
Using Flow Specifications of Parameterized Cache
Coherence Protocols for Verifying Deadlock Freedom

Divjyot Sethi1, Muralidhar Talupur2, and Sharad Malik1

1 Princeton University
2 Strategic CAD Labs, Intel Corporation

Abstract. We consider the problem of verifying deadlock freedom for symmet-
ric cache coherence protocols. While there are multiple definitions of deadlock
in the literature, we focus on a specific form of deadlock which is useful for the
cache coherence protocol domain and consistent with the internal definition of
deadlock in the Murphi model checker: we refer to this deadlock as a system-
wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is
unable to make any transition. Cache coherence protocols consist of N symmet-
ric cache agents, where N is an unbounded parameter; thus the verification of
s-deadlock freedom is naturally a parameterized verification problem.
Parametrized verification techniques work by using sound abstractions to reduce
the unbounded model to a bounded model. Efficient abstractions which work well
for industrial scale protocols typically bound the model by replacing the state of
most of the agents by an abstract environment, while keeping just one or two
agents as is. However, leveraging such efficient abstractions becomes a challenge
for s-deadlock: a violation of s-deadlock is a state in which the transitions of all
of the unbounded number of agents cannot occur and so a simple abstraction like
the one above will not preserve this violation. Authors of a prior paper, in fact,
proposed using a combination of over and under abstractions for verifying such
properties. While quite promising for a large class of deadlock errors, simultane-
ously tuning over and under abstractions can become complex.
In this work we address this challenge by presenting a technique which leverages
high-level information about the protocols, in the form of message sequence dia-
grams referred to as flows, for constructing invariants that are collectively stronger
than s-deadlock. Further, violations of these invariants can involve only one or
two interacting agents: thus they can be verified using efficient abstractions like
the ones described above. We show how such invariants for the German and Flash
protocols can be successfully derived using our technique and then be verified.

1 Introduction

We consider the problem of verifying deadlock freedom for symmetric cache coherence
protocols. Consider a cache coherence protocol P (N) where the parameter N repre-
sents an unbounded number of cache agents. The protocol implements requests sent by
the agents using messages exchanged in the protocol. For a protocol designer, the main
property of interest is the request-response property, i.e., every request from an agent
eventually gets a response. Since this property is a liveness property which is hard for

ar
X

iv
:1

40
7.

74
68

v1
 [

cs
.D

C
]

 2
8

Ju
l 2

01
4

existing model checking tools, designers resort to identifying causes for response prop-
erty failure, such as deadlock-style failures, and verify against them.

The literature is abundant with various definitions of deadlock [8, 22]. We focus
on deadlock errors in which the entire protocol gets blocked, i.e., no agent of the pro-
tocol can make any transition. We refer to such an error as a system-wide deadlock
(s-deadlock). If we model each transition τ of the protocol to have a guard τ.g, which
is false if the transition is not enabled, the s-deadlock error occurs if the guards of all
the transitions are false, i.e.,

∧
τ ¬(τ.g) is true. This kind of failure, while weaker than

other broader classes of deadlock failures, is commonly observed in industrial com-
puter system designs and is consistent with the internal definition for deadlock used
by the Murphi model checker as well [23]. This class of deadlocks is well motivated
for parameterized cache coherence protocols as these use a centralized synchroniza-
tion mechanism (e.g. a directory) and thus any deadlock results in the directory getting
blocked. It is highly likely that such a deadlock in the shared directory will end up
involving all of the agents of the protocol getting blocked, i.e., unable to make any
transition.

Since an s-deadlock error involves all of the unbounded number of agents getting
blocked and unable to make any transition, verification of s-deadlock freedom naturally
is a parameterized verification problem. Parameterized verification techniques work by
using sound abstractions to reduce the unbounded model to a finite bounded model that
preserves the property of interest. These abstractions typically tend to be simple over-
abstractions such as data-type reduction [30]. This abstraction keeps a small number
of agents (1 or 2) as is and replaces all the other agents with an abstract environment.
Such abstractions along with parameterized techniques like the CMP (CoMPositional)
method [11] have had considerable success in verifying key safety properties like mu-
tual exclusion and data integrity even for industrial scale protocols [11, 32, 37].

1.1 Challenge in Verifying S-deadlock

While parameterized techniques are successful for safety properties such as mutual
exclusion and data integrity, the application of such abstractions for parameterized ver-
ification of properties such as s-deadlock is hard. The key challenge arises from the
fact that an s-deadlock violation is a state in which all the guards are false, i.e., when∧
τ ¬(τ.g) holds; simple over-abstractions such as data-type reduction will easily mask

this violation due to the discarded state of agents other than 1 and 2 and the extra tran-
sitions of the environment.

One approach to address the above issue is to use a combination of over and under
abstractions (i.e., a mixed abstraction) instead of data-type reduction, as described in
a prior deadlock verification work [8]. While promising for verifying a large class of
deadlock errors, the use of mixed abstraction requires reasoning about over and under
abstraction simultaneously and easily becomes fairly complex.

In this paper we take a different approach. We show how high-level information
about the protocols, in the form of message sequence diagrams referred to as flows, can
be leveraged to construct invariants which are collectively stronger than the s-deadlock
freedom property. These invariants are amenable to efficient abstractions like data-type
reduction which have been used in the past for verifying industrial scale protocols.

1.2 Leveraging Flows for Deadlock Freedom

Cache coherence protocols implement high-level requests for read (termed Shared) or
write (termed Exclusive) access from cache agents, or for invalidating access rights
(termed Invalidate) of some agent from the central directory. The implementation of
these requests is done by using a set of transitions which should occur in a specific
protocol order. This ordering information is present in diagrams referred to as message
flows (or flows for brevity). These flows are readily available in industrial documents in
the form of message sequence charts and tables [37].

Fig. 1 shows two of the flows for the German cache coherence protocol describing
the processing of the Exclusive and Invalidate requests. Each figure has a directory
Dir, and two agents i and j. The downward vertical direction indicates the passage of
time. The Exclusive request is sent by the cache agent i to the directory Dir to re-
quest a write access. The Exclusive flow in Fig. 1(a) describes the temporal sequence
of transitions which occur in the implementation in order to process this request: each
message is a transition of the protocol. The message SendReqE(i) is sent by the agent
i toDir which receives this message by executing the transitionRecvReqE(i). Next, if
the directory is able to grant Exclusive access, it sends the message SendGntE(i) to
agent i which receives this grant by executing RecvGntE(i). However, in case the di-
rectory is unable to send the grant since another agent j has access to the cache line, the
directory sends a request to invalidate the access rights of j. The temporal sequence of
transitions which occur in the implementation in this case are shown in the Invalidate
flow in Fig. 1(b). This flow proceeds by the directory sending the SendInv(j) message,
the agent j sending the acknowledgment message SendInvAck(j), and the directory
receiving it by executing RecvInvAck(j) transition.

(a) Exclusive flow (b) Invalidate flow

Fig. 1: Flows for the German protocol.

Freedom from S-deadlock At a high-level, our method tries to exploit the fact that if
the protocol is s-deadlock free, when none of the transitions of an agent are enabled,
another agent can be identified which must have a transition enabled. This identifica-
tion leverages the key insight that in any state of the protocol, if all the transitions of
some agent, say a1, cannot occur, then, some flow of that agent must be blocked since
it depends on another flow of another agent, say a2, to finish. Then, there are two pos-
sibilities: (1) the agent a2 is enabled, in which case the state is not an s-deadlock state,
or (2) the agent a2 is blocked as well, in which case it depends on another agent a3. If
this dependence chain is acyclic, with the final agent in the chain enabled, the protocol
is s-deadlock free. However, if the final agent is not enabled, or if the dependence chain
has a cycle, the protocol may either have an s-deadlock error or there may be an error
in the flow diagrams used.

As an example, for the German protocol, if theExclusive flow of agent i is blocked
since the transition SendGntE(i) cannot occur, it is waiting for j to get invalidated. In
the protocol, at least some transition of the Invalidate flow on agent j can occur. This
enables proving freedom from s-deadlock for the protocol.

Using the above insight, by analyzing the dependence between blocked agents, our
method is able to point to an agent which must have at least one transition enabled in
every reachable state of the protocol. Specifically, our method enables the derivation
of a set of invariants I which collectively partition the reachable state of the protocol.
Each invariant then points to the agents which must have at least one transition enabled
when the protocol is in a state belonging to its partition. These invariants are derived in
a loop by iteratively model checking them on a protocol model with c agents, where c
is heuristically chosen as discussed in Section 3.

Verifying for an Unbounded Number of Agents Once the invariants in I are derived,
they hold for a model with c agents. These invariants use just one index (i.e., they are of
the form ∀i : φ(i)) and thus, they can be verified for an unbounded number of agents by
using efficient parameterized verification techniques such as data-type reduction along
with the CMP (CoMPositional) method [11]. This technique has previously been suc-
cessful for verifying mutual exclusion for industrial protocols [32]. We note that our
approach is not limited to the CMP method: the invariants derived may be verified by
using any parameterized safety verification technique [15, 27, 34, 35].

1.3 Key Contributions

Our method proves s-deadlock freedom for parameterized protocols (formalized in Sec-
tion 2). It takes a Murphi model of the protocol as input. As shown in Fig. 2, first, a set
of invariants I which collectively imply s-deadlock freedom are derived on a model
with c agents (Section 3). These invariants are verified for an unbounded number of
agents by using state-of-the-art parameterized verification techniques (Section 4). We
verified Murphi implementations of two challenging protocols, the German and Flash
protocols using our method (Section 5).

Limitation: The key limitation of our approach is that the invariants have to be
derived manually by inspecting counterexamples. This can be automated if additional
information about conflicting flows is available in the flow diagram itself.

Fig. 2: Experimental Flow

1.4 Relevant Related Work

Deadlock Verification: The work closest to ours is by Bingham et al. [7, 8]. They
formally verify deadlock as a safety property for protocols by specifying it using user-
identified Quiescent states (i.e., a state in which no resources are held): they specify
a protocol state to be a deadlock state if no Quiescent state is reachable from it. They
prove freedom from such a deadlock by using a combination of over and under abstrac-
tions (also referred to as a mixed abstraction [16]). Their approach is a promising way to
verify deadlock freedom which scales to protocols like the Flash protocol. However, the
required tuning of both under and over abstractions simultaneously can be complex. In
contrast, we take the flow-based alternative to enable simpler abstractions like data-type
reduction.

Since the ultimate goal of any deadlock verification effort is to verify the response
property (i.e. every high-level request eventually gets a response), we contrast our work
with liveness verification efforts as well. Among techniques for parameterized verifica-
tion of liveness, McMillan has verified liveness properties of the Flash protocol [28,29].
The proof is manual and works on the basis of user supplied lemmas and fairness as-
sumptions. In contrast, our method reduces manual effort by leveraging information
from flows along with the CMP method. Among automatic approaches for verifying
liveness properties, Baukus et al. verified liveness properties of the German protocol [6]
using a specialized logic called WSIS. Fang et al. used automatically deduced ranking
functions [21] and, in a prior work, counter abstraction [35] to verify liveness prop-
erties. While fully automatic, these approaches tend to exhibit limited scalability for
larger protocols such as Flash, due to the inherent complexity of the liveness verifica-
tion problem. In contrast to these, our approach, while requiring some user guidance,
achieves much greater scalability and enables us to verify the Flash protocol.

Parameterized Verification Techniques: We note that the invariants derived using
our method can be verified for an unbounded number of caches by any parameterized
safety verification technique, it is not dependent on the CMP method which we used.
Our choice of using the CMP method was motivated by the fact that it is the only
state-of-the-art method we are aware of which has been used successfully for verifying
protocols like Flash and other industrial scale protocols. Among other techniques, an

important technique is by Conchon et al. [15] which uses a backward reachability algo-
rithm to automatically prove a simplified version of the Flash protocol. Next, there are
numerous other prior approaches in literature for parameterized verification of safety
properties. The CMP method falls in the broad category of approaches which use com-
positional reasoning [1, 2] and abstraction based techniques to verify parameterized
systems; the literature is abundant with examples of these [13,14,17,20,27,28,34,35].
Next, another category of approaches work by computing a cutoff bound k and show-
ing that if the verification succeeds for k agents, then the protocol is correct for an
arbitrary number of agents [3, 5, 12, 18, 19, 24]. Finally, there are approaches based on
regular model checking which use automata-based algorithms to verify parameterized
systems [4,9,10,36]. To the best of our knowledge, the CMP method is the state-of-the-
art for protocol verification in contrast to these methods and has been used to success-
fully verify larger protocols such as Flash with minimal manual effort. (Other methods
which verify Flash protocol in full complexity are by Park et al. [33] and Park et al.
[17]. As described by Talupur et al. [37], these are significantly manual and take much
more time to finish verification of the Flash protocol compared to the CMP method.)

2 Protocols, Flows and S-deadlock Freedom: Background

2.1 Preliminaries

A protocol P (N) consists of N symmetric cache agents, with ids from the set NN =
{1, 2, 3, . . . , N}. We follow our prior approach [37] (which was inspired by the ap-
proach of Kristic [25]) in formalizing cache coherence protocols.

Index Variables: The protocol uses index variables quantified over the set of index
values NN . Thus, if i is an index variable, then i takes values from the domain NN .

State Variables: The state of the protocol consists of local variables, and global
variables shared between the agents. Each of these types of variables can either hold
values from the Boolean domain (variables with values from generic finite domains can
be represented as a set of Boolean variables) or pointers which can hold agent ids. We
represent the Boolean variables in the global state as GB , and the pointers as GP . The
Boolean local state variables of each agent i are encoded as LB [i], and the local pointer
variables as LP [i]. The pointer variables have values from the domain NN ∪ {null},
where null represents that the variable does not hold any index value.

Expressions: An expression is a, possibly quantified, propositional formula with
atoms GB , GP = j, LB [i] and LP [i] = j, where, i and j are index variables.

Assignments: Assignments are of the form GB := b, or GP := j, LB [i] := b or
LP [i] := j, where, b is a variable with Boolean value and i, j are index variables.

Rules: Each agent i consists of a set of rules rl1(i), rl2(i), rl3(i), . . . , rlk(i). Each
rule rlj(i) can be written as: rlj(i) : rlj(i).ρ→ rlj(i).a,where, rlj(i) is the rule name,
rlj(i).ρ, the guard, is an expression, and rlj(i).a is a list of assignments, such that these
assignments are restricted to only update the global variables or the local variables of
agent i. The local variables and rules for all agents i are symmetric.

Protocol: The above defined variables and rules naturally induce a state transition
system. A protocol, then, is a state transition system (S,Θ, T), where S is the set of

protocol states, Θ ⊆ S is the set of initial states, and T ⊆ S × S is the transition
relation. Each protocol state s ∈ S is a valuation of the variables GB , GP , and LB [i],
LP [i] for each agent i. There exists a transition τ(iv) = (s, s′), (s, s′) ∈ T from state
s to s′ if there is a rule rlj(i) and value of index variable i = iv , s.t. rlj(iv).ρ holds in
s, and s′ is obtained by applying rlj(iv).a to s. In state s, we say that the rule rlj(i)
is enabled for agent with id iv if the guard rlj(iv).ρ is true. When the enabled rule is
executed, its action is applied to update the state and we say that the rule rlj(i) has fired
for agent iv . The action is applied atomically to update the state, thus the transitions of
the protocol have interleaving semantics. Finally, we define an execution trace of the
protocol as a series of transitions where each transition is a fired rule. Thus, a trace can
be represented by a series (rla(i0), rlb(i1), . . . , rls(ik)), where the transition rlm(in)
is the rule rlm fired for the agent with id in.

S-deadlock Definition We define a protocol state s to be an s-deadlock state if no
rule in that state is enabled. Then, a protocol is s-deadlock free if in all states, there exists
at least one rule which is enabled. This can be expressed as the invariant:

∨
i

∨
j rlj(i).ρ,

i.e., the protocol is s-deadlock free if the disjunction of the guards of all the rules of all
the agents is true for all the reachable states.

Flows Flows describe the basic organization of rules for implementing the high-
level requests in a protocol (for example a request forExclusive access or an Invalidate).
We model a flow as a set of rules F(i) of the form {rla(i), rlb(i), rlc(i), . . . , rln(i)}
which accomplish a high-level request of agent i.3 The rules in a flow are partially or-
dered, with the partial order relation denoted as ≺F(i). For example, in the Exclusive
flow in Fig. 1(a), the rules (arrows) are totally ordered along the downward direc-
tion. Thus SendReqE(i) ≺FE(i) RecvReqE(i), where FE denotes the set of rules
for Exclusive flow. For every rule rlk(i) in the flow F(i), the partial order naturally
induces the following precondition: for the rule rlk(i) to fire, all the rules preceding that
rule in the partial order of the flowF(i) must have already been fired. This precondition
is denoted by rlk(i).pF(i) and, formally, can be written as:

rlk(i).pF(i) = ∀j :
(
{(rlj(i) ∈ F(i))∧(rlj(i)≺F(i)rlk(i))} ⇒ (rlj(i).fired = true)

)
,

where rlj(i).fired is an auxiliary variable which is initially set to false when the flow
F(i) starts and is set to true when the rule rlj(i) has fired for that flow.

Designs of protocols are presented in industrial documents as a set of flows F1(i),
F2(i), F3(i), . . ., Fk(i). In order to process a high-level request, a protocol may use a
combination of these flows, e.g. in order to execute a request for Exclusive access the
German protocol uses the Exclusive and Invalidate flows. Each flow in a protocol
represents an execution scenario of the protocol for processing some high-level request.
Thus many of the flows of a protocol tend to exhibit a lot of similarity as they are
different execution scenarios of the same high-level request. This makes them fairly
easy to understand. In Section 3, we show how a set of invariants collectively implying
s-deadlock freedom can be derived from these flows.

3 For ease of exposition we assume that the guard and action of a rule are over the variables of
a single agent. Thus, a flow containing such rules also involves a single agent. In general, a
rule and thus a flow can involve a larger but fixed number of interacting agents as well. Our
approach can be easily generalized to that case.

Some definitions: We define the union of all the flows of agent i by R(i), i.e.,
R(i) =

⋃
k Fk(i). Next, we define the operator ên which is true for a set of rules,

if at least one rule in the set is enabled, else it is false. Thus, for example, ên(R(i))
holds if at least one of the rules in R(i) is enabled. In this case, we say that the agent
i is enabled. Similarly, we say that a flow F(i) is enabled if at least one of its rules
is enabled, i.e., ên(F(i)) holds. In case a flow F(i) is not enabled, we say that it is
blocked on some rule rlj(i) ∈ F(i) if the precondition of the rule rlj(i).pF(i) holds
but the guard of the rule rlj(i).ρ is false.

2.2 German Protocol Implementation

The German protocol consists of agents such that each agent can have Exclusive (E),
Shared (S) or Invalid (I) access to a cache line, as stored in the variableCache[i].State.
An agent i requests these access rights by sending messages on a channelReqChannel[i]
to a shared directory which sends corresponding grants along the channelGntChannel[i].
The directory is modeled as a set of global variables which serves one agent at a time: it
stores the id of the agent being served in the variable CurPtr. It also stores the nature
of the request in the variable CurCmd with values in {ReqE,ReqS,Empty}, where
ReqE represents a request for Exclusive access, ReqS for Shared and Empty for
no request. Finally, the directory tracks if Exclusive access is granted to some agent
or not using the variable ExGntd: it is true if access is granted and false otherwise. A
simplified version of the code for the Exclusive request is shown in Fig. 3, with the
original Murphi implementation [11] presented in Appendix A.

In processing the Exclusive request, before sending the grant SendGntE(i), the
directory checks if there are any sharers of the cache line (by checking ShrSet =
{}). If there are sharers, the Invalidate flow is invoked for each agent in ShrSet.
Upon invalidation of all the agents in ShrSet, the ShrSet becomes empty and so
the SendGntE(i) rule becomes enabled for execution. We show the code for the
SendInv(i) rule below.
∀ i : NN; do Rule SendInv(i)
InvChannel[i].cmd = Empty ∧ i ∈ ShrSet ∧
((CurCmd = ReqE) ∨ (CurCmd = ReqS ∧ ExGntd = true))

→
InvChannel[i].cmd := Invalidate;

End;
We note a condition Inv Cond, which must be true for invoking the Invalidate

flow and can be identified from the guard of SendInv(i); Inv Cond :
((
(CurCmd =

ReqE) ∨ ((CurCmd = ReqS) ∧ (ExGntd = true))
)
∧ (ShrSet 6= {})

)
.

3 Deriving Invariants for Proving S-deadlock Freedom

In this section, we show how a set of invariants I can be derived from flows such
that the invariants in I collectively imply s-deadlock freedom. At a high-level, our
method tries to show s-deadlock freedom by partitioning the global state of the protocol
using predicates, such that for each partition, some agent i has at least one transition

∀ i : NN; do Rule SendReqE(i)
ReqChannel[i].cmd=Empty ∧
(Cache[i].State=I ∨ Cache[i].State=S)
→
ReqChannel[i].cmd := ReqE;

End;

∀ i : NN; do Rule RecvReqE(i)
ReqChannel[i].cmd=ReqE ∧ CurCmd=Empty
→
CurCmd := ReqE; CurPtr := i;
ReqChannel[i].cmd := Empty;

End;

∀ i : NN; do Rule SendGntE(i)
CurCmd=ReqE ∧ CurPtr=i ∧
GntChannel[i]=Empty ∧ Exgntd=false
∧ ShrSet={}
→
GntChannel[i] := GntE; ShrSet := {i};
ExGntd := true; CurCmd := Empty;
CurPtr := NULL;

End;

∀ i : NN; do Rule RecvGntE(i)
GntChannel[i]=GntE
→
Cache[i].State := E; GntChannel[i] := Empty;

End;

Fig. 3: Implementation of the Exclusive Request.

enabled. Each invariant inv is of the form inv.pred ⇒
(
∀i ∈ Ininv : ên(R(i))

)
,

where inv.pred is a predicate on the global variables of the protocol, Ininv ⊆ NN
s.t. ¬(Ininv = {}) (this is discharged as a separate assertion for model checking) and
ên(R(i)) denotes a disjunction of the guards of the rules inR(i). The key insight is that
since ên(R(i)) has transitions from a single agent, the abstractions required for model
checking inv for an unbounded number of agents are significantly simpler than those
for checking the original s-deadlock property,4 as discussed in Section 4.

Our method iteratively model checks each invariant in I to refine it. Suppose, the
invariant inv ∈ I fails on model checking with the state of the protocol at failure
being sf . Then, there exists some agent if such that when inv.pred holds in sf , if ∈
Ininv is true and ên(R(if)) is false in sf . This can happen due to two reasons: first,
there may be a mismatch between the flow specification and the rule-based protocol
description. This can be due to a missing rule in some flow, a missing flow all together,

4 In the case of rules involving more than one agent (say c), the corresponding invariants may
involve transitions from c agents as well. Since c is small for practical protocols, the abstraction
constructed for verifying such invariants will be simple as well.

or an implementation error: the cause for the mismatch can be discovered from the
counterexample. As an example for this case, the counterexample may show that all
flows of the agent if are not enabled, however the agent still has some rule rle(if)
enabled: this rule may be a part of a missing flow. However, typically the invariant inv
fails due to the second reason: there must exist some flow F of the agent if which is
blocked (i.e. it has a rule which is expected to be enabled and so has precondition true
but has its guard false). This blocked flow is waiting for another flow F’ of another
agent is to complete. As an example, for the German protocol, the Exclusive flow
may be blocked for agent if with the rule SendGntE(if) having precondition true but
guard false and waiting for an Invalidate request to complete for another agent is in
the set Sharers. In this case, the set I is refined by splitting the invariant inv.

The invariant inv is split by, (1) splitting the predicate inv.pred to further partition
the global state, and (2) updating the set Ininv for each partition. To accomplish this,
the user identifies a pointer variable fromGP or LP [i] (or an auxiliary variable) ŵ, such
that it has the value is in the failing state sf (and so acts as a witness variable for is). The
user also identifies a conflict condition conf on the global state which indicates when
is is enabled and if fails. This is done by using the heuristic that if the rule rlf (if) of
flow F of agent if is blocked, conf can be derived by inspecting the guard of rlf (if);
the condition conf generally is the cause for falsification of rlf (if).ρ. For example, for
the German protocol, conf is derived from the guard of SendGntE and ŵ points to
some sharer which is being invalidated.

Using conf and ŵ, the invariant can be split into two invariants. (1) The first in-
variant excludes the case when conflict happens from the original invariant, i.e., inv1 :
(inv.pred ∧ ¬conf) ⇒

(
∀i ∈ Ininv1 : ên(R(i))

)
, where Ininv1 = Ininv . (2) The

second invariant shows that when a conflict happens, the agent pointed to by ŵ must be
enabled and so the protocol is still s-deadlock-free, i.e., inv2 : (inv.pred ∧ conf) ⇒(
∀i ∈ Ininv2 : ên(R(i))

)
, where Ininv2 = {i| (i ∈ NN) ∧ (i = ŵ)}. For both the in-

variants, assertions which check that the corresponding set of indices are non-empty are
also verified. For example, for inv1, this assertion is (inv.pred ∧ ¬conf)⇒ Ininv1.

Our method derives these invariants by iteratively model checking with a small
number c (3 for German protocol) of agents. (Once the invariants are derived for c
agents, they are verified for an unbounded number of agents, as shown is Section 4.)
This number c needs to be chosen to be large enough such that the proof of s-deadlock
freedom is expected to generalize to an unbounded number of agents. For the protocols
we verified, we found that as a heuristic, c should be one more than the maximum
number of agents involved in processing a high-level request. For the German protocol,
an Exclusive request may involve two agents, a requesting agent i and an agent j
getting invalidated, so we chose c to be equal to 3.

Fig. 4 shows the details of the method. It starts with an initial broad guess invariant,
true⇒

(
∀i ∈ NN : ên(R(i))

)
(line 1). This indicates that in all reachable states, every

agent has at least one transition enabled. As this invariant is false, this broad guess
invariant is refined into finer invariants, using the loop. On finishing, the user is able to
derive a set of invariants, I, which collectively imply s-deadlock freedom. Further, the
user is also able to derive an assertion set, A, such that for each invariant inv in I, an
assertion in A checks if the set of indices Ininv is non-empty when inv.pred holds.

DERIVE INVARIANTS(P(c)):
1: I = {true⇒

(
∀i ∈ NN : ên(R(i))

)
}

2: A = {}
3: while P(c) 6|= I do
4: Let inv ∈ I : P(c) 6|= inv and

inv : inv.pred⇒
(
∀i ∈ Ininv : ên(R(i))

)
, where, Ininv ⊆ NN

5: Inspect counterexample cex and failing state sf :
6: Case 1: mismatch between flows and protocol
7: Exit loop and fix flows or protocol
8: Case 2: identify conflicting agents if and is s.t.
9: (1) if :

(
(if ∈ Ininv) ∧ (¬ên(R(if)))

)
holds in sf .

10: (2) ∃rlf ∈ F(if) s.t.
(
rlf (if).pF ∧ ¬(ên(F(if)))

)
holds in sf .

11: (3) ên(R(is)) holds in sf .
12: Identify conf and witness ŵ from above information
13: inv1 : (¬conf ∧ inv.pred)⇒

(
∀i ∈ Ininv : ên(R(i))

)
14: inv2 : (conf ∧ inv.pred)⇒

(
∀i ∈ Ininv2 : ên(R(i))

)
, where,

Ininv2 = {i| i = ŵ}
15: I = {I \ inv} ∪ {inv1, inv2}
16: A =

(
A \

(
inv.pred⇒ (Ininv 6= {})

))
∪

{
(
inv1.pred⇒ (Ininv1 6= {})

)
,
(
inv2.pred⇒ (Ininv2 6= {})

)
}

Fig. 4: Method for Deriving Invariants from Flows.

Soundness of the Method The following theorem shows that the invariants in I
along with the assertions in A collectively imply s-deadlock freedom, with proof in
Appendix B.

Theorem. If the set of invariants I along with the set of assertions A hold, they col-
lectively imply s-deadlock freedom, i.e.,

((∧
inv∈I(P |= inv)

)
∧
(∧

asrt∈A(P |=
asrt)

))
⇒
(
P |= (

∨
i

∨
j rlj(i).ρ)

)
.

3.1 Specifying Invariants for the German Protocol

We derive the invariants for a model of the German protocol with 3 cache agents. We
start with the initial invariant that for all agents, some flow is enabled, i.e., INV-1:
true⇒

(
∀i ∈ NN : ên(R(i))

)
.

Iteration 1: Model checking the invariant INV-1 returns a counterexample trace
(SendReqE(1), RecvReqE(1), SendReqE(2)). Since the index of the last rule in
the trace is 2, ên(R(2)) must be false. This is because the rule RecvReqE(2) of the
Exclusive flow of cache 2 is not fired and thus has precondition true but guard false.
The user identifies the conflict condition conf = ¬(CurCmd = Empty) from the
guard of the blocked rule RecvReqE(2). Since CurPtr is the witness pointer in the
protocol for the variable CurCmd, the witness ŵ is set to CurPtr. Thus, the invariant
is split as follows:

– INV-1.1: (CurCmd = Empty)⇒ (∀i ∈ NN : ên(R(i))).

– INV-1.2: ¬(CurCmd = Empty) ⇒ (∀i ∈ Ininv−1.2 : ên(R(i))), where
Ininv−1.2 = {i| (i ∈ NN) ∧ (i = CurPtr)}. The assertion ¬(CurCmd =
Empty)⇒¬(Ininv−1.2 = {}) is also checked.

Iteration 2: Next, on model checking the invariants INV-1.1 and INV-1.2, the invari-
ant INV-1.2 fails. The counterexample trace returned is (SendReqE(1),RecvReqE(1),
SendGntE(1), SendReqE(2), RecvReqE(2), SendReqE(2)). Since the last rule of
the counterexample is from cache 2, ên(R(2)) must be false even when CurPtr = 2.
Further, there are two flows for two Exclusive requests by cache 2 active in the coun-
terexample, the first with SendReqE(2) fired and the second with SendReqE(2),
RecvReqE(2) fired. Since the first flow is blocked on the ruleRecvReqE(2), the guard
of this rule is inspected. The guard is false as CurCmd is not empty. However, since
the corresponding witness variable for CurCmd is CurPtr which is already 2 (due to
the processing of the second flow), this is not a conflict with another cache. The conflict
must then be for the second Exclusive flow. The second flow is blocked on the rule
SendGntE(2) with precondition true but guard false: the user identifies the conflict
condition conf from the guard of SendGntE to be Inv Cond. Now, if Inv Cond is
true, the Invalidate flow for some sharer cache (cache 1 in this trace) must be active.
Thus, the user identifies ŵ to point to a sharer which must be invalidated: this is done
using the auxiliary variable Sharer, which points to the last sharer to be invalidated in
ShrSet. Thus, the invariant INV-1.2 is split as follows:

– INV-1.2.1:
(
¬(CurCmd = Empty) ∧ (¬Inv Cond)

)
⇒ (∀i ∈ Ininv−1.2.1 :

ên(R(i))), where, Ininv−1.2.1 = Ininv−1.2. An assertion that the precondition im-
plies the index set is non-empty is also checked.

– INV-1.2.2:
(
¬(CurCmd = Empty) ∧ (Inv Cond)

)
⇒ (∀i ∈ Ininv−1.2.2 :

ên(R(i))), where, Ininv−1.2.2 = {i| (i ∈ NN)∧ (i ∈ ShrSet)}. An assertion that
the precondition implies the index set is non-empty is also checked.

Iteration 3: Next, on model checking, the invariants INV-1.1, INV-1.2.1, INV-
1.2.2, along with the added assertions hold for a model with 3 caches. Then, to prove
s-deadlock freedom, this set of invariants form a candidate set to verify a protocol model
with an unbounded number of agents. The property is checked for unbounded agents
using techniques described in Section 4.

4 Verifying Flow Properties for Unbounded Agents

We now show how to verify the invariants in I for an unbounded number of agents by
leveraging the data-type reduction abstraction along with the CMP method.

Abstraction: Data-type Reduction Since the invariant is of the form inv.pred⇒(
∀i ∈ Ininv : ên(R(i))

)
, by symmetry, it is sufficient to check: inv.pred ⇒

(
(1 ∈

Ininv) ⇒
(
ên(R(1))

))
. In order to verify this invariant, just the variables of agent 1

are required. Then, our abstraction keeps just the agent 1, and discards the variables of
all the other agents by replacing them with a state-less environment agent. We refer to
agent 1 as a concrete agent and the environment as Other with id o.

In the original protocol, since all the agents other than agent 1 interact with it by
updating the global variables, the actions of these agents on the global variables are
over-approximated by the environment agent. This environment agent does not have
any local state. The construction of this agent Other is automatic and accomplished
syntactically: further details on the automatic construction are available in [37]. The
final constructed abstraction then consists of: (1) a concrete agent 1, (2) an environment
agent Other with id o, and (3) invariants specified on variables of agent 1 and global
variables. This abstraction is referred to as data-type reduction. If the original protocol
is P , and invariant set I, we denote this abstraction by data type and thus the abstract
model by data type(P) and the abstracted invariants on agent 1 by data type(I).

Abstraction for German Protocol We now describe how the rule SendGntE(i)
gets abstracted in data type(P). In the abstract model, there is one concrete agent
1, which has the rule SendGntE(1). Next, SendGntE(o) is constructed as follows.
(1) The guard is abstracted by replacing all atoms consisting of local variables (e.g.
GntChannel[i] = Empty) with true or false depending on which results in an over-
abstraction and by replacing any usage of i in atoms with global variables (e.g.CurPtr =
i) with o (i.e. CurPtr = o). (2) The action is abstracted by discarding any assignments
to local variables. Further, assignments to global pointer variables are abstracted as
well: any usage of i (e.g. CurPtr := i) is replaced by o (i.e. CurPtr := o). The rule
for agent Other is shown below:

Rule SendGntE(o)
CurCmd = ReqE ∧ CurPtr = o ∧ true ∧ Exgntd = false ∧
ShrSet = {}

→
ShrSet := {o}; ExGntd := true; CurCmd := Empty;
CurPtr := NULL;

End;
The Abstraction-Refinement Loop of the CMP Method The CMP method works

as an abstraction-refinement loop, as shown in Fig. 5. In the loop, the protocol and in-
variants are abstracted using data-type reduction. If the proof does not succeed, the
user inspects the returned counterexample cex and following possibilities arise. (1)
Counterexample cex is real, in which case an error is found and so the loop exits.
(2) Counterexample cex is spurious and so the user refines the protocol by adding a
non-interference lemma lem. The function strengthen updates the guard rlj(i).ρ of ev-
ery rule rlj(i) of the protocol to rlj(i).ρ ∧ lem(j); this way, on re-abstraction with
data type in line 1, the new abstract protocol model is refined. Additional details on
the CMP method are available in [11, 25].

5 Experiments

Using our approach, we verified Murphi (CMurphi 5.4.6) implementations of the Ger-
man and Flash protocols (available online [31]). Our experiments were done on a 2.40
GHz Intel Core 2 Quad processor, with 3.74 GB RAM, running Ubuntu 9.10.

German Protocol We verified the invariants discussed in Section 3.1, in order to
prove s-deadlock freedom. We chose to use an abstraction with 2 agents and an envi-
ronment agent, so that the mutual exclusion property can also be checked.

CMP(P(N), I)
1: P# = P(N);I# = I
2: while data type(P#) 6|= data type(I#) do
3: examine counterexample cex
4: if cex is real, exit
5: if spurious:
6: find lemma lem = ∀i.lem(i)
7: P# = strengthen(P#, lem)
8: I# = I# ∪ lem

Fig. 5: The CMP method

The proof finished in 217s with 7M states explored. No non-interference lemmas
were required to refine the model, in order to verify the invariants presented in Sec-
tion 3.1. Since typically protocols are also verified for properties like data integrity (i.e.
the data stored in the cache is consistent with what the processors intended to write) and
mutual exclusion, we model checked the above invariants along with these properties.
In this case, the abstract model was constrained and model checking this model was
faster and took 0.1 sec with 1763 states explored.

Buggy Version We injected a simple error in the German protocol in order to intro-
duce an s-deadlock. In the bug, an agent being invalidated drops the acknowledgement
SendInvAck it is supposed to send to the directory. This results in the entire protocol
getting blocked, hence an s-deadlock situation. This was detected by the failing of the
invariant INV-1.2.2, discussed in Section 3.1.

Flash Protocol Next, we verified the Flash protocol [26] for deadlock freedom. The
Flash protocol implements the same high-level requests as the German protocol. It also
uses a directory which has a Boolean variable Pending which is true if the directory is
busy processing a request from an agent pointed to by another variable CurSrc (name
changed from original protocol for ease of presentation). However, the Flash protocol
uses two key optimizations over the German protocol. First, the Flash protocol enables
the cache agents to directly forward data between each other instead of via the directory,
for added speed. This is accomplished by the directory by forwarding incoming requests
from the agent i to the destination agent, FwDst(i), with the relevant data. Second, the
Flash protocol uses non-blocking invalidates, i.e, the Exclusive flow does not have
to wait for the Invalidate flow to complete for the sharing agents in ShrSet. Due to
these optimizations, the flows of the Flash protocol are significantly more complex than
those of German protocol. Further, due to forwarding, some rules involve two agents
instead of one for the German protocol: thus the flows involve two agents as well.
Each flow then is of the form Fk(i, j), where i is the requesting agent for a flow and
j = FwDst(i) is the destination agent to which the request may be forwarded by the
directory. Then, we defineR(i) to be equal to

⋃
k Fk(i, FwDst(i)).

We derived the invariants from the flows by keeping c to be equal to 3, as each re-
quest encompasses a maximum of 2 agents (forwarding and invalidation do not happen
simultaneously in a flow). The final invariants derived using our method are as follows:

Directory Not Busy: If the directory is not busy (i.e., Pending is false), any agent i
can send a request. Thus the invariant INVF-1:¬(Pending)⇒

(
∀i ∈ NN : ên(R(i))

)
.

However, if the directory is busy (i.e., Pending is true), two possibilities arise. (1)
It may be busy since it is processing a request from agent CurSrc. Or, (2) in case
the request from CurSrc requires an invalidate, the directory may remain busy with
invalidation even after the request from CurSrc has been served. This is because Flash
allows the request from CurSrc to complete before invalidation due to non-blocking
invalidates. Hence the following invariants:

Directory Busy with Request: Invariant INVF-2:
(
(Pending)∧(ShrSet = {})

)
⇒(

∀i ∈ IninvF−2ên(R(i))
)
, where IninvF−2 = {i| (i ∈ NN) ∧ (i = CurSrc)}.

Directory Busy with Invalidate: Invariant INVF-3:
(
(Pending) ∧ ¬(ShrSet =

{})
)
⇒
(
∀i ∈ IninvF−3ên(R(i))

)
,where IninvF−3 = {i| (i ∈ NN)∧(i ∈ ShrSet)}.

Runtime: We verified the above invariants along with the mutual exclusion and
the data integrity properties for an unbounded model abstracted by keeping 3 concrete
agents (one agent behaves as a directory) and constructing an environment agent Other.
The verification took 5127s with about 20.5M states and 152M rules fired. In this case
we reused the lemmas used in prior work by Chou et al. [11] for verifying the mutual
exclusion and data integrity properties in order to refine the agent Other.

Verifying Flash vs German Protocol: The flows of the Flash protocol involve two
indices: we eliminated the second index by replacing it with the variable FwDst(i)
which stores information of the forwarded cache and thus made the verification simi-
lar to the German protocol case. Next, Flash protocol uses lazy invalidate: even if the
original request has completed, the directory may still be busy with the invalidate. As
explained above, this was in contrast to the German protocol and resulted in an addi-
tional invariant INVF-3.

Comparison with Other Techniques: The only technique we are aware of which
handles Flash with a high degree of automation is by Bingham et al. [8]. While a di-
rect comparison of the runtime between their approach and ours is infeasible for this
paper, we note that the invariants generated using our approach only require an over-
abstraction in contrast to theirs which requires a mixed-abstraction. This is an advan-
tage since development of automatic and scalable over-abstraction based parameterized
safety verification techniques is a promising area of ongoing research (e.g. [15]) which
our approach directly benefits from.

6 Conclusions and Future Work

In this paper we have presented a method to prove freedom from a practically motivated
deadlock error which spans the entire cache coherence protocol, an s-deadlock. Our
method exploits high-level information in the form of message sequence diagrams—
these are referred to as flows and are readily available in industrial documents as charts
and tables. Using our method, a set of invariants can be derived which collectively
imply s-deadlock freedom. These invariants enable the direct application of industrial
scale techniques for parameterized verification.

As part of future work, we plan to take up verification of livelock freedom by ex-
ploiting flows. Verifying livelock requires formally defining a notion of the protocol
doing useful work. This information is present in flows—efficiently exploiting this is
part of our ongoing research.

References
1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang. Syst. 15(1),

73–132 (Jan 1993), http://doi.acm.org/10.1145/151646.151649
2. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang. Syst. 17(3),

507–535 (May 1995), http://doi.acm.org/10.1145/203095.201069
3. Abdulla, P., Haziza, F., Holk, L.: All for the price of few. In: Giacobazzi, R., Berdine, J.,

Mastroeni, I. (eds.) Verification, Model Checking, and Abstract Interpretation. Lecture Notes
in Computer Science, vol. 7737, pp. 476–495. Springer Berlin Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-35873-9_28

4. Abdulla, P., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004 - Concurrency Theory. Lecture Notes in
Computer Science, vol. 3170, pp. 35–48. Springer Berlin Heidelberg (2004), http://dx.
doi.org/10.1007/978-3-540-28644-8_3

5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with automat-
ically computed inductive assertions. In: Proceedings of the 13th International Conference
on Computer Aided Verification. pp. 221–234. CAV ’01, Springer-Verlag, London, UK, UK
(2001), http://dl.acm.org/citation.cfm?id=647770.734120

6. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coherence pro-
tocol: Safety and liveness. In: Revised Papers from the Third International Workshop
on Verification, Model Checking, and Abstract Interpretation. pp. 317–330. VMCAI ’02,
Springer-Verlag, London, UK, UK (2002), http://dl.acm.org/citation.cfm?
id=646541.696180

7. Bingham, B., Bingham, J., Erickson, J., Greenstreet, M.: Distributed explicit state model
checking of deadlock freedom. In: Computer Aided Verification. pp. 235–241. Springer
(2013)

8. Bingham, B., Greenstreet, M., Bingham, J.: Parameterized verification of deadlock free-
dom in symmetric cache coherence protocols. In: Proceedings of the International
Conference on Formal Methods in Computer-Aided Design. pp. 186–195. FMCAD
’11, FMCAD Inc, Austin, TX (2011), http://dl.acm.org/citation.cfm?id=
2157654.2157683

9. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt, WarrenA.,
J., Somenzi, F. (eds.) Computer Aided Verification. Lecture Notes in Computer Science,
vol. 2725, pp. 223–235. Springer Berlin Heidelberg (2003), http://dx.doi.org/10.
1007/978-3-540-45069-6_24

10. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Proceedings
of the 12th International Conference on Computer Aided Verification. pp. 403–418. CAV ’00,
Springer-Verlag, London, UK, UK (2000), http://dl.acm.org/citation.cfm?
id=647769.734106

11. Chou, C.T., Mannava, P.K., Park, S.: A simple method for parameterized verification of cache
coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD. Lecture Notes in Computer
Science, vol. 3312, pp. 382–398. Springer (2004)

12. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical
finite-state processes. In: Proceedings of the Fifth Annual ACM Symposium on Principles
of Distributed Computing. pp. 240–248. PODC ’86, ACM, New York, NY, USA (1986),
http://doi.acm.org/10.1145/10590.10611

13. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstraction frame-
work for model checking concurrent systems. In: Proceedings of the Theory and practice of
software, 14th international conference on Tools and algorithms for the construction and
analysis of systems. pp. 33–47. TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg
(2008), http://portal.acm.org/citation.cfm?id=1792734.1792740

http://doi.acm.org/10.1145/151646.151649
http://doi.acm.org/10.1145/203095.201069
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-540-28644-8_3
http://dx.doi.org/10.1007/978-3-540-28644-8_3
http://dl.acm.org/citation.cfm?id=647770.734120
http://dl.acm.org/citation.cfm?id=646541.696180
http://dl.acm.org/citation.cfm?id=646541.696180
http://dl.acm.org/citation.cfm?id=2157654.2157683
http://dl.acm.org/citation.cfm?id=2157654.2157683
http://dx.doi.org/10.1007/978-3-540-45069-6_24
http://dx.doi.org/10.1007/978-3-540-45069-6_24
http://dl.acm.org/citation.cfm?id=647769.734106
http://dl.acm.org/citation.cfm?id=647769.734106
http://doi.acm.org/10.1145/10590.10611
http://portal.acm.org/citation.cfm?id=1792734.1792740

14. Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In:
Proceedings of the 7th International Conference on Verification, Model Checking, and Ab-
stract Interpretation. pp. 126–141. VMCAI’06, Springer-Verlag, Berlin, Heidelberg (2006),
http://dx.doi.org/10.1007/11609773_9

15. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaidi, F.: Invariants for finite instances and
beyond. In: Formal Methods in Computer-Aided Design (FMCAD), 2013. pp. 61–68 (Oct
2013)

16. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans.
Program. Lang. Syst. 19(2), 253–291 (Mar 1997), http://doi.acm.org/10.1145/
244795.244800

17. Das, S., Dill, D., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled,
D. (eds.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 1633,
pp. 160–171. Springer Berlin Heidelberg (1999), http://dx.doi.org/10.1007/
3-540-48683-6_16

18. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: Proceed-
ings of the 17th International Conference on Automated Deduction. pp. 236–254. CADE-17,
Springer-Verlag, London, UK, UK (2000), http://dl.acm.org/citation.cfm?
id=648236.753642

19. Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache coherence
protocols. In: Correct Hardware Design and Verification Methods (CHARME 03), LNCS
2860. pp. 247–262. Springer (2003)

20. Emerson, E.A., Namjoshi, K.S.: Automatic verification of parameterized synchronous sys-
tems (extended abstract). In: Proceedings of the 8th International Conference on Com-
puter Aided Verification. pp. 87–98. CAV ’96, Springer-Verlag, London, UK, UK (1996),
http://dl.acm.org/citation.cfm?id=647765.735841

21. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with invisible ranking. Int. J. Softw.
Tools Technol. Transf. 8(3), 261–279 (Jun 2006), http://dx.doi.org/10.1007/
s10009-005-0193-x

22. Holt, R.C.: Some deadlock properties of computer systems. ACM Comput. Surv. 4(3), 179–
196 (Sep 1972), http://doi.acm.org/10.1145/356603.356607

23. Ip, C.N., Dill, D.L.: Better verification through symmetry. In: Proc. Conf. on Computer Hard-
ware Description Languages and their Applications. pp. 97–111 (1993)

24. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concur-
rent programs. In: Proceedings of the 22nd International Conference on Computer Aided
Verification. pp. 645–659. CAV’10, Springer-Verlag, Berlin, Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-14295-6_55

25. Kristic, S.: Parameterized system verification with guard strengthening and parameter ab-
straction. 4th Int. Workshop on Automatic Verification of Finite State Systems (2005)

26. Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapin, J.,
Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., Hennessy, J.: The stan-
ford flash multiprocessor. In: Computer Architecture, 1994., Proceedings the 21st Annual
International Symposium on. pp. 302–313 (1994)

27. Lahiri, S.K., Bryant, R.E.: Predicate abstraction with indexed predicates. ACM Trans. Com-
put. Logic 9(1) (Dec 2007), http://doi.acm.org/10.1145/1297658.1297662

28. Mcmillan, K.L.: Parameterized verification of the flash cache coherence protocol by compo-
sitional model checking. In: In CHARME 01: IFIP Working Conference on Correct Hard-
ware Design and Verification Methods, Lecture Notes in Computer Science 2144. pp. 179–
195. Springer (2001)

29. McMillan, K.L.: Circular compositional reasoning about liveness. In: Proceedings of the
10th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design

http://dx.doi.org/10.1007/11609773_9
http://doi.acm.org/10.1145/244795.244800
http://doi.acm.org/10.1145/244795.244800
http://dx.doi.org/10.1007/3-540-48683-6_16
http://dx.doi.org/10.1007/3-540-48683-6_16
http://dl.acm.org/citation.cfm?id=648236.753642
http://dl.acm.org/citation.cfm?id=648236.753642
http://dl.acm.org/citation.cfm?id=647765.735841
http://dx.doi.org/10.1007/s10009-005-0193-x
http://dx.doi.org/10.1007/s10009-005-0193-x
http://doi.acm.org/10.1145/356603.356607
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://doi.acm.org/10.1145/1297658.1297662

and Verification Methods. pp. 342–345. CHARME ’99, Springer-Verlag, London, UK, UK
(1999), http://dl.acm.org/citation.cfm?id=646704.701881

30. McMillan, K.L.: Verification of infinite state systems by compositional model check-
ing. In: Proceedings of the 10th IFIP WG 10.5 Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods. pp. 219–234. CHARME ’99,
Springer-Verlag, London, UK, UK (1999), http://dl.acm.org/citation.cfm?
id=646704.702020

31. Murphi source code: [Online] https://github.com/dsethi/
ProtocolDeadlockFiles

32. O’Leary, J., Talupur, M., Tuttle, M.: Protocol verification using flows: An industrial experi-
ence. In: Formal Methods in Computer-Aided Design, 2009. FMCAD 2009. pp. 172 –179
(nov 2009)

33. Park, S., Dill, D.L.: Verification of flash cache coherence protocol by aggregation of dis-
tributed transactions. In: SPAA ’96: Proceedings of the eighth annual ACM symposium on
Parallel algorithms and architectures. pp. 288–296. ACM Press (1996)

34. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible invariants.
In: Proceedings of the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 82–97. TACAS 2001, Springer-Verlag, London, UK,
UK (2001), http://dl.acm.org/citation.cfm?id=646485.694452

35. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, infty)-counter abstraction. In: Proceedings
of the 14th International Conference on Computer Aided Verification. pp. 107–122. CAV ’02,
Springer-Verlag, London, UK, UK (2002), http://dl.acm.org/citation.cfm?
id=647771.734286

36. Resten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. In: Grumberg, O. (ed.) Computer Aided Verification. Lecture
Notes in Computer Science, vol. 1254, pp. 424–435. Springer Berlin Heidelberg (1997),
http://dx.doi.org/10.1007/3-540-63166-6_41

37. Talupur, M., Tuttle, M.R.: Going with the flow: Parameterized verification using mes-
sage flows. In: Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design. pp. 10:1–10:8. FMCAD ’08, IEEE Press, Piscataway, NJ, USA
(2008), http://dl.acm.org/citation.cfm?id=1517424.1517434

http://dl.acm.org/citation.cfm?id=646704.701881
http://dl.acm.org/citation.cfm?id=646704.702020
http://dl.acm.org/citation.cfm?id=646704.702020
https://github.com/dsethi/ProtocolDeadlockFiles
https://github.com/dsethi/ProtocolDeadlockFiles
http://dl.acm.org/citation.cfm?id=646485.694452
http://dl.acm.org/citation.cfm?id=647771.734286
http://dl.acm.org/citation.cfm?id=647771.734286
http://dx.doi.org/10.1007/3-540-63166-6_41
http://dl.acm.org/citation.cfm?id=1517424.1517434

A The German Protocol Code (Chou et al. [11])

const ---- Configuration parameters ----

NODE_NUM : 4;
DATA_NUM : 2;

type ---- Type declarations ----

NODE : scalarset(NODE_NUM);
DATA : scalarset(DATA_NUM);

CACHE_STATE : enum {I, S, E};
CACHE : record State : CACHE_STATE; Data : DATA; end;

MSG_CMD : enum {Empty, ReqS, ReqE, Inv, InvAck, GntS, GntE};
MSG : record Cmd : MSG_CMD; Data : DATA; end;

var ---- State variables ----

Cache : array [NODE] of CACHE; -- Caches
Chan1 : array [NODE] of MSG; -- Channels for Req*
Chan2 : array [NODE] of MSG; -- Channels for Gnt* and Inv
Chan3 : array [NODE] of MSG; -- Channels for InvAck
InvSet : array [NODE] of boolean; -- Nodes to be invalidated
ShrSet : array [NODE] of boolean; -- Nodes having S or E copies
ExGntd : boolean; -- E copy has been granted
CurCmd : MSG_CMD; -- Current request command
CurPtr : NODE; -- Current request node
MemData : DATA; -- Memory data
AuxData : DATA; -- Latest value of cache line

---- Initial states ----

ruleset d : DATA do startstate "Init"
for i : NODE do
Chan1[i].Cmd := Empty; Chan2[i].Cmd := Empty; Chan3[i].Cmd := Empty;
Cache[i].State := I; InvSet[i] := false; ShrSet[i] := false;

end;
ExGntd := false; CurCmd := Empty; MemData := d; AuxData := d;

end end;

---- State transitions ----

ruleset i : NODE do rule "SendReqS"
Chan1[i].Cmd = Empty & Cache[i].State = I

==>
Chan1[i].Cmd := ReqS;

end end;

ruleset i : NODE do rule "SendReqE"
Chan1[i].Cmd = Empty & (Cache[i].State = I | Cache[i].State = S)

==>
Chan1[i].Cmd := ReqE;

end end;

ruleset i : NODE do rule "RecvReqS"
CurCmd = Empty & Chan1[i].Cmd = ReqS

==>
CurCmd := ReqS; CurPtr := i; Chan1[i].Cmd := Empty;
for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

ruleset i : NODE do rule "RecvReqE"
CurCmd = Empty & Chan1[i].Cmd = ReqE

==>
CurCmd := ReqE; CurPtr := i; Chan1[i].Cmd := Empty;
for j : NODE do InvSet[j] := ShrSet[j] end;

end end;

ruleset i : NODE do rule "SendInv"
Chan2[i].Cmd = Empty & InvSet[i] = true &
(CurCmd = ReqE | CurCmd = ReqS & ExGntd = true)

==>
Chan2[i].Cmd := Inv; InvSet[i] := false;

end end;

ruleset i : NODE do rule "SendInvAck"
Chan2[i].Cmd = Inv & Chan3[i].Cmd = Empty

==>
Chan2[i].Cmd := Empty; Chan3[i].Cmd := InvAck;
if (Cache[i].State = E) then Chan3[i].Data := Cache[i].Data end;
Cache[i].State := I; undefine Cache[i].Data;

end end;

ruleset i : NODE do rule "RecvInvAck"
Chan3[i].Cmd = InvAck & CurCmd != Empty

==>
Chan3[i].Cmd := Empty; ShrSet[i] := false;
if (ExGntd = true)
then ExGntd := false; MemData := Chan3[i].Data; undefine Chan3[i].Data end;

end end;

ruleset i : NODE do rule "SendGntS"
CurCmd = ReqS & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false

==>
Chan2[i].Cmd := GntS; Chan2[i].Data := MemData; ShrSet[i] := true;
CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "SendGntE"
CurCmd = ReqE & CurPtr = i & Chan2[i].Cmd = Empty & ExGntd = false &
forall j : NODE do ShrSet[j] = false end

==>
Chan2[i].Cmd := GntE; Chan2[i].Data := MemData; ShrSet[i] := true;
ExGntd := true; CurCmd := Empty; undefine CurPtr;

end end;

ruleset i : NODE do rule "RecvGntS"
Chan2[i].Cmd = GntS

==>
Cache[i].State := S; Cache[i].Data := Chan2[i].Data;
Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

ruleset i : NODE do rule "RecvGntE"
Chan2[i].Cmd = GntE

==>
Cache[i].State := E; Cache[i].Data := Chan2[i].Data;
Chan2[i].Cmd := Empty; undefine Chan2[i].Data;

end end;

ruleset i : NODE; d : DATA do rule "Store"
Cache[i].State = E

==>
Cache[i].Data := d; AuxData := d;

end end;

---- Invariant properties ----

invariant "CtrlProp"
forall i : NODE do forall j : NODE do
i != j -> (Cache[i].State = E -> Cache[j].State = I) &

(Cache[i].State = S -> Cache[j].State = I | Cache[j].State = S)
end end;

invariant "DataProp"
(ExGntd = false -> MemData = AuxData) &
forall i : NODE do Cache[i].State != I -> Cache[i].Data = AuxData end;

B Proof of Soundness

Before proving the theorem, we first establish the following lemma:

Lemma. The disjunction of predicates of all invariants in I holds, i.e.,
∨
inv∈I inv.pred

holds.

Proof. We prove this by induction over the splitting step in our method.
Base Case: Our method starts with the initial invariant true ⇒

(
∀i ∈ IndexSet :

ên(R(i))
)

in I. Thus, it trivially satisfies the lemma.
Induction Step: Next, suppose at some point during the generation of invariants,

the set of candidates is I. On model checking, invariant inv in I fails with ên(R(if))
being false for agent if . In case there is an error in the protocol or flows due to a rule
rl(if) being enabled for agent if in the failing state, the loop exits without modifying I
and so the lemma holds trivially. In the second case, the invariant is split into invariants
inv1 and inv2 by using conflict condition conf .

Now for this case, inv1.pred = (inv.pred∧¬conf) and inv2.pred = (inv.pred∧
conf). Clearly, the disjunction of predicates inv1 and inv2 equals to inv.pred, the
predicate of inv. Thus, the disjunction of predicates of the new and old set of invariants
is the same, i.e.,

∨
inv∈I inv.pred =

∨
inv∈I′ inv.pred, where the new set of invariants

I ′ = I \ {inv} ∪ {inv1, inv2}.
Hence, by induction, the above lemma holds.

Now, using the above lemma, we prove the following theorem to establish sound-
ness of our method:

Theorem. If the set of invariants I along with the set of assertions A hold, they col-
lectively imply s-deadlock freedom, i.e.,

((∧
inv∈I(P |= inv)

)
∧
(∧

asrt∈A(P |=
asrt)

))
⇒
(
P |= (

∨
i

∨
j rlj(i).ρ)

)
.

Proof. Let the protocol be in some reachable state s. We argue that some agent has at
least one rule enabled in every such reachable state. By the above lemma,

∨
inv∈I inv.pred

holds in state s. Thus, there must exist some invariant inv such that its predicate holds
in s, i.e., ∃inv ∈ I : inv.pred = true.

Now, let inv be inv.pred ⇒ (∀i ∈ Ininv : ên(R(i))). Then, since the assertion
inv.pred ⇒ Ininv 6= {} is in the set A, which holds as well, there is some agent i0
such that it is in Ininv and ên(R(i0)) holds, i.e., ∃io ∈ Ininv : ên(R(i0)). Thus, agent
i0 is enabled in the state s, and so the state is not an s-deadlock state.

	Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

