
Reverse Engineering of Middleware for

Verification of Robot Control Architectures∗

Ali Khalili†1,2, Lorenzo Natale‡2 and Armando Tacchella§1

1
DIBRIS, Università degli Studi di Genova, Via Opera Pia 13 – 16145 Genova – Italy

2iCub Facility, Istituto Italiano di Tecnologia (IIT), Via Morego, 30 – 16163 Genova – Italy

Abstract

We consider the problem of automating the verification of dis-
tributed control software relying on publish-subscribe middleware. In
this scenario, the main challenge is that software correctness depends
intrinsically on correct usage of middleware components, but struc-
tured models of such components might not be available for analysis,
e.g., because they are too large and complex to be described precisely
in a cost-effective way. To overcome this problem, we propose to iden-
tify abstract models of middleware as finite-state automata, and then
to perform verification on the combined middleware and control soft-
ware models. Both steps are carried out in a computer-assisted way
using state-of-the-art techniques in automata-based identification and
verification. Our main contribution is to show that the combination of
identification and verification is feasible and useful when considering
typical issues that arise in the implementation of distributed control
software.

1 Introduction

Publish-subscribe middleware such as ROS [15] and YARP [6] are becoming
increasingly common in control architectures of modern robots. The main
advantage of using middleware is that control modules can communicate
seamlessly among each other and with device-specific APIs, possibly across
different computing platforms. While operational scenarios for autonomous
robots are becoming increasingly complex — see, e.g., the DARPA robotics

∗The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-11900-7_27
†Ali.Khalili@edu.unige.it
‡Lorenzo.Natale@iit.it
§Armando.Tacchella@unige.it

1

ar
X

iv
:1

41
1.

19
07

v1
 [

cs
.R

O
]

 7
 N

ov
 2

01
4

http://dx.doi.org/10.1007/978-3-319-11900-7_27
http://dx.doi.org/10.1007/978-3-319-11900-7_27

challenge [13] — the issue of dependability at all levels of a robot’s archi-
tecture is getting more attention. In particular, if robots must be operated
safely, control architectures must be verified against various requirements,
which include also software specific properties, like deadlock or race avoid-
ance. However, the task of verifying control software built on top of some
middleware cannot be accomplished unless a precise model of the middle-
ware is available, because a seemingly correct control code can easily lead
the robot to unwanted states if middleware primitives are misused. An ex-
ample of such case is when a sender assumes buffered communication to a
receiver, but the channel is configured without buffering; if the sender ex-
pects acknowledgment for every message, but some message is lost, then a
deadlock condition may ensue.

Insofar a component of a control architecture is assigned precise seman-
tics, formal correctness verification is made possible, and many control soft-
ware fallacies can be spotted at design time. However, developing a formal
model can be difficult for large and complex middleware like ROS or YARP.
A viable solution to this problem is to adopt automata-based identifica-
tion techniques – see, e.g., [16] for a comprehensive list of references. The
key idea is that the internal structure of a middleware component can be
inferred by analyzing its interactions with an embedding context. Identifi-
cation algorithms supply the component with suitable input test patterns to
populate a “conjecture” automaton by observing the corresponding outputs;
then, they check whether the conjecture is behaviorally equivalent to the ac-
tual component. When such an abstract model of the original component
is obtained, it can be used as a stub to verify software components relying
on it. This is where automata-based verification enters the scene. Given
the inferred models of middleware components, and a model of the control
software relying on them, Model Checking [14, 4] techniques provide an au-
tomated way to check behavioral properties about the composition of the
models. In this way, confidence in a correct implementation of the overall
control architecture is increased, and problems can be spotted before they
cause expensive or even dangerous failures during robot’s operation.

To demonstrate the effectiveness of our approach, we considered some
relatively simple, yet significant, examples of control code built on top of
YARP [6]. Our choice is dictated by several reasons, including a deep knowl-
edge of the platform, and a fairly large installed base due to the adoption
of YARP as the standard middleware of the humanoid iCub [12]. Moreover,
YARP is a publish-subscribe architecture quite similar to other middleware
widely used in the robotics community such as ROS. From the implementa-
tion point of view, YARP is a set of libraries written in C++ consisting of
more than 150K lines of code. The purpose of YARP is to support modu-
larity by abstracting algorithms and the interface to the hardware and oper-
ating systems. YARP abstractions are defined in terms of protocols. One of
the main features of YARP is to support inter-process communication using

2

a “port” abstraction. Our case studies focus mostly on the identification
of various concrete mechanisms underlying this abstraction, e.g., buffered
vs. non-buffered ports, and then to check control code relying on such im-
plementations. Practical identification of different kinds of abstract models
of YARP ports is enabled by our tool AIDE (Automata IDentification En-
gine)1. Model checking the composition of control code and middleware is
accomplished with the state-of-the-art tool SPIN [8]. The results obtained
combining AIDE and SPIN, albeit still preliminary, show that our approach
is promising for the identification and verification of control-intensive parts
of the code, i.e., those parts where the complexity of the code raises from
control flow rather than data manipulation.

The remainder of this paper is organized as follows. In Section 2, a short
summary of background and the related works will be provided. Section 3
introduces and motivates our YARP-based case studies. Section 4 presents
our experiments on identification and verification. Finally, some concluding
remarks and possible directions of future works are given in Section 5.

2 Background

We define an interface automaton (IA) as a quintuple P = (I,O,Q, q0,→)
where I is a set of input actions, O is a set of output actions, Q is a set
of states, q0 ∈ Q is the initial state of the system, →⊂ Q × (I ∪ O) × Q is
the transition relation, and the sets O, I and Q are finite, non-empty and
mutually disjoint. Our definition of IA is the same given in [1], which does
not take into account the possibility of formalizing hidden actions. Since
we wish to infer IAs as models of middleware components, we can neglect
such actions without losing generality in our context. The set of all actions
A = I ∪ O is the action signature of the automaton. Given a state q ∈ Q
and an action a ∈ A, we define the next state function δ : Q → 2Q as
δ(q, a) = {q′|q a−→ q′}, where we write q

a−→ q′ to denote that (q, a, q′) ∈→.
An action a ∈ A is enabled in a state q ∈ Q if there exists some q′ ∈ Q such
that q

a−→ q′, i.e., |δ(q, a)| ≥ 1. A state q ∈ Q wherein all inputs are enabled is
input-enabled, and so is an automaton wherein all states are input-enabled.
An input-enabled IA is also known as I/O automaton [11]. Given a state
q ∈ Q, the set out(q) ⊆ Q of observable actions is the set of all actions
a ∈ O where a is enabled in q. If out(q) = ∅, then q is called suspended or
quiescent. According to [5], an execution fragment of the automaton is a
finite alternating sequence of states and actions u0, a0, u1, . . . , un such that
ui ∈ Q, ai ∈ A and ui

ai−→ ui+1 for all 0 ≤ i < n.

Automata-based Inference Automata-based identification (also, automata
learning) can be divided into two wide categories, i.e., passive and active

1AIDE, developed in C#, is an open-source software: http://aide.codeplex.com

3

http://aide.codeplex.com

learning. In passive learning, there is no control over the observations re-
ceived to learn the model. In active learning, the target system can be
experimented with, and experimental results are collected to learn a model.
Whenever applicable, active learning is to be preferred because it is com-
putationally more efficient than passive learning – see [9] for details. Fur-
thermore, active learning is not affected by a potential lack of relevant ob-
servations because it can always query for them. However, active learning
requires that the target system is available for controlled experimentation,
i.e., it cannot be performed while the target is executing. The basic ab-
straction in active learning as introduced by Angluin in [2], is the concept
of Minimally Adequate Teacher (MAT). In our case, it is assumed that a
MAT exists and it can answer two types of questions, namely output queries
and equivalence queries. An output query amounts to ask the MAT about
the output over a given input string, whereas equivalence queries amount
to compare a conjecture about the abstract model of a system with the sys-
tem itself. The result of equivalence queries is positive if the model and
the system are behaviorally equivalent, and it is a counterexample in the
symmetric difference of the relations computed by the two automata, other-
wise. In practice, since the system is unknown, equivalence queries must be
approximated by, e.g., model-based testing. Our tool AIDE is a collection
of learning algorithms for several abstract models, including IAs. In partic-
ular, we use the Mealy machine inference algorithm L+

M [16] together with
the approach presented in [1] to identify IAs. This model of identification
is particularly suited in contexts where the behavior of the system is jointly
determined by its internal structure, and by the inputs received from the
environment – also called tester.

Formal Verification Automata-based verification — see, e.g., [3] — en-
compasses a broad set of algorithms and related tools, whose purpose is to
verify behavioral properties of systems represented as automata. In par-
ticular, we consider algorithms and tools for Model Checking [14, 4]. The
basic idea behind automata-based verification technique is to exhaustively
and automatically check whether a given system model meets a given spec-
ification. In this approach, a property is specified usually in terms of some
temporal logic, and the system is given as some kind of automaton. In this
work, we use SPIN [8], a generic verification system that supports design
and verification of asynchronous process systems. In SPIN, the models are
specified in a language called PROMELA (PROcess MEta LAnguage), and
correctness claims can be specified in the syntax of standard linear tem-
poral logic (LTL). Several optimization techniques, including partial order
reduction, state compression and bit-state hashing are developed to improve
performance of verification in SPIN. Details on the encoding of IA into SPIN
are given in Section 4. Here, we give a short overview on how verification

4

1: Initialize buffered ports Q1 and Q2

2: Connect Q1 to Q′1
3: while true do
4: for i = 1 to N do
5: Write message m to Q1

6: end for
7: Read message from Q2

8: end while

1: Initialize buffered ports Q′1 and Q′2
2: Set the reading mode of Q′1 as strict
3: Connect Q′2 to Q2

4: while true do
5: for i = 1 to N do
6: Read message m from Q′1
7: end for
8: Create a message and write it to Q′2
9: end while

Figure 1: Case study 1: An example code Planner (left) and Controller (right).

works in SPIN and similar tools. In SPIN, the global behavior of a concur-
rent system is obtained by computing an asynchronous interleaving product
of automata, where each automaton corresponds to a single process. This
means that, in principle, SPIN considers every possible interleaving of the
atomic actions which every process is composed of. Technically, such prod-
uct is often referred to as the state space or reachability graph of the system.
To perform verification, SPIN considers claims specified as temporal for-
mulas. Typical claims include, e.g., safety claims like “some property is
always/never true”, or liveness claims like “every request will be acknowl-
edged”. Claims are converted into Büchi automata, a kind of finite state
automata whose acceptance condition is suitable also for infinite words. The
(synchronous) product of automata claims and the automaton representing
the global state space is again a Büchi automaton. If the language accepted
by this automaton is empty, this means that the original claim is not satis-
fied for the given system. In other case, it contains precisely those behaviors
which satisfy the original formula. Actually, the reachability graph is not
computed up front because, if n is the number of state variables, the com-
putation would be exponential in n. Rather, the composition of the two
automata is performed “on the fly”, starting from the initial set of states of
the system, and then considering the reachable ones given the process de-
scriptions and the potential interleaving. SPIN terminates either by proving
that some (undesirable) behavior is impossible or by providing a counterex-
ample match.

3 Case Studies

Our motivation for this work is to to enable verification techniques for robot
control software which uses middleware modules. In this section, we intro-
duce two case studies. We focus on variations of the well-known producer-
consumer paradigm. The reason is that similar situations are commonly
found in robotic applications where loosely coupled modules are intercon-
nected through publish-subscribe middleware and run concurrently.

5

1: P1
2: Initialize buffered ports Q1

3: Connect Q1 to Q′1
4: for i = 1 to N1 do
5: //Do the job
6: Send message m to Q1

7: end for

1: P2
2: Initialize buffered ports Q2

3: Connect Q2 to Q′2
4: for i = 1 to N2 do
5: //Do the job
6: Send message m to Q2

7: end for

1: P3
2: Initialize buffered ports Q′1 and Q′2
3: Set the reading mode of Q′1 and Q′2 as strict
4: for i = 1 to N3 do
5: Read message m1 to Q′1
6: Read message m2 to Q′2
7: //Do the job
8: end for

Figure 2: Case study 2: An example of two producers (P1 and P2) and one consumer (P3)
which are using YARP buffered port for their communication.

Case Study 1. We consider two software components that exchange mes-
sages with loose synchronization. A practical example is a Planner (P1)
that generates a set of N via points for a Controller (P2). The latter
takes responsibility to execute each requests, in a variable amount of time.
The Planner does not wait for execution of the individual commands but
rather sends all N messages to the Controller and then waits for a synchro-
nization packet that signals the termination of the whole sequence. In a
publish-subscribe architecture this can be achieved using two channels. The
Planner uses the first channel (between Q1 and Q′1) to send via points to
the Controller, then waits for a message that acknowledges execution of the
sequence from the Controller through the second channel (between Q2 and
Q′2). Since there is no synchronization, the buffering policy in the connec-
tions can affect the correct behavior of the system. In this application, the
programmer assumes that connections are configured to queue at least N
messages. This may or may be not true in YARP where, by default, connec-
tions are configured to drop messages to reduce communication latencies2.
The programmer therefore must override the default configuration of the
connections to ensure that messages are queued and never dropped. Pseudo
code for this scenario is given in Figure 1. Given this code, we can see that,
if messages are dropped in the connections, a deadlock occurs. In prac-
tice, the robot may not only fail to follow the desired trajectory, but due to
interpolation in the Controller, it may even end up in unsafe configurations.

Case Study 2. In publish-subscribe architectures, sensory information
and commands travel on distinct channels. It is therefore common for com-
ponents to receive information from multiple sources and synchronize their
activities on data received from such connections. In this scenario, the con-
sumer receives data from two producers. A practical example is a grasping

2This policy may seem counter-intuitive but it is fundamental for closed-loop control

6

Figure 3: The identified model of a port with one reader, one writer, and one
thread which interrupts the write port. The expected model would feature
the dotted transition — from state 1 into state 5 — but the actual model
identified by AIDE and implemented in YARP has the solid ones instead.
Transitions labeled with “?” and “!” represent input and output actions,
respectively.

application. Here the Tracker (P1) identifies the 3D position of the object
in the work space (for example using stereo vision in the form of (x, y, z)).
This information reaches the Controller (P2) through the connection be-
tween Q1 and Q′1 which in turn computes the torque commands to the
motors. Another component (P3) reads sensory data from a Force/Torque
sensor placed in the kinematic chain, and publishes it on a separate chan-
nel. The Controller relies on this information to detect collisions and control
the force exerted at the end-effector (connection between Q2 and Q′2). The
programmer of the Controller must decide how to read data from both con-
nections. The crucial point is that these connections can become inactive.
These might happen when no valid target is detected by the Tracker, or in
situation where the Tracker was closed by the user or died unexpectedly.
By default, YARP defines that readers wait for data on a port (blocking
behavior). This allows tight synchronization and reduces latencies. An in-
experienced programmer may read data from both channels using the default
mode introducing an unexpected deadlock when Tracker does not produce
data. The pseudo-code of this scenario is presented in Figure 2. The con-
nection between P1 and P2 to P3 is implemented using buffered ports with
strict mode. To simulate the behavior where one of the producers stops
sending data we added a counter Ni to the main loop of each process. We
verify the effects of different relative values of Ni on the overall behavior.

In both the case studies describe above, we consider a combination of

7

identification and verification to be detailed in Section 4. However, we would
like to point out that identification alone is often useful to strengthen mid-
dleware, by helping the discovery of corner bugs that are elusive in common
usage patterns. Out of many identification experiments that we conducted
with YARP in our preliminary work, we show in Figure 3 the result of one
which turned out as a report in the YARP bug-tracking system. In this
example, we consider applying an interrupt method on a port. Interrupting
a port is supposed to unblock any blocked thread waiting for the port. The
model in Figure 3 is the one identified by AIDE for one port reader, one port
writer, and a thread which interrupts the writing port. The model shows
that interrupting a write port has been implemented so that it unblocks
future writes, but it waits for completion of the current one, which was not
the expected behavior. Indeed, this specific behavior was not documented,
and never occurred in YARP practical applications, so it went unnoticed so
far.

4 Experiments

Considering YARP port components as the system under learning (SUL) to
be modeled as IA, we use AIDE to identify abstract models with different
parameters. The configuration of components in the inference procedure is
presented in Figure 4. As we mentioned in Section 2, the basic inference
algorithm is L+

M [16], and it is implemented in the module “MM Learning
Algorithm” where “MM” stands for “Mealy Machine”. The algorithm relies
on a software component, called “MM Oracle” in Figure 4, whose task is
to approximate the behavior of a MAT on a real system. Together, these
two modules are the core of a Mealy machine inference program — “MM
Learner” in Figure 4. Since we wish to identify YARP models as IAs, we
connect a further component — “IA Translator” in Figure 4 — which im-
plements the approach presented in [1] to identify IAs on top of a Mealy
machine learning algorithm. All these modules are part of AIDE, and they
collectively perform the task of “IA learner”. The “System Wrapper” com-
ponent (in C++) bridges between the abstract alphabet on the learner side,
and the concrete alphabet of the SUL. It manages different threads, handles
the method calls in each thread, and the abstraction of messages — “bot-
tles” in YARP terminology. To connect the wrapper to AIDE, we built a
“Wrapper Proxy” which uses TCP/IP connections to facilitate identifying
systems remotely, possibly across different computing architectures.

4.1 Identification of Ports in YARP

Configuration of Ports Considering a port connection, we examine dif-
ferent parameters which affect its behavior. In the case of a (standard)

8

?i
1

!o
1

?i
2

?i
2

?i
2 !o

2

(i)

?i
1

!o
1

?i
2

!o
1

?i
2 !o

2

(ii)

?i
1

!o
1

?i
2

!o
2

?i
2 !o

2

(iii)

o
1

?i
1

?
i
2?i

2

?i
2 !o

2

?i
1
,?i

2

?i
1(iv)

?i
1

!o
1

!o
2

?i
1

?i
2

!o
2

?i
3

?i
2

?i
2

Δ/o
1

Δ/o
2

i
1
/√

i
2
/√

Δ/o
2

i
3
/√

i
2
/√

i
2
/√

q
0 q

0

q
1 q

1

q
2 q

2

q
3 q

3
q

4 q
4

MM Learning
Algorithm

MM
Oracle

IA
Translator

System
Wrapper

SUL
(IA)

MM Learner

IA Learner

i ii iii iv

IA

YARP

Wrapper
Proxy

v

i

i/√

o
1

o
2

Δ/o
1

Δ/o
2

f r

f/r

?i1,?i2

AIDE

Figure 4: Components of the learning procedure. The connections are
(i) queries asked to the MAT (MM Oracle), (ii) bi-directional translation
of interface automata and Mealy machines, (iii) actions and events of the
system, (iv) the TCP connection to remote system-wrapper, (v) the ab-
straction/concretization made by the system wrapper.

YARP port in a scenario with one sender and one receiver, the type of com-
munication is of a “send/reply” type, wherein the sender and the receiver
are tightly coupled. In the case of buffered ports, the sender and the receiver
enjoy more decoupling, in the sense that YARP takes care of the lifetime of
the objects being transmitted through the port and it makes a pool of them,
growing upon need. By default, a buffered port keeps the most recent mes-
sage only. Therefore, messages that come in between two successive calls to
read, might be dropped. If the so called “strict” mode is enabled, YARP will
keep all received messages — like a FIFO buffer. Notice that, in this mode,
the state space of the abstract automaton would be infinite. Therefore, to
learn this model with AIDE, we limit the system to send no more than N
packets, i.e., we assume that the buffer will not exceed the maximum size
of N messages. In addition to a standard “Read” method which exists in
normal ports, a non-blocking read feature is also available in buffered ports.
Identification results for ports in various configurations are presented in Ta-
ble 1 (top)3. We have also extended the alphabet of buffered ports to include
non-blocking reading from the port for both strict and non-strict mode of
reading — these two experiments are presented with an “*” in Table 1.
The reported measures include number of states |Q| and transitions |T | of
the identified model, number of output (“#MM”) and equivalence (“#EQ”)
queries in the learning algorithm, number of experiments on the SUL, and
total time spent on learning. The behavior of a normal port is similar to a
non-strict buffered port. In normal ports, both reading from port and writ-
ing to it are blocking, whereas in non-strict buffered port, writing is not a
blocking primitive: if the buffer is not empty, the second write will overwrite
the previous message. In buffered ports with strict mode enabled, writing to
the port is non-blocking, but the difference compared to non-strict mode is

3All the experiments in this Section have been carried out on a Sony Vaio laptop with
Core2Duo 2.26GHz CPU and 4GB of RAM on Ubuntu 12.04.

9

Table 1: The result of inference for different models in YARP port compo-
nent (top), and inference for different maximum size of buffer (N) in YARP
buffered port (bottom). In the topmost table, for buffered ports, we consider
N = 3.

Model |Q| |T | #MM #EQ #Experiments Time (s×1000)

port 4 5 18 1 33 0.6
buffered port (non-strict) 4 6 35 2 50 1.0
buffered port (strict) 8 11 132 4 180 2.0
buffered port (non-strict)* 4 8 63 2 114 2.5
buffered port (strict)* 8 16 224 4 323 12.0

Size |Q| |T | #MM #EQ #Experiments Time (s×1000)

1 4 5 18 1 32 1.0
2 6 8 54 3 86 2.1
3 8 11 132 4 180 2.0
4 10 14 225 6 260 10.0
5 12 17 504 7 396 17.0
6 14 20 987 8 531 31.0

that the buffer does not drop older packets and it acts as a first-in-first-out
buffer. In this case, the state space of the model would be infinite, and thus
the buffer should be limited to a maximum size for finite state identification
to work. These behavioral differences account for the different number of
states and transitions in the identified models, as reported in Table 1. We
have also considered the effects of increasing the maximum buffer size (N)
in buffered ports when the reading mode is set to be strict. These results
are shown in Table 1 (bottom). For N = 1, the observed model is the same
as normal ports, and by increasing the size, the size of the model grows
gradually. Notice that, if e(N) denotes the number of experiments as a
function of buffer size N , then we see that e(N) grows more than propor-
tionally with n. The CPU time spent for identification grows even faster
due to some overheads in our current implementation. In particular, the
capability of resetting the SUL is required by the identification algorithm.
In our case, resetting the SUL includes releasing all the resources of the
system, i.e., ports and threads working with them, and initializing the sys-
tem again. This operation is performend in the system wrapper, and, in
all our experiments, more than 95% of the total identification time is spent
to reset the SUL. We expect that working on this bottleneck should enable
us to experiment with larger buffer sizes, and also to infer a more accurate
growth estimate for e(n). Another issue which might affect the efficiency is
the TCP/IP connection through the Wrapper Proxy, whereas calling YARP
functions directly in AIDE would slightly decrease the identification time.

10

Technical remarks Since the inferred models are deterministic, identi-
cal queries should produce the same answer. Therefore, we can cache the
queries to avoid expensive repetitions. This is done by storing a tree of
execution traces which can be exploited to avoid an experiment on a sys-
tem whenever the corresponding query is a prefix of another one which has
been already executed. In our implementation, the cache query is used as a
filter between the MAT and the SUL, which makes it transparent from the
MAT’s point of view. Our reports above include only the actual number
of queries on the system. Furthermore, in all of our experiments, less than
0.5% of the identification time was spent in the learning algorithm. The
most time-consuming parts are network communication, system reset, and
thread management. As we have mentioned above, one reason for such inef-
ficiencies is that the wrapper uses several delays to make sure it is obtaining
the correct result, since obtaining even one wrong observation in the output
or equivalence queries would result in failing to learn a correct model.

4.2 Verification

The conversion of IAs inferred by AIDE into a PROMELA model is accom-
plished as follows. Every model is translated into one process type which
communicates with two unbuffered channels — to simulate synchronous
communication. These are InChannel and OutChannel, and their task is
to receive input actions from environment, and emit output events corre-
spondingly. To make the composition flexible, the input and output chan-
nels are the parameters of the process type. At any time, the next state
is determined by the received input action (or the emitted event) and all
the transitions are performed as atomic actions. In addition to PROMELA,
AIDE is able to export inferred automata in DOT graph format, C++ and
the input language of other model checkers. The model of programs which
use the ports are translated into automata as well. Here, the translation
is manual, but in principle, it could be done in an automated fashion. Fi-
nally, the composition of the inferred model with the code model is done
automatically by SPIN.

Case study 1 The results of verification, including the number of gener-
ated states by the model checker, the consumed memory, time and result of
verification, are reported in Table 2 (top). Considering the identified model
of a buffered port with non-strict mode of reading, SPIN finds a deadlock
in the model after exploring 39 states, although the whole state space has
about 16K states. In fact the problem arises if the client sends packets too
quickly through a YARP port configured for non-strict mode. In this case,
there is a concrete chance that the server misses some of the packets, and
a deadlock occurs. For strict mode, we consider a specific size of buffer N ,
namely N = 1 and N = 6.

11

Table 2: Results of SPIN for the first case study (top) and second case study
(bottom). In the topmost table, for buffered port, non-strict mode of reading
and strict mode of reading for (N = 1 and N = 6). In the bottommost table,
different Ni’s and size of buffer. The last row is the result of model checking
with non-blocking read from Q′1

Model #States Memory(MB) Time(s) Conclusion

Buffered Port (non-strict) 38 128 0.01 deadlock
Buffered Port (strict, N = 1) 15K 129 0.04 OK
Buffered Port (strict, N = 6) 42K 132 0.09 OK

N1 N2 N3 Size #States Time(s) Memory(MB) Conclusion

100 100 100 1 8K 0.02 129 OK
90 100 100 1 790 0.01 128 deadlock
100 100 100 6 128K 0.33 140 OK
90 100 100 6 1930 0.02 128 deadlock
200 200 200 6 519K 3.29 176 OK
180 200 200 6 3820 0.04 129 deadlock
90∗ 100 100 6 19M 91.00 1300 OK

Case study 2 As before, we perform verification for buffered port with
strict mode of reading. The results are presented in Table 2 (bottom). We
examined different values for N1, N2 and N3 and the size of buffer. As shown
in the Table, when N1 = N2 = N3 all processes finish successfully. But if
either N1 or N2 are less than N3, P3 will be stuck as expected. Indeed,
in situations where P1 may finish sooner than P3, the solution would be to
change reading from Q′1 (line 5 in Figure 2) to a non-blocking read. Using
the corresponding model and the maximum buffer size of 6, SPIN can prove
the non-existence of deadlock in 91 CPU seconds — last row of Table 2
(bottom).

5 Conclusion

In this paper, we show how to exploit automata-based inference and veri-
fication techniques to identify port components of YARP middleware, and
to verify control software build on top of them. Since YARP is the mid-
dleware of choice in the humanoid iCub, AIDE can enable the adoption
of precise techniques for testing and verification of relevant components in
iCub’s control architecture.

To the best of our knowledge, this is the first time that a combination of
identification and verification techniques is applied successfully in robotics.
Similar contributions appeared in a series of works by Doron Peled and oth-
ers — see, e.g., [7] for the most recent work — with hardware verification
as the main target. However, our approach is more general since it decou-
ples identification techniques from verification techniques, and it enables the

12

combination of different flavors of such techniques.
Considering the current limitations of our work, we see (non)determinism

and scalability as the two main issues. As for nondeterminism, it is well
known that middleware can respond in different ways according to external
events which are never completely under control. The algorithms that we
have considered here assume that the middleware is behaving deterministi-
cally, which might turn out to be an unrealistic assumption. However, in a
recent contribution [10], we have shown how to deal with nondeterminism
when learning Mealy machines, and we expect to be able to extend this re-
sult also to IAs. Scaling to more complex components is a challenge for our
future research agenda. In spite of harsh computational-complexity results,
both identification and verification tools have a record of success stories in
dealing with industrial-sized systems. Furthermore, AIDE already enables
developers to check their code against common errors such as, e.g., incor-
rect port flagging, and it has also been useful in supplying YARP creators
with corner bugs that helped them to improve some basic functionality of
platform. We expect that improving the bottlenecks due to resetting the
system, i.e., managing ports and related threads in the system wrapper, will
improve the capacity of our techniques.

References

[1] Aarts, F., Vaandrager, F.: Learning I/O automata. CONCUR 2010-
Concurrency Theory pp. 71–85 (2010)

[2] Angluin, D.: Learning regular sets from queries and counterexamples.
Information and computation 75(2), 87–106 (1987)

[3] Baier, C., Katoen, J.: Principles of model checking. MIT press Cam-
bridge (2008)

[4] Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS) 8(2),
263 (1986)

[5] De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Soft-
ware Engineering Notes 26(5), 109–120 (2001)

[6] Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes.
Robotics and Autonomous systems 56(1), 29–45 (2008)

[7] Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic
Journal of IGPL 14(5), 729–744 (2006)

13

[8] Holzmann, G.J.: The SPIN model checker: Primer and reference man-
ual, vol. 1003. Addison-Wesley Reading (2004)

[9] Kearns, M., Vazirani, U.: An introduction to computational learning
theory. MIT press (1994)

[10] Khalili, A., Tacchella, A.: Learning nondeterministic mealy machines.
In: Proceedings of the 12th International Conference on Grammatical
Inference (ICGI) (2014), to appear

[11] Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for dis-
tributed algorithms. In: Proceedings of the sixth annual ACM Sympo-
sium on Principles of distributed computing. pp. 137–151. ACM (1987)

[12] Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L.,
von Hofsten, C., Rosander, K., Lopes, M., Santos-Victor, J., et al.:
The iCub Humanoid Robot: An Open-Systems Platform for Research
in Cognitive Development. Neural networks: the official journal of the
International Neural Network Society (2010)

[13] Pratt, G., Manzo, J.: The DARPA Robotics Challenge [Competitions].
Robotics & Automation Magazine, IEEE 20(2), 10–12 (2013)

[14] Queille, J., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: International Symposium on Programming. pp.
337–351. Springer (1982)

[15] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System.
In: ICRA workshop on open source software. vol. 3 (2009)

[16] Shahbaz, M.: Reverse Engineering Enhanced State Models of Black
Box Software Components to Support Integration Testing. Ph.D. thesis,
Institut Polytechnique de Grenoble, Grenoble, France (2008)

14

	1 Introduction
	2 Background
	3 Case Studies
	4 Experiments
	4.1 Identification of Ports in YARP
	4.2 Verification

	5 Conclusion

