡

⎣
ξ1(k)

(j)v0j − ξ2(k)
(j)x0

j

ξ3(k)
(j)v0j − ξ4(k)

(j)x0
j

⎤

⎦ , (11)

Particle h:

X(0)(h) =

⎛

⎝
v0h

x0
h

⎞

⎠ ⇒ XL(k)
(h) = [Φ(1)]k X(0)(h) =

⎡

⎣
ξ1(k)

(h)v0h − ξ2(k)
(h)x0

h

ξ3(k)
(h)v0h − ξ4(k)

(h)x0
h

⎤

⎦ , (12)

where ξi(k)
(h), i = 1, . . . , 4 (similarly for ξi(k)

(j)) coincide with γi(k), i =
1, . . . , 4, if ω 	= (1±√

a)2.
Now, observe that at iteration k the velocity vk of a particle may be regarded

as a search direction from the current position xk. Thus, we can be interested
to find out conditions on the initial position of the particles, in order to possi-
bly guarantee the orthogonality of particles’ velocity at any iteration k ≥ 0. The
latter fact is expected to possibly favour a better exploration in IR2n. However,
the latter condition is very tough to impose, without strongly modifying PSO
iteration (2). Nonetheless, following the idea in Section 6 of [7], we can attempt
for any k to impose the orthogonality of the free responses {XL(k)

(j)}. In par-
ticular, numerical efficiency is ensured by the fact that it is possible to set the
initial position and velocity of n particles, in such a way that the corresponding
free responses XL(k)

j1 , . . . , XL(k)
jn satisfy

[
XL(k)

ji
]T [

XL(k)
jh
]
= 0, ∀ji, jh ∈ {j1, . . . , jn}, i �= h.

In order to generalize the latter idea we observe here that what really matters is
the orthogonality of the search directions of the particles, and possibly not the
orthogonality of the entire free responses. On this guideline, here we study the
initial position and velocity of 2n particles, so that for any k the corresponding
free responses XL(k)

j1 , . . . , XL(k)
j2n satisfy for any 1 ≤ j 	= h ≤ 2n (see (11)-

(12))
[
ξ1(k)

(j)v0j − ξ2(k)
(j)x0

j

]T [
ξ1(k)

(h)v0h − ξ2(k)
(h)x0

h

]
= 0. (13)
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I.e., only the first n entries of the free responses of particles j and h, correspond-
ing to the velocity, are orthogonal. After some computation, the latter relation
is equivalent to the conditions

0 =

⎡

⎣
(
ξ1(k)

(j)I − ξ2(k)
(j)I

)
⎛

⎝
v0j

x0
j

⎞

⎠

⎤

⎦

T ⎡

⎣
(
ξ1(k)

(h)I − ξ2(k)
(h)I

)
⎛

⎝
v0h

x0
h

⎞

⎠

⎤

⎦

=

⎛

⎝
v0j

x0
j

⎞

⎠

T ⎡

⎣
σ1I σ2I

σ̂2I σ3I

⎤

⎦

⎛

⎝
v0h

x0
h

⎞

⎠ , (14)

where σ1 = ξ1(k)
(j)ξ1(k)

(h), σ2 = −ξ1(k)
(j)ξ2(k)

(h), σ̂2 = −ξ2(k)
(j)ξ1(k)

(h),
σ3 = ξ2(k)

(j)ξ2(k)
(h).

Observe that setting the same parameters ω and a in (8) for all the particles
(i.e., for any k ≥ 0 we have ξ1(k)

(j) = ξ1(k)
(h) = ξ1(k) and ξ2(k)

(j) = ξ2(k)
(h) =

ξ2(k)) the matrix

Λ =

⎡

⎣
σ1I σ2I

σ̂2I σ3I

⎤

⎦ =

⎡

⎣
σ1I σ2I

σ2I σ3I

⎤

⎦ (15)

is symmetric and condition (14) indicates that the vectors

⎛

⎝
v0j

x0
j

⎞

⎠ ,

⎛

⎝
v0h

x0
h

⎞

⎠ . (16)

must be mutually conjugate (see also [10,11] for a reference). The first relevant
property induced by the introduction of conjugacy is that conjugate vectors are
linearly independent. This implies that in case the vectors (16) are mutually con-
jugate, then not only the velocities of the free responses of the particles are or-
thogonal (as stated in relation (13)), but the vectors (16) will be also sufficiently
well scattered in IR2n. Now, note that if zi and zj are distinct eigenvectors of ma-
trix Λ, respectively associated to the eigenvalues λi and λj , then we simply have
zTi Λzj = zTi (λjzj) = λjz

T
i zj = 0, where the last equality follows from the fact

that distinct eigenvectors of a symmetric matrix are orthogonal. Thus, the eigen-
vectors of a symmetric matrix are also mutually conjugate directions with respect
to that matrix. As a consequence, in order to satisfy condition (14) it suffices to
compute the eigenvectors of (15), and set the vectors in (16) as proportional to
the latter eigenvectors. After some computation we have for the corresponding 2n

eigenvectors u
(i)
1 , u

(i)
2 , i = 1, . . . , n, of the matrix in (15) the simple expressions

u
(i)
1 =

⎛

⎝
−σ3−μ−

σ2
ei

ei

⎞

⎠ ∈ IR2n, u
(i)
2 =

⎛

⎝
−σ3−μ+

σ2
ei

ei

⎞

⎠ ∈ IR2n, i = 1, . . . , n, (17)

where μ∓ =
[
(σ1 + σ3)∓

√
(σ1 + σ3)2 − 4(σ1σ3 − σ2

2)
]
/2 are the eigenvalues

of matrix Λ.
The last result implies that in order to satisfy the conditions (14), for any

1 ≤ j 	= h ≤ P ≤ 2n, it suffices to set the initial particle position and velocity
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(respectively of the i-th and (n + i)-th particle) according with the following
(ORTHOinit) initialization

⎛

⎝
v0i

x0
i

⎞

⎠ = (−1)α1iρ1iu
(i)
1 , ρ1i ∈ IR \ {0}, α1i ∈ {0, 1}, i = 1, . . . , n (18)

⎛

⎝
v0n+i

x0
n+i

⎞

⎠ = (−1)α2iρ2iu
(i)
2 , ρ2i ∈ IR \ {0}, α2i ∈ {0, 1}, i = 1, . . . , n. (19)

Recalling that the choice of the coefficients ρ1i , ρ
2
i , i = 1, . . . , n, in (18)-(19) is

arbitrary, we conclude that, in case in (8) ω 	= (1±√
a)2, then

– when P ≤ 2n, the choice (18)-(19) of the particles position and velocity
guarantees that the components of velocity of the free responses of the par-
ticles will be orthogonal at any iteration k ≥ 0, provided that Assumption 1
holds (i.e., no randomness is used in PSO, as in DPSO [12]);

– in case P > 2n, the user can adopt the choice (18)-(19) of the particles
position and velocity for 2n particles, while setting the remaining (P − 2n)
particles arbitrarily.

5 Numerical Results

Numerical results for both test functions and a simulation-based design of a high-
speed catamaran are performed using DPSO, setting the parameters according
to Assumption 1.

Numerical experiments are performed to assess the initialization (18)-(19) on
the 60 test functions in [1], varying the initialization of the swarm. Three ap-
proaches are used. Specifically, in the first approach the swarm is initialized as
shown in [1], using 4n particles distributed (following a Hammersley sequence
sampling, HSS) over the variables domain and its boundary. The second ap-
proach, following the guidelines in the previous sections, consists of using two
orthogonal sets of 2n particles each (ORTHOinit initialization). For the third
approach, an orthogonal set of 2n particles is added to the initialization set of
the first approach. As shown in Figures 1 and 2, using two ORTHOinit sets of
2n particles gives the best performance in terms of evaluation metric Δ (see [1]),
for test functions with both n < 10 and n ≥ 10 design variables.

For the catamaran design optimization, the parent hull considered is that
of the Delft catamaran, a concept ship used for experimental and numerical
benchmarks. The optimization problem is taken from [13] and solved by means
of stochastic radial-basis functions interpolation [14] of high-fidelity URANS
simulations. Six design variables control global shape modifications, based on the
Karhunen-Loève expansion of the shape modification vector [15]. The objective
is the reduction of the total resistance in calm water at Froude number equal to
0.5. Figure 3 plots the decrease of the objective function in the first twenty DPSO
iterations (early iterations), comparing the reference implementation given in
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[1], based on HSS initialization of particles over domain and boundary, with the
method in this paper (4n particles are used). ORTHOinit shows a faster progress
than the reference implementation, confirming the effectiveness of the present
method when a reduced number of iterations is allowed.

6 Conclusions and Future Work

With respect to [7] the theory above yields a guideline for the choice of 2n (and
not just n) particles’ initial position/velocity. This was expected to provide a
more powerful tool (as numerical results seem to confirm) for the exploration of
the search space. Moreover, the above theory proposes a particles’ initialization
in PSO which is related to the space dimension n. Though no specific conclu-
sion seems to be drawn by the latter observation, note that most of the exact
derivative-free methods for smooth problems, as well as gradient-based meth-
ods for continuously differentiable functions, show some analogies. We are per-
suaded that in our framework an adaptive criterion might be advisable, in order
to restart the position and velocity of the particles after a given number of itera-
tions. The latter criterion can indeed monitor the norm ‖XL(k)

(j)‖, j = 1, . . . , 2n
(see also Section 5 of [7]), of the free response of particles. When the latter quan-
tity approaches zero, a restart would re-impose orthogonality among the free re-
sponses of the particles, using the theory in Section 4.
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