
Automatic Verification of
Autonomous Robot Missions

Matthew O’Brien1, Ronald Arkin1 Dagan Harrington2, Damian Lyons2, and
Shu Jiang1

1 School of Interactive Computing, Georgia Tech, Atlanta, GA 30332
{mjobrien,arkin,sjiang}@gatech.edu

2 Computer & Information Science, Fordham University, Bronx, NY 10458
{dharrington5,dlyons}@fordham.edu

Abstract. Before autonomous robotics can be used for dangerous or
critical missions, performance guarantees should be made available. This
paper overviews a software system for the verification of behavior-based
controllers in context of chosen hardware and environmental models.
Robotic controllers are automatically translated to a process algebra.
The system comprising both the robot and the environment are then
evaluated by VIPARS, a verification software module in development,
and compared to specific performance criteria. The user is returned a
probability that the performance criteria will hold in the uncertainty of
real-world conditions. Experimental results demonstrate accurate verifi-
cation for a mission related to the search for a biohazard.

Keywords: mobile robots, formal verification, performance guarantees,
automatic translation

1 Introduction

Mission assurance by providing formal methods for assessing performance guar-
antees is a well identified need and crucial area of research for autonomy. This is
essential in missions that must get the job done right the first time where there is
no tolerance for failure. We have been focusing in particular on addressing search
and remediation tasks for countering Weapons of Mass Destruction (C-WMD),
e.g., biological, chemical, radiological or nuclear agents that might be posed by
terrorist activities.

A variety of methods, historically based on model checking (e.g., [4],[9]) have
been developed for robot performance guarantees and synthesizing provably cor-
rect controllers that have met with some success. But there remain problems
associated with the scalability of these methods and their utility in continu-
ous valued domains, typical of robotic sensing and actuation [10]. Our research,
conducted for the Defense Threat Reduction Agency (DTRA), takes a different
approach, utilizing process algebras as the basis for the representation as opposed
to the temporal logics so often used in model checking. We feel this provides a
better match for the requirements of real-time autonomy, and have had success

in its application on a range of robotic missions: single robot waypoint [11],
multi-robot bounding overwatch [14] and search and explore [7].

To accomplish this we have had to bridge the gap from automatically gen-
erated robot control software that is represented in the Configuration Network
Language (CNL), a component of the MissionLab Mission Specification System
used in our research [18]. This CNL code must then be processed by our veri-
fication module (VIPARS Verification in Process Algebra for Robot Schemas)
to yield the performance guarantees and predictions necessary for informing the
operator regarding the likelihood of success of her mission. Thus CNL must
be translated to PARS (Process Algebra for Robot Schemas). Until now this
translation has been performed manually, but as described in this paper this
central task linking the control software to the verification module is now au-
tomatically translated, providing end-to-end operational capability. This paper
describes how that transformation has been implemented and tested.

2 Related Work

Formal verification of systems is critical when failure creates a high cost, such
as life or death scenarios. A variety of software validation techniques have been
developed for applications from airplanes to medical devices. If the use of robots
is to expand to similarly critical applications, verification techniques must be
developed to meet this challenge. The embodied nature of robot software brings
several additional complications. The real world is dynamic, unstructured, and
continuous; making modeling difficult. In addition, information about the world
provided by sensors is incomplete and noisy. The problem of adapting verification
techniques for this domain has been approached in several ways.

One of the main methods of software verification is model checking [6],[19]. In
model checking, the system is represented as a finite state automaton and formal
specification in a modal logic. All states are explored and compared against the
formal specifications or properties. The continuous nature of a robots workspace
creates a state space far too large for traditional methods. This is commonly
referred to as state explosion, and is a major focus of research in model checking.
One technique applied to this problem is symmetry reduction. By determining
symmetries, the number of states that must be checked can be reduced. Under
ideal conditions, significant reductions can be made. Identifying symmetries may
be a difficult task however, and is often dependent on the programming language
used [19].

An alternative approach is to synthesize a valid controller given a robot
model and a set of specifications. Linear temporal logic (LTL), or a restricted
subset of LTL, GR(1), has been used to represent specifications in a way that
allows for automatic generation of controllers [4],[9]. Effective motion planning
has been demonstrated with this technique. Like model checking, these LTL
based controller synthesis techniques can suffer from state explosion under cer-
tain circumstances. In addition, it is not clear if LTL techniques can extend to
more sophisticated missions outside the realm of motion planning.

This paper presents yet another approach to verification. Process algebras
(PA) model parallel or distributed systems and reason about their properties
through algebraic techniques [3]. While originally developed for software sys-
tems, applications range from robotics to biology [8],[5]. Process Algebra for
Robot Schemas (PARS) is a specification language capable of representing soft-
ware, hardware, and the environment as interacting processes [10]. The following
sections overview the software system in development to utilize PARS, the meth-
ods of verification, and results from physical implementation.

3 Methods

3.1 System Overview

In the complete robot mission design system, an operator specifies the robot
controller in MissionLab. This controller is compiled first into configuration net-
work language (CNL), an internal language of MissionLab. This CNL code is
then translated to PARS. The operator also specifies models of the robot and
environment, as well as desired performance criteria. VIPARS evaluates the com-
plete system and returns the results to the operator, creating a feedback loop.
If performance is unacceptable the operator refines his or her design. This may
entail revising the controller or selecting new hardware for implementation. Once
the criteria are satisfied, MissionLab creates an executable for the selected plat-
form. Figure 1 shows an overview of this architecture.

Fig. 1. Overview of system archiecture

3.2 MissionLab and CNL

MissionLab is a software package developed in the GT Mobile Robotics Lab.
MissionLab allows users to design missions and robotic controllers graphically,
allowing for quick implementation of control schemes without the need for pro-
gramming experience or concern with low-level details. It incorporates simula-
tion of missions as well as the ability to compile controllers for execution on
hardware. The Configuration Network Language (CNL) is one representation of
robotic controllers used in MissionLab. CNL is a superset of C++ developed to
separate a behaviors implementation from its integration with other behaviors
[16].

In CNL, all behaviors for any robotic controller are specified as assemblages
of more primitive nodes. Currently, all implemented behaviors are schema-based,
from the AuRA architecture [1]. Any node may have a variety of inputs, but only
a single output. Primitive nodes only take input from sensors. Assemblages of
these nodes are constructed by feeding the output of these primitives into new
nodes. Through various arbitration schemes, a single output command is deter-
mined and sent to the robot for execution. The implementation of a CNL nodes
internal processing is done via traditional C++. See Figure 2 for an example
network.

Fig. 2. Part of a CNL node network. Nodes, such as MoveTo, take input from more
primitive nodes. The node COOP performs vector summation from all of its inputs,
creating a new behavior. The node IsAtGoal is a trigger, tracking conditions to change
states. The Finite State Automaton (FSA) selects the output of one behavior for exe-
cution on the robot.

3.3 PARS

Process algebras are specification languages that allow for formal verification of
concurrent systems. Process Algebra for Robot Schemas (PARS) is a language
developed to adapt these techniques to robotic systems [10]. PARS is capable
of representing a robotic controller, hardware, the environment, and the inter-
actions between them. A process P is called with initial parameters u1,u2,,un,
resulting values v1,v2,,vq, input ports i1,i2,,im, and output ports o1,o2,,op.

P 〈u1, u2, , un〉(i1, i2, , im)(o1, o2, , op)〈v1, v2, , vq〉 (1)

Table 1. The basic PARS processes

Process Stop Condition Abort Condition

Delay〈t〉 After time t If forced by #

Ran〈d〉〈v〉 Returns random sample v
from a distribution d

If forced by #

In〈p〉〈v〉, Out〈p, v〉 Performs input and output
of value v on port p

If forced by #

Cond〈op, a, b〉 a = b, a 6= b, a > b, etc . . . Otherwise

All PARS processes are formed by composition of several basic processes
shown in Table 1. This is achieved by three operators. The sequential/conditional
operator (;) allows the next process to start if the first process stops, but not if
it aborts. For example, a simple process may take in a value on one port, and
afterwards output this value on a second port.

Pass = In〈port1〉〈value〉;Out〈port2〉〈value〉 (2)

In addition the concurrent composition (|) and the disabling composition (
) operators allow for processes to run simultaneously. The disabling composi-
tion will abort all other processes when one process terminates (stops or aborts).
The concurrent composition operator will allow all processes to terminate inde-
pendently. This notation is sufficient to build complex behaviors via assemblages
of simpler processes, analogous to the methodology in MissionLab. A simple ex-
ample mission constructed with only sequential composition is shown in Figure
3.

Mission<w, i> = Goto<w(i)> ; Neq<i , n> ; Mission<w, i+1>
Goto<a> = TurnTo<a> ; MoveTo<a>
MoveTo<g> = In<p><r> ; Neq<r , g> ; Out<v , u(g−r)> ; MoveTo<g>
TurnTo<g> = In<p><r> ; Out<h , d(g−r)>

Fig. 3. Simple PARS Mission

A final critical ability for PARS is looping. Tail-recursion, a process calling
itself at the end of its execution, is the method chosen. The Mission process in
Figure 3 provides an example of tail-recursion. The restriction of all processes
to tail-recursion can allow for more efficient verification (see Section 3.5).

3.4 Translation

The automation of the translation of a robot controller into PARS is a critical
step to creating a usable software system. By automating the translation of a
robot controller to PARS, and incorporating the VIPARS verification module
into MissionLab, a nave user could leverage the formal verification techniques
in the field. In addition to improving usability, automation ensures the accuracy
and reliability of the final translation. Translation can be a challenging problem.
In a model-checking approach the first step is the translation of the program to
be verified into a transition system, the formal structure in which verification
occurs. However, this translation into a transition system is one of the key points
at which state-space explosion can occur [2].

Two sets of lexes (lexical analyzers) and grammars are required to parse a
CNL file. The first set is for the CNL code; which defines the CNL network and
structures a nodes definition. The final set parses the C++ code inside a node
definition. This is only required for the switch statement inside the FSA node.
Therefore a subset of the C++ grammar, along with some unique tokens, is
adequate. The common compilation tools Flex and Bison were used to produce
the final scanner and parser.

MissionLab is a behavior-based programming environment where users create
complex actions from a library of primitive nodes. A matching library of PARS
implementations was created. The translator inputs the PARS definition of any
node used by the robot controller into the final PARS file. These processes are
later called inside the Mission process in a similar manner to how functions are
defined and called in programming languages.

The heart of the translation from CNL to PARS is the creation of the Mission
process. PARS code matching the structure of the FSA must be created. This
structure can be, in general, any finite state automaton. A PARS implementa-
tion of a switch statement was created to represent any mission. However, many
missions are linear in nature, and the more complex Mission process structure
is not required. By checking certain properties of the triggers in the FSA node,
the translation software can determine if a mission is linear, and select the ap-
propriate Mission process design. An example linear mission structure in PARS
is below in Figure 4. This structure was utilized for the experimental verification
described in section 4.

Miss ion (cPOS) (cVEL) = Behavior1 (cPOS) (cVEL) |
Trigger1 ; Behavior2 (cPOS) (cVEL) |
Trigger2 ; Behavior3 (cPOS) (cVEL) |
Trigger3 ; Behavior4 (cPOS) (cVEL) .

Fig. 4. Linear mission process

This initial mission structure is a high level representation of the controller.
As discussed before, in MissionLab the highest-level behaviors are assemblages of

more primitive nodes. The PARS processes representing lower-level CNL nodes
must be created as well. Before the translation software creates a process for
a high level behavior in PARS, any additional primitive processes required are
created first. For some CNL nodes, this is hardcoded, while for others the number
and type of input nodes can vary. The PARS operators needed to coordinate
these new processes are also created at this time. As each process calls for the
creation of lower level processes, the node network is traversed from top to
bottom, creating PARS code that accurately matches the original node network
defined in CNL. Figure 5 provides a simple demonstration of this process.

Fig. 5. Initial steps taken to create the complete controller from the PARS implemen-
tation of a simple mission FSA. In this example all new processes are executed with
concurrent composition, but in general any PARS operators can be selected.

3.5 VIPARS and Validation

The entire system to be verified by VIPARS can be expressed, generally, as:

SY S = Env〈initparams〉(vel)(pos)|Mission〈initparams〉(pos)(vel). (3)

Which is the concurrent, communicating composition of any number of Con-
trollers (i.e., Mission) and Environment models (i.e., Env). The SYS process
in (3) represents a very simplistic situation where the Mission process takes as
input a position and outputs a velocity. The Environment process (which cur-
rently includes the robot hardware) concurrently inputs a velocity and outputs
a position. A simple environment process is broken down in equation (4) to pro-
vide an example. Initially, three processes run in parallel. At〈r〉 represents the

current robot position r in VIPARS. Odo〈r〉 represents the odometry sensor,
which repeatedly transmits current location information with a normal sensor
noise distribution Φ. The Delay〈t〉 process ends this group after time t. After
words the current velocity, from port v, is combined with the actuator’s normal
noise distribution Θ to update the robots position. While this is a simple kine-
matic model, more complex models can include dynamics, battery life, or other
properties of the hardware and real world.

Env = (Delay〈t〉#Odo〈r〉#At〈r〉);Ran〈Θ〉〈z〉; In〈v〉〈u〉;Env〈r+ (u+ z)t〉 (4)

Odo = Ran〈Φ〉〈e〉;Out〈p, r + e〉; 〈r〉Odo〈r〉 (5)

Recall that the robot program must operate and interact with a continuous,
unstructured and dynamic environment. This effectively rules out a purely state-
based method for verification, such as model checking, where the well-known
state-space explosion problem leads to intractable state graphs. We leverage the
reactive, recurrent nature of behavior-based robot programs (a behavior-based
robot will continually respond to a fixed set of affordances in the environment)
to isolate regularities in the combined state-space of Env and Mission. This
regularity allows verification to be carried out in a very efficient manner. To make
clear the method by which we extract and analyze these periodic regularities in
the state-space, first recall that PARS supports iteration in the form of tail-
recursion (TR):

T 〈v〉〈...〉 = P 〈v〉〈u〉;T 〈...〉〈f(v, u)〉. (6)

The process T in (6) is TR iff its body, P, is a sequential composition of
non-recursive processes. In standard TR fashion, input parameters (v) are trans-
formed by some function f, for each successive execution of the process. In [15],
we developed an interleaving theorem, a relation between parallel and sequen-
tial operations in a process algebraic framework, which allows us to express a
parallel, communicating composition of TR processes as a single TR process:

SY S = P1|P2| . . . |Pm = S(P1, P2, . . . , Pm);SY S (7)

where S(P1, P2, . . . , Pm) is the System Period process that is constructed
from an analysis of the scope and communication structure of component pro-
cesses in Sys. This allows us to recast the analysis of the recurrent system to
the analysis of some sequential ordering (using a Maximum Likelihood approach
in the case that SYS contains processes with probabilistic behavior) period pro-
cesses S(P1, P2, . . . , Pm).

Once the periodic nature of the concurrent system is determined, VIPARS
produces a set of equations called flow-functions by analyzing the port connectiv-
ity and TR-transformations of variables for each Pi ∈ S(P1, P2, . . . , Pm). These
flow-functions relate values in the network of the kth time step to values in the
network of the (k+1)th time step [12]. The flow functions are used to build a
Dynamic Bayesian Network (DBN), and verification is carried out by applying

a filtering algorithm to the DBN and monitoring for achievement of the perfor-
mance specification. For a more detailed discussion on this verification process,
the authors recommend [14].

The VIPARS system computes within the network of flow-functions and as-
sesses whether performance criteria are met, given the environment model(s) and
controller(s) provided by the operator [13]. The VIPARS verification module pro-
vides output in the form of: (1) A Boolean answer of whether the performance
criteria are met, and (2) detailed output that allows for iterative refinement of
the controller. The environment models can be culled from libraries of robot and
sensor models. The current work of automatic translation drastically reduces the
need for operator intervention in the MissionLab + VIPARS verification system.

4 Validation

To evaluate the verification, experimental results from a physical implementation
are compared to the predicted (verification) results from VIPARS. The metric
used for comparison is the success rate of a mission. The general procedure,
given a mission, is to first develop an appropriate controller in MissionLab.
This controller will both be compiled to a hardware executable for the robot,
and translated into PARS for verification. Appropriate models of the chosen
hardware platform are imported to the VIPARS system. Performance criteria
(such as a time limit and spatial accuracy) are selected and given to VIPARS
as well. Results from the VIPARS verification and the physical experiment are
compared.

A mission related to the search for a biohazard has been selected. This mis-
sions were previously verified with manual CNL to PARS translations in [7].
Here, we reproduce those results using automatic translations. A Pioneer 3-AT
was the chosen hardware platform.

4.1 The Search Mission

This mission simulates the search for a target, in this case a potential biologi-
cal weapon. The controller used is shown in Figure 6. The robot explores until
the target is found. A camera was used for detection of the target and a SICK
laser scanner for obstacle detection and avoidance. In this test, the target was
represented as an orange bucket. Once detected, the robot moves to the tar-
get and stops. No counter-measure actions were simulated. This provides the
opportunity to test random search behavior as well as object detection within
the framework of VIPARS. A time limit of 60 seconds to locate the target was
chosen as the performance criteria.

The mission was executed on a physical system 106 times. Due to the random-
ized search pattern, a large number of trials were used to yield accurate results.
Failures occurred when the search pattern did not explore near the target within
the time limit.

Fig. 6. MissionLab controller for the search mission, shown as it is displayed in the
Cfgedit graphical programming tool.

4.2 Results

The primary method of validation is the comparison between empirical success
probabilities and the predicted success probabilities. Table 2 lists the results for
the mission. While the original manual translation showed strong results, 85%
versus 83% success rate, the new results still showed qualitative improvement,
matching the experimental validation at 83%.

Assuming the null hypothesis is that the probability of success is actually
85%, and the alternative hypothesis that it is smaller, one can use a z-statistic
proportion test and calculate a value of z = 0.58, and P (Z < z) = 0.28%.
Therefore we cannot claim that the improvements are statistically significant,
even though the prediction is more accurate. We can conclude that the validity
and significance of the VIPARS performance guarantee, originally demonstrated
in [7], still holds.

Table 2. Final probability results for the mission

Mission Total Runs Experimental
P(Success)

VIPARS Manual
P(Success)

VIPARS Auto
P(Success)

Explore 106 83% 85% 83%

The automatic translation produced exactly the same PARS structure for
this mission as the manual translation. However, the verification results reported
here differ slightly. The most important contribution to this difference is that the
automatic translation used a set of PARS processes built to more directly model
the CNL nodes than processes used in the manual translation. The quality of the
verification therefore depends on the accuracy with which the PARS primitives
model their corresponding CNL nodes.

Selecting a small set of relatively low-level behaviors simplifies the reliance
on this correspondence. This takes advantage of the behavior-based controller
design. Simple nodes in CNL can be implemented directly in PARS, and the
complex behavior can be modeled by implementing the CNL network structure
in PARS. An alternate approach is to separately verify these PARS processes.
This has the advantage of allowing high-level behaviors that may not easily
decompose into simple primitive processes. Both options will be considered in
ongoing work.

5 Conclusion

The system described in this paper allows a user to design a robot controller
graphically, select hardware for implementation, and evaluate the effectiveness
of the system in a chosen environment against specific performance criteria. This
information can be used in multiple ways: to refine controller design, to evaluate
hardware choices, and to inform the operators decision to execute the mission.

Experimental results were used to validate the verification software. The
correspondence between empirical and predicted success probabilities was shown
to be very accurate. In addition, these predictions were made with automatically
generated PARS files; removing the need for any manual translation.

Some readers may observe that with appropriate models of a robot and the
environment, one could run randomized simulations to achieve similar proba-
bilistic results. This would be analogous to sample-based planning, but for ver-
ification. The method described in this paper is, in contrast, deterministic and
returns complete results (such as the probability of being at any location) with-
out multiple executions of the mission. For many classes of problems, this will
more accurate and efficient.

The research presented is being extended in several directions to better test
the capabilities and limits of the VIPARS system. Development and testing for
multi-agent teams, both homogeneous and heterogeneous, has begun. Testing
with two Pioneer 3-ATs has been performed, and future plans include introduc-
ing a quad-rotor into the team. SLAM will be utilized in the future to verify
with more recent navigation techniques. Finally, the translation software and
VIPARS system will be fully incorporated into MissionLab. User studies will be
performed to demonstrate that with this system, a nave user can leverage the
formal verification tools when designing a mission [18].

Acknowledgments

This research is supported by the Defense Threat Reduction Agency, Basic Re-
search Award #HDTRA1-11-1-0038.

References

1. Arkin R, Balch T, (1997) AuRA: Principles and practice in review. Journal of
Experimental & Theoretical Artificial Intelligence 9(2-3):175-189.

2. Baeir C, Katoen J (2008) Introduction to Model Checking. Cambridge MA: MIT
Press

3. Baeten J (2005) A brief history of process algebra. Theoretical Computer Science,
335:131146

4. Belta C, (2010) Synthesis of provably-correct control and communication strategies
for distributed mobile systems. In: ICRA Workshop on Formal Methods, Anchorage
Alaska

5. Guerriero M, Heath J, Priami C (2007) An automated translation from a narrative
language for biological modelling into process algebra. In: CMSB 2007, LNBI 4695,
pp. 136151

6. Jhala R, Majumdar R (2009) Software Model Checking. ACM Computing Surveys
41(4) 21:53.

7. Jiang S, Arkin R, Lyons D, Liu T-M, Harrington D (2013) Performance guarantees
for C-WMD robot missions. In: Safety, Security, and Rescue Robotics (SSRR), 2013
IEEE International Symposium, p 1-8

8. Karaman S, Rasmussen S, Kingston D, Frazzoli E (2009) Specification and plan-
ning of UAV missions: a Process Algebra approach. In: American Control Confer-
ence, St. Louis MO., 10-12 June 2009

9. Kress-Gazit H, Fainekos G.E, Pappas G (2009) Temporal-Logic-Based Reactive
Mission and Motion Planning. IEEE Transactions on Robotics 25(6):1370-1381

10. Lyons D, Arkin R (2004) Towards performance guarantees for emergent behavior.
Robotics and Automation. In: IEEE International Conference on Robotics and
Automation, vol. 4, pp. 41534158

11. Lyons D, Arkin R, Nirmal P, Jiang S, Liu T-M, Deeb, (2013) Getting it right
the first time: Robot mission guarantees in the presence of uncertainty. Intelligent
Robots and Systems (IROS) pp 5292-5299

12. Lyons D, Arkin R, Jiang S, Liu T-L, Nirmal P, Deeb J (2013) Performance Ver-
ification for behavior-based Robot Missions. AAMAS ARMS 2013 Workshop on
Autonomous Robotics and Multirobot Systems, St. Paul MN, May 2013.

13. Lyons D, Arkin R, Jiang S, Nirmal P, Liu T-L (2013) A Software Tool for the
Design of Critical Robot Missions with Performance Guarantees. Conf. on Systems
Engineering Research (CSER13), Atlanta, GA, March 2013

14. Lyons D, Arkin R, Jiang S, Harrington D, Liu T-L (2014) Verifying and
Validating Multirobot Missions. (Submitted) Available via GT Mobile Robot
Lab http://www.cc.gatech.edu/ai/robot-lab/online-publications/GIRTFT_

IROS_2014_v5.pdf Accessed 10 June 2014
15. Lyons D, Arkin R, Nirmal P, Jiang S (2012) Designing Autonomous Robot Mis-

sions with Performance Guarantees’. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Algarve, PT

16. MacKenzie D, (1996) The configuration network language user manual. In: Geor-
gia Tech Mobile Robot Lab. http://www.cc.gatech.edu/aimosaic/robot-lab/

research/MissionLab/mlab_manual-7.0.pdf. Accessed 10 June 2014
17. MacKenzie D, Arkin R, Cameron J, (1997) Multiagent mission specification and

execution. Autonomous Robots 4(1):29-52
18. MacKenzie D, Arkin R (1998) Evaluating the Usability of Robot Programming

Toolsets. International Journal of Robotics Research, 4(7):381-401
19. Simmons R, Pecheur C, Srinivasan G (2000) Towards automatic verification of

autonomous systems. In: Intelligent Robots and Systems, IEEE/RSJ International
Conference, vol 2. p1410-1415

20. Xu Chu Ding, Kloetzer M, Chen Yushan, Belta C (2011) Automatic Deployment
of Robotic Teams. Robotics & Automation Magazine, IEEE , 18(3)75-86

http://www.cc.gatech.edu/ai/robot-lab/online-publications/GIRTFT_IROS_2014_v5.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/GIRTFT_IROS_2014_v5.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/Mission Lab/mlab_manual-7.0.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/Mission Lab/mlab_manual-7.0.pdf

	Automatic Verification of Autonomous Robot Missions

