Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 327))

Abstract

We envisage a new algorithm, to detect moving objects having dynamic and challenging background conditions, by applying low rank weightage and fuzzy aggregated multi-feature similarity method. Model level fuzzy aggregation measure driven background model maintenance is used to ensure more robustness. The model and current feature vectors are evaluated between corresponding elements to find out the similarity functions. To compute fuzzy similarities from the ordered similarity function values for each model concepts of Sugeno and Choquet integrals are incorporated in our algorithm. A fuzzy integral set is using model updating and foreground/background classification decision methods. Sugeno Integral calculates only minimum and maximum weightage. We use choquet concept because it has the same functionality as Sugeno but it also uses additional operations like arithmetic mean and Ordered Weighted Averaging (OWA). Here we explain to segment the object by fuzzy aggregation with low rank weightage concept for extracting moving objects with accurate shape in dynamic background. PSNR, MSE and SSIM values are calculated to do performance evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing Surveys 38(4), 1–45 (2006)

    Article  Google Scholar 

  2. Moeslund, T., Hilton, A., Kruger, V.: A Survey of Advances in Vision-Based Human Motion Capture and Analysis, Computer Vision and Image Understanding. Computer Vision and Image Understanding 104(2/3), 90–126 (2006)

    Article  Google Scholar 

  3. Chiu, C., Ku, M., Liang, L.: A robust object segmentation system using a probability-based background extraction algorithm. IEEE Trans. Circle Syst. Video 20(4), 518–528 (2010)

    Article  Google Scholar 

  4. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. Proc. IEEE Conf. CVPR 2, 246–252 (1999)

    Google Scholar 

  5. Tang, Z., Miao, Z.: Fast background subtraction and shadow elimination using improved Gaussian mixture model. In: Proc. IEEE Workshop Haptic, Audio, Visual Environ. Games, pp. 541–544 (2007)

    Google Scholar 

  6. Zhang, S., Yao, H., Liu, S.: Dynamic background modeling and subtraction using spatio-temporal local binary patterns. In: Proc. 15th IEEE ICIP, pp. 1556–1559 (2008)

    Google Scholar 

  7. Heikkila, H., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  8. Wang, L., Pan, C.: Fast and effective background subtraction based on ELBP. In: Proc. ICASSP, pp. 1394–1397 (2010)

    Google Scholar 

  9. Chiranjeevi, P., Sengupta, S.: Moving object detection in the presence of dynamic backgrounds using intensity and textural features. Electron. Imag. 20(4), 043009-1–043009-11 (2011)

    Google Scholar 

  10. Zhang, S., Yao, H., Liu, S., Chen, X., Gao, W.: A covariance-based method for dynamic background subtraction. In: Proc. ICPR, pp. 1–4 (2008)

    Google Scholar 

  11. Chiranjeevi, P., Sengupta, S.: Spatially correlated background subtraction, based on adaptive background maintenance. J. Vis. Commun. Image Represent. 23(6), 948–957 (2012)

    Article  Google Scholar 

  12. Jabri, S., Duric, Z., Wechsler, H., Rosenfeld, A.: Detection and location of people using adaptive fusion of color and edge information. In: Proc. 15th ICPR, vol. 4, pp. 627–630 (2000)

    Google Scholar 

  13. Chen, Y., Chen, C., Huang, C., Hung, Y.: Efficient hierarchical method for background subtraction. Pattern Recognit 40(10), 2706–2715 (2007)

    Article  MATH  Google Scholar 

  14. Wan, Q., Wang, Y.: Background subtraction based on adaptive nonparametric model. In: Proc. 7th WCICA, pp. 5960–5965 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gayathri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gayathri, A., Srinivasan, A. (2015). Moving Object Detection by Fuzzy Aggregation Using Low Rank Weightage Representation. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-11933-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11933-5_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11932-8

  • Online ISBN: 978-3-319-11933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics