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Abstract. RDF streams are sequences of timestamped RDF statements
or graphs, which can be generated by several types of data sources (sen-
sors, social networks, etc.). They may provide data at high volumes and
rates, and be consumed by applications that require real-time responses.
Hence it is important to publish and interchange them efficiently. In this
paper, we exploit a key feature of RDF data streams, which is the regu-
larity of their structure and data values, proposing a compressed, efficient
RDF interchange (ERI) format, which can reduce the amount of data
transmitted when processing RDF streams. Our experimental evaluation
shows that our format produces state-of-the-art streaming compression,
remaining efficient in performance.

1 Introduction

Most of the largest RDF datasets available so far (e.g. Bio2RDF,1 LinkedGeo-
Data,2 DBpedia3) are released as static snapshots of data coming from one
or several data sources, generated with some ETL (Extract-Transform-Load)
processes according to scheduled periodical releases. That is, data are mostly
static, even when they contain temporal references (e.g. the Linked Sensor Data
dataset, which contains an historical archive of data measured by environmen-
tal sensors). Typical applications that make use of such datasets include those
performing simulations or those training numerical models.

In contrast, some applications only require access to the most recent data, or
combine real-time and historical data for different purposes. In these cases a dif-
ferent approach has to be followed for RDF data management, and RDF streams
come into play. RDF streams are defined as potentially unbounded sequences of
time varying RDF statements or graphs, which may be generated from any type
of data stream, from social networks to environmental sensors.

Several research areas have emerged around RDF streams, e.g. temporal rep-
resentation in RDF [12,6,11], or RDF stream query languages and processing
engines (C-SPARQL [2], SPARQLStream and morph-streams [4], CQELS Cloud
[15], Ztreamy [1]). The recently-created W3C community group on RDF Stream

1 http://bio2rdf.org/.
2 http://linkedgeodata.org/.
3 http://www.dbpedia.org/.
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Processing is working on the provision of “a common model for producing, trans-
mitting and continuously querying RDF Streams”.4

In this paper, we focus on the efficient transmission of RDF streams, a nec-
essary step to ensure higher throughput for RDF Stream processors. Previous
work on RDF compression [9,14] shows important size reductions of large RDF
datasets, hence enabling an efficient RDF exchange. However, these solutions
consider static RDF datasets, and need to read the whole dataset to take ad-
vantage of data regularities. A recent proposal, RDSZ [10], shows the benefits
of applying the general-purpose stream compressor Zlib [8] to RDF streams,
and provides a compression algorithm based on the difference of subject groups
(provided in Turtle [17]), with some gains in compression (up to 31% w.r.t. Zlib).

Our work sets on the basis of RDSZ and exploits the fact that in most RDF
streams the structural information is well-known by the data provider, and the
number of variations in the structure are limited. For instance, the information
provided by a sensor network is restricted to the number of different measured
properties, and in an RDF context the SSN ontology [5] will be probably used for
representing such data. Furthermore, given that “regularities” are also present
in very structured static datasets (e.g. statistical data using the RDF Data
Cube Vocabulary [7]), our approach may be also applicable to those datasets.
Thus, our preliminary hypothesis states that our proposed RDF interchange
format can optimize the space and time required for representing, exchanging,
and parsing RDF data streams and regularly-structured static RDF datasets.

In this paper, we propose a complete efficient RDF interchange (ERI) format
for RDF streams. ERI considers an RDF stream as a continuous flow of blocks
(with predefined maximum size) of triples. Each block is modularized into two
main sets of channels to achieve large spatial savings:
– Structural channels: They encode the subjects in each block and, for each

one, the structural properties of the related triples, using a dynamic dictio-
nary of structures.

– Value channels: They encode the concrete data values held by each predicate
in the block in a compact fashion.

We also provide a first practical implementation with some decisions regard-
ing the specific compression used in each channel. An empirical evaluation over
a heterogeneous corpora of RDF streaming datasets shows that ERI produces
state-of-the-art compression, remaining competitive in processing time. Similar
conclusions can be drawn for very regular datasets (such as statistical data) and
general datasets in which the information is strongly structured.

Our main contributions are: (i) the design of an efficient RDF interchange
(ERI) format as a flexible, modular and extensible representation of RDF streams;
(ii) a practical implementation for ERI which can be tuned to cope with specific
dataset regularities; and (iii) an evaluation that shows our gains in compactness
w.r.t. current compressors, with low processing overheads.

The rest of the paper is organized as follows. Section 2 reviews basic foun-
dations of RDF streaming and compression. Our approach for efficient RDF

4 http://www.w3.org/community/rsp/.
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interchange (ERI) is presented in Section 3, as well as a practical deployment for
ERI encoding and decoding. Section 4 provides an empirical evaluation analyzing
compactness and processing efficiency. Finally, Section 5 concludes and devises
future work and application scenarios.

2 Background and Related Work

A key challenge for stream processing systems is the ability to consume large vol-
umes of data with varying and potentially large input rates. Distributed stream
processing systems are a possible architectural solution. In these systems, the
circulation of data between nodes takes an amount of time that depends on
parameters like data size, network bandwidth, or network usage, among others.
Hence it is crucial to minimize data transmission time among processing nodes.

To reach this goal, our work focuses on RDF stream compression techniques.
RDF compression is an alternative to standard compression such as gzip. It
leverages the skewed structure of RDF graphs to get large spatial savings. The
most prominent approach is HDT [9], a binary format that splits and succinctly
represents an RDF dataset with two main components: the Dictionary assigns
an identifier (ID) to all terms in the RDF graph with high levels of compression,
and the Triples uses the previous mapping and encodes the pure structure of
the underlying RDF graph. HDT achieves good compression figures while pro-
viding retrieving features to the compressed data [9]. However, these are at the
cost of processing the complete dataset and spending non-negligible processing
time. The same applies to other recent RDF compression approaches based on
inferring a grammar generating the data [14] or providing other dictionary-based
compression on top of MapReduce [19].

Streaming HDT [13] is a deviation from HDT that simplifies the associated
metadata and restricts the range of available dictionary IDs. Thus, the scheme
is a simple dictionary-based replacement which does not compete in compres-
sion but allows operating in constrained devices. RDSZ [10] is the first specific
approach for RDF streaming compression. RDSZ takes advantage of the fact
that items in an RDF stream usually follow a common schema and, thus, have
structural similarities. Hence it uses differential encoding to take advantage of
these similarities, and the results of this process are compressed with Zlib to
exploit additional redundancies. Experiments show that RDSZ produces gains
in compression (17% on average) at the cost of increasing the processing time.

The increasing interest on RDF compression over streaming data has also
been recently highlighted by RDF stream processing systems such as CQELS
Cloud [15] and Ztreamy [1]. The first one uses a basic dictionary-based approach
to process and move fixed-size integers between nodes. The latter exploits the
Zlib compressor with similar purposes. In addition, it is also relevant to detect
trends in data, extract statistics, or compare historic data with current data
to identify anomalies, although historical data management is not considered in
most of stream processing systems [16]. A potential use case of RDF compression
may be the integration of historical data and real-time data streams.
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Fig. 1. ERI processing model

3 Efficient RDF Interchange (ERI) Format

The ERI format is a compact RDF representation designed to leverage the in-
herent structural and data redundancy in RDF streams. In the following, we
introduce the basic concepts behind the ERI format, and we present a practical
implementation for encoding and decoding RDF data.

3.1 Basic Concepts

In ERI, we consider the generic processing model depicted in Figure 1. In this
scheme, RDF data, potentially in the form of a data stream, is encoded or
decoded to ERI, resulting in a compressed data stream. We refer to an ERI
processor as any application able to encode such RDF data to ERI or to decode
the ERI compressed stream (defined below) to make the RDF data accessible. A
processor mainly leverages on two information sets to improve compactness: (i)
the Structural Dictionary and (ii) the Presets, defined as follows.

The Structural Dictionary holds a dynamic catalog of all different struc-
tural patterns found for a given set of triples called Molecules.

Definition 1 (RDF (general) molecule). Given an RDF graph G, an RDF
molecule M ⊆ G is a set of triples {t1, t2, · · · , tn}.

Molecules are the unit elements for encoding; each molecule will be codified as
its corresponding identifier (ID) in the dictionary of structures and the concrete
data values held by each predicate.

The most basic (but inefficient) kind of grouping is at the level of triples (one
group per triple), i.e. having as many molecules as the total number of triples in
the RDF data. In this case, the Structural Dictionary will assign an ID to each
structure which is just the predicate in the triple. Trying to set up larger groups
sharing regularities is much more appropriate.

A straightforward approach is to consider the list of all triples with the same
subject (similar to abbreviated triple groups in Turtle [17]). We take this group-
ing as the method by default, then managing RDF subject-molecules:

Definition 2 (RDF subject-molecule). Given an RDF graph G, an RDF
subject-molecule M ⊆ G is a set of triples {t1, t2, · · · , tn} in which subject(t1) =
subject(t2) = · · · = subject(tn).
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Fig. 2. Example of molecules and their Structural Dictionary

Note that an RDF stream can be seen as a sequence of (potentially not dis-
joint) RDF subject-molecules5. Figure 2 illustrates two molecules in a sequence
of weather sensor data and their entry in the Structural Dictionary. This data
excerpt (inspired by the data examples in SRBench [20]) represents tempera-
ture measures of a sensor at two sampling times. As can be seen, the lists of
predicates is exactly the same for both molecules. In addition, we can observe
regularities in certain property values (in different color). In particular, the val-
ues for rdf:type, om-owl:observedProperty and om-owl:procedure are exactly the
same, and will be repeated throughout the data stream for all the air tempera-
ture observations of the same sensor. We call this type of predicates producing
massive data repetitions, discrete predicates. Thus, we avoid these repetitions
and save space codifying the concrete values for discrete predicates as part of the
structural patterns, as shown in Figure 2 (right). In this example, the structure
in the dictionary is encoded as the list of related predicates and, for each one,
it counts the number of objects for the predicate and the aforementioned fixed
property value if the predicate is discrete.

We assume that discrete predicates can be easily identified by streaming data
providers and set up before encoding, or they can be statistically detected at
run time. In any case, this kind of information that must be shared between
encoders and decoders, is kept in the information set called Presets. Presets
include all the configuration and compression-oriented metadata supplied by
the data provider or inferred at run time. We distinguish between (a) mandatory
features in Presets, which include the aforementioned set of discrete predicates
and the selected policy for grouping triples into molecules, and (b) application-
specific configurations. The latter opens up the format for extensions as long as
the concrete application clearly states the decisions and available configurations.
For instance, specific features could include common prefixes, suffixes or infixes
in URIs and BNodes, or a set of common datatypes in some concrete predicates.

5 For simplicity, we will use the term molecules hereinafter, assuming that they are
subject-molecules by default.



Efficient RDF Interchange (ERI) Format for RDF Data Streams 249

3.2 ERI Streams

At a high level, an ERI Stream is a sequence of contiguous blocks of molecules,
as depicted in Figure 3. That is, ERI first splits the incoming RDF data into
contiguous blocks of a maximum predefined blockSize, measured in number of
triples and set up in the encoder. Then, the molecules (groups) within each
block are identified according to the established grouping policy. Note that the
grouping by default could slightly alter the original order of triples once it groups
triples by subject. Other grouping policies may be established for those scenarios
with specific ordering needs.

ERI follows an encoding procedure similar to that of the Efficient XML Inter-
change (EXI) format [18]: each molecule is multiplexed into channels:

Definition 3 ((general) Channel). A channel is a list of lower entropy items
(similar values), which is well suited for standard compression algorithms.

The idea is to maintain a channel per different type of information, so that a
standard compressor can be used in each channel, leveraging its data regularities
to produce better compression results. In ERI we distinguish between two types
of channels: (i) structural channels and (ii) value channels.

Structural channels hold the information of the structure of the molecules
in the block and keep the Structural Dictionary updated. We define the following
high-level minimum channels:
– Main Terms of molecules: In the grouping by default, it states the subject

of the grouping. Other kinds of groupings may assign different values.
– ID-Structures: It lists the ID of the structure of each molecule in the block.

The ID points to the associated structural entry in the Structural Dictionary.
– New Structures: It includes new entries in the Structural Dictionary.
Value channels organize the concrete values in the molecules of the block

for each non-discrete predicate. In short, ERI mainly considers one channel per
different predicate, listing all objects with occurrences in the molecules related
to it. Having property values of a predicate grouped together may help parsers
to directly retrieve information corresponding to specific predicates.

The complete ERI stream consists of an ERI header followed by an ERI body,
as shown in Figure 3 (bottom). The ERI header includes the identification of the
stream and the initial Presets, as previously described. The ERI body carries
the content of the streaming representing each block as (i) a set of metadata
identifying the block and updating potential changes in Presets, and (ii) its
compressed channels, using standard compression for each specific channel.

The decoding process is the exact opposite: the stream body is decompressed
by channels, and demultiplexed into blocks containing the molecules.

3.3 Practical ERI Encoding and Decoding

Now we describe our current deployment for ERI encoding and decoding. For
simplicity, we obviate citing the representation of metadata as it is relatively
easy to define a key set of keywords, and we focus on channel representations.
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Fig. 3. Overview of the ERI format

Figure 4 illustrates our practical decisions over the previous example in Figure
2. The figure represents the structural and value channels of the data excerpt, as
well as the potential standard compression that could be used to produce each
compressed channel. Regarding structural channels, we first follow a straightfor-
ward approach for Main Terms of Molecules and list main terms (subjects) in
plain. Advanced representations could consider the usage of an additional dic-
tionary mapping terms to identifiers, and using the corresponding identifier to
refer to a main term previously seen in the input streaming data. However, our
experience with streaming data suggests that main terms are rarely repeated
because they refer to a certain timestamp.

The ID-Structures channel lists integer IDs representing the entry in the Struc-
tural Dictionary. New entries are identified by means of an additional channel
called New Structure Marker. This channel has a bit for each ID in the ID-
Structures channel: a 0-bit states that the corresponding ID is already in the
Structural Dictionary, whereas a 1-bit shows that the ID points to a new entry
that is retrieved in the New Structures channel. In Figure 4, the first molecule
is related to the structure having the ID-30, which is marked as new. Then, the
concrete structure can be found in New Structures. Similarly to the example
in Figure 2, we codify each dictionary entry as the predicates in the structure,
the number of objects for each predicate and the concrete property values for
discrete predicates. To improve compactness in the representation we use a dic-
tionary of predicates, hence the predicate in the structure is not a term but an
ID pointing to the predicate entry in this dictionary. If there is a new predicate
never seen before in a block, it is listed in an additional New Predicates channel,
as shown in Figure 4.

The decoder will maintain a pointer to the next entry to be read in New Struc-
tures (and increment it after reading), and to hold and update the dictionary
of structures and predicates. Given that the number of predicates is relatively
low in RDF datasets, we consider a consecutive list of IDs in the predicate dic-
tionary for the encoder and decoder. For the dictionary of structures, we use
a Least Recently Used (LRU) policy for the dictionary in the encoder. That is,
whenever the maximum capacity is reached, the LRU entry is erased and the
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Fig. 4. Example of ERI channels

ID is available to encode the next entry, which must be marked as new in the
New Structure Marker channel. Therefore, the decoder can make use of simple
hashing for the dictionary, as it always knows if the entry is new.

Regarding value channels, Figure 4 illustrates several options. The channel
ID-pred2 storing the values of the second predicate (rdfs:label) simply lists all
the values. In contrast, ID-pred5 and ID-pred6 make use of a dictionary of ob-
jects. This case is similar to the dictionary of structures: the channels hold the
ID of the entry, and an associated list of bits (New Object Marker ID-pred5 and
New Object Marker ID-pred6, respectively) describes if this corresponds to a
new entry in the dictionary. The ERI processor maintains an object dictionary
per predicate. This decision produces shorter IDs per predicate w.r.t. maintain-
ing one general dictionary of objects. In contrast, the processor manages more
dictionaries, although the number of different predicates always remains pro-
portionally low, and so the number of dictionaries. In our implementation we
maintain one channel (New Terms) with all the new terms in the dictionaries.
As this list is coordinated with the IDs, there are no overlaps; the decoder must
keep a pointer to the next entry to be decoded when a 1-bit in a marker indicates
that there is a new term.

Finally, ID-pred7 also holds the object values directly, as in ID-pred2. How-
ever, as shown in the figure, it extracts the datatype of all values (xsd:float).
We assume that all property values for a given predicate are of the same kind.
In practice, this means that (i) every channel holds whether URIs/BNodes or
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Table 1. Description of the evaluation framework

Category Dataset Triples
Nt Size

Subjects Predicates Objects
(MB)

Streaming

Mix 93,048 12 17,153 89 36,279
Identica 234,000 25 56,967 12 116,065
Wikipedia 359,028 33 119,676 3 215,382
AEMET-1 1,018,815 133 33,095 59 5,812
AEMET-2 2,788,429 494 398,347 7 403,824
Petrol 3,356,616 485 419,577 8 355,122
Flickr Event Media 49,107,168 6,714 5,490,007 23 15,041,664
LOD Nevada 36,767,060 7,494.5 8,188,411 10 8,201,935
LOD Charley 104,737,213 21,470 23,306,816 10 23,325,858
LOD Katrina 172,997,931 35,548 38,479,105 10 38,503,088

Statistics

Eurostat migr reschange 2,570,652 467 285,629 16 2,376
Eurostat tour cap nuts3 2,849,187 519 316,576 17 47,473
Eurostat avia paexac 66,023,172 12,785 7,335,909 16 235,253

General
LinkedMDB 6,147,996 850 694,400 222 2,052,959
Faceted DBLP 60,139,734 9,799 3,591,091 27 25,154,979
Dbpedia 3-8 431,440,396 63,053 24,791,728 57,986 108,927,201

literals and (ii) all literal values of a given predicate are of the same data
type (float, string, dateTime, etc.). We refer to this assumption as consistent
predicates. Although this is common for data streams and other well-structured
datasets, it is more difficult to find general datasets in which this assumption
remains true. Thus, we set a parameter in Presets to allow or disallow consistent
predicates.

Regarding potential channel compressions, Figure 4 includes some standard
compression techniques and tools for each type of data. In practice, to simplify
the following evaluation, our ERI processor uses Zlib whenever textual informa-
tion is present, i.e. in the main terms of molecules, new structures, new predicates
and new terms channels. As for those channels managing IDs, each ID is encoded
with log(n) bits, n being the maximum ID in the current channel.

4 Evaluation

We implemented a first prototype of an ERI processor in Java, following the
aforementioned practical decisions. We used some tools provided by the HDT-
Java library 1.1.26, and the default Deflater compressor provided by Zlib. Tests
were performed on a computer with an Intel Xeon X5675 processor at 3.07
GHz and 48 GB of RAM, running Ubuntu/Precise 12.04.2 LTS. The network is
regarded as an ideal communication channel for a fair comparison.

4.1 Datasets

Table 1 lists our experimental datasets7, reporting: number of triples, size in N-
Triples (Nt herinafter) format, and the different number of subjects, predicates

6 https://code.google.com/p/hdt-java.
7 We have set a Research Object with all the datasets as well as the prototype source
code at http://purl.org/net/ro-eri-ISWC14 .

https://code.google.com/p/hdt-java.
http://purl.org/net/ro-eri-ISWC14
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and objects. We choose representative datasets based on the number of triples,
topic coverage, availability and, if possible, previous uses in benchmarking.

We define three different categories of datasets: streaming (10), statistics (3)
and general (3). Obviously, Streaming datasets are our main application focus;
the first six datasets in Table 1 have been already used in the evaluation of RDSZ
[10] and correspond to RDF messages in the public streamline of a microblog-
ging site (Identica), Wikipedia edition monitoring (Wikipedia), information from
weather stations in Spain (AEMET-1 andAEMET-2), credit card transactions in
petrol stations (Petrol) and a random mix of these datasets (Mix). We complete
the corpora with information of media events (e.g. concerts and other perfor-
mances) in Flickr (Flickr Event Media), and weather measurements of a blizzard
(LOD Nevada) and two hurricanes (LOD Charley and LOD Katrina) extracted
from the Linked Observation Data dataset which is the core of SRBench [20].

Statistical datasets are the prototypical case of other (non-streaming)
data presenting clear regularities that ERI can take advantage of. We
consider three datasets8 (Eurostat migr-reschange, Eurostat tour cap nuts3 and
Eurostat avia paexac) using the RDF Data Cube Vocabulary [7], providing pop-
ulation, tourism and transport statistics respectively.

Finally, we experiment with general static datasets, without prior assump-
tions on data regularities. We use well-known datasets in the domains of films
(LinkedMDB) and bibliography (Faceted DBLP), as well as Dbpedia 3-8.

4.2 Compactness Results

ERI allows multiple configurations for encoding, providing different space/time
tradeoffs for different scenarios. In this section we focus on evaluating three dif-
ferent configurations: ERI-1K (blocksize - 1024), ERI-4k (blocksize - 4096) and
ERI-4k-Nodict (blocksize - 4096). ERI-1K and ERI-4K include a LRU dictionary
for each value channel whereas ERI-4k-Nodict does not. We allow the consistent
predicates option (i.e. we save datatype tag repetitions) in all datasets except
for the mix dataset and all the general category in which the aforementioned
assumption is not satisfied. In turn, we manually define a set of common dis-
crete predicates in Presets. Finally, according to previous experiences [10], the
blockSize selection introduces a tradeoff between space and delays: the bigger
the blocks, the more regular structures can be found. This implies better com-
pression results, but with longer waiting times in the decoder. Based on this, we
select two configurations, 1K and 4K triples providing different tradeoffs.

We compare our proposal with diverse streaming compression techniques.
Table 2 analyzes the compression performance providing compression ratios as
Compressed size
Original size , taking Nt as the Original size. First, we test standard deflate

over Nt (Nt Deflate-4K), flushing the compression internal buffer each 4096
triples, and over the Turtle (TTL Deflate) serialization9 in the best scenario of
compressing the complete dataset at once. We also test the RDSZ approach,

8 Taken from Eurostat-Linked Data, http://eurostat.linked-statistics.org/.
9 For the conversion process we use Any23 0.9.0, http://any23.apache.org/.

http://eurostat.linked-statistics.org/.
http://any23.apache.org/
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Table 2. Compression results on the different datasets

Dataset
Compression Ratio

Nt Deflate-4K TTL Deflate ERI-4k ERI-4k-Nodict RDSZ HDT-4K HDT

Mix 8.2% 5.1% 5.2% 5.1% 4.9% 10.6% 7.6%
Identica 11.0% 8.5% 8.4% 8.0% 8.7% 16.4% 13.6%
Wikipedia 10.5% 7.5% 7.5% 7.7% 7.2% 13.4% 10.9%
AEMET-1 4.1% 1.5% 1.2% 0.8% 1.3% 4.4% 2.9%
AEMET-2 2.8% 1.1% 1.1% 1.1% 1.1% 3.8% 3.8%
Petrol 6.5% 3.8% 2.9% 2.6% 3.9% 9.9% 5.2%
Flickr Event Media 9.0% 6.9% 6.6% 6.3% 6.6% 14.4% 7.2%
LOD Nevada 3.2% 1.3% 1.5% 1.3% 1.2% 4.9% 3.2%
LOD Charley 3.1% 1.3% 1.4% 1.2% 1.2% 4.9% 3.2%
LOD Katrina 3.1% 1.3% 1.4% 1.2% 1.2% 5.0% 3.2%
Eurostat migr. 2.1% 0.5% 0.5% 0.5% - 2.6% 2.5%
Eurostat tour. 2.2% 0.6% 0.5% 0.6% - 2.6% 2.5%
Eurostat avia paexac 2.2% 0.6% 0.6% 0.6% - 3.2% 2.6%
LinkedMDB 4.7% 2.9% 3.1% 2.6% - 9.5% 5.9%
Faceted DBLP 5.4% 3.7% 4.0% 3.5% - 11.3% 9.2%
Dbpedia 3-8 8.0% 6.4% 8.0% 7.5% - 16.0% 8.0%

which is focused on compressing streams of RDF graphs, whereas ERI considers
continuous flows of RDF triples. Thus, the evaluation with RDSZ is limited to
streaming datasets (the first category in the table), for which we can configure
the RDSZ input as a set of Turtle graphs merged together (the input expected
by the RDSZ prototype), one per original graph in the dataset. The results of
RDSZ depend on two configuration parameters: we use batchSize=5 and cache-
Size=100, the default configuration in [10]. For a fair comparison, we consider
the original size in Nt in the reported RDSZ compression results. To complete
the comparison, we evaluate the HDT serialization, although it works on complete
datasets. Thus, we also analyze HDT on partitions of 4096 triples (HDT-4k).

The results show the varied compression ratio between categories and different
datasets. The considered statistical datasets are much more compressive than the
rest. Besides structural repetitions, they are highly compressible because they
include few objects (see Table 1) repeated throughout the dataset.

As can be seen, ERI excels in space for streaming and statistical datasets. As
expected, it clearly outperforms Nt compression (up to 5 times) thanks to the
molecule grouping. This grouping is somehow also exploited by Turtle, which
natively groups items with the same subject. Thus, the deflate compression over
Turtle can also take advantage of datasets in which predicates and values are
repeated within the same compression context. In turn, ERI clearly outperforms
Turtle compression (up to 1.9 times) in those datasets in which the repetitions in
structures and values are distributed across the stream (e.g. Petrol and Identica).

Similar reasoning can be made for the slightly different results reported by
ERI-4k and ERI-4k-Nodict. As can be seen, the presence of the object dic-
tionary can overload the representation, although it always obtains comparable
compression ratios. Note that, since ERI groups the objects by predicate within
each block, ERI-4k-Nodict using Zlib can already take advantage of the redun-
dancies in objects whenever these repetitions are present in the same block. In
turn, ERI-4k slightly improves ERI-4k-Nodict in those cases (such as statistical
datasets) in which the object repetitions are distributed across different blocks.
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Fig. 5. Analysis of compression results of the considered ERI configurations

RDSZ remains comparable to our approach. ERI outperforms RDSZ in those
datasets in which the division in graphs of the input fails to group redundancies
in compression contexts. In contrast, the RDSZ compression slightly outper-
forms ERI in two particular cases of interest: Mix, where the information is
randomly distributed, and the simple Wikipedia dataset, where only 3 predi-
cates are present. In such cases, ERI pays the cost of having several compression
channels and thus flushing the metadata of several compressors (in contrast to
one compressor in RDSZ). An alternative, which is not exploited in the present
proposal, is to group channels and use one compressor per group of channels.
This kind of decision has also been taken by EXI [18].

As for general data, LinkedMDB and Faceted DBLP datasets provide well-
structured information and thus ERI can also take advantage of repetitive struc-
tures of predicates, obtaining the best compression as well. As expected, ERI
losses efficiency in a dataset with very diverse information and structures such
as Dbpedia. Nonetheless, Turtle compression is the only competitor in this case.

As expected, HDT is built for a different type of scenario and the results are not
competitive w.r.t. ERI. Although the compression of the full dataset with HDT

improves the compression by blocks (HDT-4k), it remains far from ERI efficiency.
Figure 5 compares the compression ratio of the three ERI configurations that

have been considered. As expected, a smaller buffer in ERI-1k slightly affects
the efficiency; the more blocks, the more additional control information and
smaller regularities can be obtained and compressed. The comparison between
ERI-4k and ERI-4k-Nodict corresponds with the results in Table 2 and the
aforementioned analysis denoting the object dictionary overhead.

4.3 Processing Efficiency Results

In this section we measure the processing time of ERI, reporting elapsed times
(in seconds) for all experiments, averaging five independent executions.
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Table 3. Compression and decompression times comparing ERI and RDSZ

Dataset
Compression Time (sec.) Decompression Time (sec.)

RDSZ ERI-4k ERI-4k-Nodict RDSZ ERI-4k ERI-4k-Nodict

Mix 2.5 1.8 1.2 0.5 1.4 1.2
Identica 8.4 3.1 2.1 0.8 2.9 2.1
Wikipedia 3.8 2.8 2.2 2.7 3.2 2.7
AEMET-1 17.9 4.3 4.6 3.7 6.3 5.1
AEMET-2 95.7 15.7 12.5 4.8 20.3 16.8
Petrol 149.9 13.4 11.8 6.7 16.8 20.4
Flickr Event Media 1,141.8 262.4 207.2 204.0 311.7 388.2
LOD Nevada 534.7 329.9 208.3 428.2 191.8 218.3
LOD Charley 1,388.9 663.6 501.4 1,115.7 600.6 611.1
LOD Katrina 2,315.7 1,002.5 822.0 1,869.6 1,038.0 890.0

First, we compare compression and decompression times of ERI against RDSZ.
Table 3 reports the results for the streaming datasets (in which RDSZ applies),
comparing ERI-4k and ERI-4k-Nodict. As can be seen, ERI always outper-
forms the RDSZ compression time (3 and 3.8 times on average for ERI-4k

and ERI-4k-Nodict, respectively). In contrast, ERI decompression is commonly
slower (1.4 times on average in both ERI configurations). Note again that RDSZ
processes and outputs streams of graphs, whereas ERI manages a stream of
triples. Thus, RDSZ compression can be affected by the fact that it has to
potentially process large graphs with many triples (as is the case of the LOD
datasets), hence the differential encoding process takes a longer time. In contrast,
ERI compresses blocks of the same size. In turn, ERI decompression is generally
slower as it decompresses several channels and outputs all triples in the block.
In those datasets in which the number of value channels is very small (Wikipedia
with three predicates and LOD datasets with many discrete predicates), ERI
decompression is comparable or even slightly better than RDSZ.

As expected, the object dictionary in ERI-4k deteriorates the performance
against ERI-4k-Nodict, once the dictionary has to be created in compression and
continuously updated in decompression. The decompression is faster in ERI-4k

when there are series of triples in which the dictionary does not change.
Then, we test an application managing ERI for compression, exchange and

consumption processes. We assume hereinafter an average unicast transmission
speed of 1MByte/s. Although applications could work on faster channels, we
assume that there is a wide range of scenarios, such as sensor networks, where
the transmission is much poorer, limited, or costly. In the following, we only
focus on streams of RDF triples. Thus, we obviate RDSZ (managing streams
of graphs) and Turtle (grouping human-readable triples by default), and we
establish compressed Nt as the baseline for a fair comparison.

We first focus on transmission and decompression, without considering at this
stage the compression process as many scenarios allow the information to be com-
pressed beforehand. Thus, we measure the parsing throughput provided to the
client of the transmission, i.e. the number of triples parsed per time unit. In turn,
the total time includes the exchange time of the considered network, the decom-
pression time and the parsing process to obtain the components (subject, pred-
icate and object) of each triple. Figure 6 reports the average results over the
corpora, in triples per second, comparing ERI-4k and ERI-4k-Nodict against the
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Fig. 6. Analysis of Parsing (Exchange+Decompressing) throughput

Fig. 7. Comparison of processing performance, ERI-4K against NT-Deflate-Blocks-4k

baselineNT-Deflate-Blocks-4K. As can be seen, both ERI-4k and ERI-4k-Nodict

outperform the baseline in most cases except for those datasets with less regulari-
ties in the structure or the data values, which is in line with the previous results for
compression. This is the case of general datasets as well as two streaming datasets
(Wikipedia and Flickr Event Media in which most objects are unrepeated (as can
be seen in Table 1). On average, the gains in parsing throughput for both ERI con-
figurations are 110.64% and 142.36% for streaming and statistical datasets respec-
tively, whereas they only decrease to 99.65% for general datasets.

Finally, we address a scenario where compression is subsequently followed
by transmission and decompression (including parsing the final output to obtain
each triple). Figure 7 compares the resulting times (in logarithmic scale) of ERI-
4k against the baseline NT-Deflate-Blocks-4K. We choose ERI-4k over ERI-4k-
Nodict because the first one produces bigger sizes and worse parsing throughput,
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hence we are comparing our worst case over the baseline. Under these conditions,
ERI-4k suffers an expected overhead, given that we are always including the time
to process and compress the information in ERI whereas the baseline directly
compresses the information. Nevertheless, the time in which the client receives
all data in ERI is comparable to the baseline even in this worst case (ERI-4k-
Nodict performs better than ERI-4k as stated above), which the aforementioned
improvement in parsing throughput (as shown in Figure 6). In turn, the huge
savings in the statistical dataset make ERI slightly faster than the baseline.

5 Conclusions and Future Work

In this paper we have focused on compression as a way to minimize transmission
costs in RDF stream processing. In particular, we propose the ERI format, which
leverages inherent structural and data redundancy, which is common on RDF
streams, especially those using the W3C Semantic Sensor Network Ontology.
ERI groups triples into information units called molecules, which are encoded
into two type of channels: structural channels referencing the structure of each
molecule by means of a dynamic dictionary of structures, and value channels
grouping and compressing together all the property values by predicate. We
provide insights on the flexible and extensible ERI configurations and present a
practical implementation that is empirically evaluated.

Experiments show that ERI produces state-of-the-art compression for RDF
streams and it excels for regularly-structured static RDF datasets (e.g., statis-
tical datasets), remaining competitive in general datasets. Time overheads for
ERI processing are relatively low and can be assumed in many scenarios.

Our next plans focus on integrating ERI within the next version of morph-
streams [3], with the purpose of scaling to higher input data rates, minimizing
data exchange among processing nodes and serving a small set of retrieving fea-
tures on the compressed data. This will come together with other new features,
including an adaptive query processor aware of the compression dimension dur-
ing the application of optimization strategies. Besides, we expect to improve per-
formance of ERI management by exploring parallel compression/decompression
and the use of caches and other fast compressors besides Zlib.
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