SYRql: A Dataflow Language for Large Scale
Processing of RDF Data

Fadi Maali', Padmashree Ravindra?, Kemafor Anyanwu?, and Stefan Decker!

! Insight Centre for Data Analytics, National University of Ireland Galway
{fadi.maali,stefan.decker}@insight-centre.org
2 Department of Computer Science, North Carolina State University, Raleigh, NC
{pravind2,kogan}@ncsu.edu

Abstract. The recent big data movement resulted in a surge of activity
on layering declarative languages on top of distributed computation plat-
forms. In the Semantic Web realm, this surge of analytics languages was
not reflected despite the significant growth in the available RDF data.
Consequently, when analysing large RDF datasets, users are left with
two main options: using SPARQL or using an existing non-RDF-specific
big data language, both with its own limitations. The pure declarative
nature of SPARQL and the high cost of evaluation can be limiting in
some scenarios. On the other hand, existing big data languages are de-
signed mainly for tabular data and, therefore, applying them to RDF
data results in verbose, unreadable, and sometimes inefficient scripts. In
this paper, we introduce SYRgql, a dataflow language designed to process
RDF data at a large scale. SYRql blends concepts from both SPARQL
and existing big data languages. We formally define a closed algebra that
underlies SYRql and discuss its properties and some unique optimisation
opportunities this algebra provides. Furthermore, we describe an imple-
mentation that translates SYRql scripts into a series of MapReduce jobs
and compare the performance to other big data processing languages.

1 Introduction

Declarative query languages have been a corner stone of data management since
the early days of relational databases. The initial proposal of relational algebra
and relational calculus by Codd [8] was shortly followed by other languages such
as SEQUEL [7] (predecessor of SQL) and QUEL [34]. Declarative languages sim-
plified programming and reduced the cost of creation, maintenance, and mod-
ification of software. They also helped bringing the non-professional user into
effective communication with a database. Database languages design continued
to be an active area of research and innovation. In 2008, the Claremont Report
on Database Research identified declarative programming as one of the main
research opportunities in the data management field [2].

There is, indeed, a large number of examples of publications describing design
and implementation of query languages that embed queries in general purpose
programming languages [19,37,30], for semi-strucutred data [25,1], for Semantic
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Web data [12,3], for graphs [6,17] and for network analysis [10,27,26] to name a
few. Furthermore, the recent big data movement resulted in a surge of activity
on layering declarative languages on top of distributed computation platforms.
Examples include PIG Latin from Yahoo [20], DryadLINQ from Microsoft [39],
Jaql from IBM [4], HiveQL [35] from Facebook and Meteor/Sopremo [13]. This
paper focuses on declarative languages for large Semantic Web data represented
in RDF.

In fact, there has been a significant growth in the available RDF data and
distributed systems have been utilised to support larg-scale processing of the
RDF data [36,15,16]. Nevertheless, the surge of analytics languages was not
reflected in the Semantic Web realm. To analyse large RDF datasets, users are
left mainly with two options: using SPARQL [12] or using an existing non-RDF-
specific big data language.

SPARQL is a graph pattern matching language that provides rich capabilities
for slicing and dicing RDF data. The latest version, SPARQL 1.1, supports
also aggregation and nested queries. Nevertheless, the pure declarative nature
of SPARQL obligates a user to express their needs in a single query. This can
be unnatural for some programmers and challenging for complex needs [18,11].
Furthermore, SPARQL evaluation is known to be costly [22,29].

The other alternative of using an existing big data language such as Pig Latin
or HiveQL has also its own limitations. These languages were designed for tabular
data mainly, and, consequently, using them with RDF data commonly results in
verbose, unreadable, and sometimes inefficient scripts. For instance, listings 1.1
and 1.2 show a basic SPARQL graph pattern and an equivalent Pig Latin script,
respectively. Listing 1.2 has double the number of lines compared to listing 1.1
and is, arguably, harder to read and understand.

Listing 1.1. SPARQL Listing 1.2. Corresponding Pig Latin script
basic pattern " rdtf — LOAD ‘data’ USING PigStorage (° ') AS (S,P,0);
tprod a :PoductType . N SPLIT rdf INTO reviewers IF P = ’:reviewer ',
?r ireviewFor ?prod . reviews IF P = ’:reviewFor
2r i reviewer 7rov prods IF P = 'a’ and O = ’'ProductType ’;

W ) tmpl = JOIN prods BY S, reviews BY O;

tmp2 = JOIN tmp BY reviews::S, reviewers BY S;
J

In this paper we present SYRql, a declarative dataflow language that focuses
on the analysis of large-scale RDF data. Similar to other big data processing lan-
guages, SYRql defines a small set of basic operators that are amenable to paral-
lelisation and supports extensibility via user-defined custom code. On the other
hand, SYRql adopts a graph-based data model and supports pattern matching
as in SPARQL.

SYRq! could not be based on SPARQL Algebra [22] as this algebra is not
fully composable. The current SPARQL algebra transitions from graphs (i.e.
the initial inputs) to sets of bindings (which are basically tables resulting from
pattern matching). Subsequently, further operators such as Join, Filter, and
Union are applied on sets of bindings. In other words, the flow is partly “hard-
coded” in the SPARQL algebra and a user cannot, for instance, apply a pattern
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matching on the results of another pattern matching or “join” two graphs. In a
dataflow language, the dataflow is guided by the user and cannot be limited to the
way SPARQL imposes. We, therefore, define a new algebra that underpins the
SYRql language. In particular, this paper provides the following contributions:

— We define the syntax and semantics of a compositional RDF algebra (sec-
tions 2.2). The algebra achieves composability by always pairing graphs and
bindings together. We relate the defined algebra to SPARQL algebra (sec-
tion 2.3) and report some of its unique properties that can be useful for
optimising evaluation (section 2.4).

— We describe SYRql, a dataflow language based on the defined algebra (sec-
tion 3.1). An open source implementation of SYRql that translates scripts
into a series of MapReduce jobs is also described (section 3.2).

— We present a translation of an existing SPARQL benchmark into a num-
ber of popular big data languages (namely Jaql, HiveQL, and Pig Latin).
The performance of equivalent SYRql scripts is compared with the other big
data languages (section 4). The comparable results that SYRql implemen-
tation showed are encouraging giving its recency relative to the compared
languages. Nevertheless, a number of improvements are still needed to ensure
a good competitiveness of SYRql.

2 RDF Algebra

The goal of this algebra is to define operators similar to those defined in SPARQL
algebra but that are fully composable. To achieve such composability, the algebra
operators input and output are always a pair of a graph and a corresponding
table. We next provide the formal definitions and description.

2.1 Preliminaries

We use N to denote the set of all natural numbers. We assume the existence
of two disjoint infinite sets: U (URIS) and L (literals). The set of all terms is
denoted by T (i.e. T =UJL). We also assume that both ¢/ and £ are disjoint
from N. An RDF triple! is a triple (s,p,0) € U x U x T. In this triple, s is the
subject, p is the predicate and o is the object. An RDF graph is a set of RDF
triples. We use G to refer to the set of all RDF graphs. Furthermore, we assume
the existence of the symbol ‘7" such that 7 ¢ 7 and define a triple pattern as

any triple in (7"U{7}) > (T U{7}) x (T U{7}-
Definition 1. A binding is a sequence of RDF terms (URIs or literals).

Bindings are used to represent results of some operator over RDF graphs.
Notice that our notion of binding is similar to that of SPARQL. However, in
SPARQL a binding is a function that maps variable names to values. Our def-
inition of binding obviates the need for variable names by using an ordered

! We only consider ground RDF graphs and therefore we do not consider blank nodes.
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sequence. A common way to represent a set of bindings is by using a table. We
use subscript to access binding elements based on their position in the sequence
(i.e. The ith element of a binding S is S;). The length of a binding S is denoted
as |S| and the empty binding is denoted as () (notice that |()| = 0).

The concatenation of two bindings S = (a1, ag, ..., ay) and T = (b1, ba, ..., byy)
is the binding (a1, ag, ..., an, b1, ba, ..., by, ). We denote concatenation by a dot (i.e.
S.T).

2.2 RDF Algebra Expressions
Syntax. An RDF expression e is defined inductively as follows:

1. Atomic: if g is an RDF graph (i.e. g € G) then g is an RDF expression.

2. Projection: if e is an RDF expression and (a1, ..., a, ) is a sequence of natural
numbers, then (e|(4, ... q,)) is an RDF expression. For example (e 2)) is a
projection RDF expression.

3. Extending bindings: if e is an RDF expression, h is an n-ary function
that takes n RDF terms and produces an RDF term (i.e. h: 7" — T) and
ai, ..., an is a sequence of natural numbers then
(e ®(ay,...,an) ) is also an RDF expression.

4. Extending graphs: if e is an RDF expression, a1, as, a3 are three natural
numbers or RDF terms (i.e. aj, az2,a3 € T |JN) then
(e ® (ai1,a2,a3)) is also an RDF expression.

5. Triple pattern matching: If e is an RDF expression and ¢ is a triple
pattern then (e[t]) is also an RDF expression.

6. Filtering: if e is an RDF expression, a,b € N and u,v € T then the following

are valid RDF expressions:

(e[a 0b]), (e[afu])and (e[u b v])

Where 0 is =, #, < or <. For example, (e[1 < 2]) and (e[1 =*“label” ]) are

two filtering RDF Expressions.

Cross product: if e; and es are RDF expressions, then so is (e1 X e3).

8. Aggregation: we define aggregate functions that take a set of terms and
return a single value?. Therefore, the signature of an aggregate function is
f:27 — N. If e is an RDF expression, a and b are two natural numbers and
f is an aggregate function then (e (a, f,b)) is an RDF expression.

=

Semantics. We now define the semantics of the previous expressions. For each
expression e the value of it is denoted as [M] . The value is always a set of pairs of a
graph and a binding. The graph and binding components of [M] are, respectively,
denoted as [M] .g and [M] .b. To depict the values in this paper, we denote each
pair by drawing a graph and a table close to each other. The table represents a
binding and uses the order of elements in the binding as columns headers. The
set of pairs that constitute an expression value are surrounded by curly brackets.

2 For simplicity of the presentation here, we restrict aggregate functions to those that
take a set of single values and return an integer. Generalising this is straightforward.
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In the figures, sub-figure (a) is the input while sub-figure (b) shows the result of
applying an operator to the input (see figure 1 for an example).

1. Atomic: [[g]] ={(g,0)}

The value of an atomic expression gives an empty binding
2. Projection: [(e|a,,....an))] = {(9,5) [(9.5") € [e]. 5 = (SG,. . S5,)}

OO - GO
[ o2 o1 p2 p1 |
Cap G & @
1 2 3 i 2
a pl b b a

Fig. 1. Projection example

Projection allows choosing a sub-sequence of the bindings while leaves the
graph component in each pair unaffected. Figure 1 provides an example of
a projection expression value.

3. Extending bindings:

[(e @) W] =1(g,5 - (h(Sar -, 8a,))) 19, S) € [e] }

These expressions allow extending the binding with a new value that is cal-
culated based on existing values in the binding. See Figure 2 for an example.
Notice that h can be viewed as a Skolem function arising from the quantifi-
cation VS,,VS,,..VS,, e : ¢ = h(Say,s -y Sa,)

4. Extending graphs: We use the convention that S, = a for some binding
S and a term a € T. Notice that 7 and N are disjoint and therefore the
previous convention does not cause any ambiguity
[(e @(a17a27a3) )]] = {(gU{(SauSaz’Sas)} S [eﬂ}

These expressions are similar to the extending blndlngs expressions defined
before but they allow extending the graph. An example evaluation of such
expression can be seen in Figure 3.
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(a) [e] (b) [(e ®(2) hx2)] Notice that hys is
a function that doubles its input (i.e.
th(iE) =1 X2
Fig. 2. Defining a new variable example (extending bindings)
Triple pattern matching:

We discuss each possible triple pattern separately assuming s,p,0 € T

[(e[(s;p.0) D] ={({(s,p,0)}, () ) [3(g, 5) € [e] A (s,p,0) € g}

(e[ (s, ) ])] = {({(s,p.0)}, (0) [3(g.5) € [e] A (s.p,0) € g}
(e[ (s, 7, 0) D] ={({(s;p,0)}, (P) ) |3 9.5) € [e] A (s p, ) €9}

(e[ (5,7, D)]D] = {({(s,p,0)}, (p,0) ) [3( 9, S) € [e] A (s p, ) €9}
(e[ (7;p,0) )] = {({(s,p,0)},(s) ) |3 9.5) € [e] A (s p, G g}

(e[ (%P, D) D] = A{( {(Svp>0)}a(svo El 9, S) € [e] A (s p, ) €9}
(e[ (77,00 ] ={({(s,p,0)}, (s, |3 9.5) € [e] A(s p, ) € g}
(e[ (.7, 7)D] = {({(s,p,0)}. (s, p’ ) [3(9,5) € [e] A (s,p,0) € g}

Trlple pattern matching expressions ﬁlter graphs to only triples matching
the provided pattern and introduces the corresponding bindings. A key dif-
ference from SPARQL pattern evaluation is retaining the matching triples
in addition to the bindings. Figure 4 shows an example. Notice that a triple
pattern matching expression yields a graph with only one triple and elimi-
nates previous bindings. Notice also that one can still apply further pattern
matching on the results, something that is not possible in SPARQL.

. Filtering:

[(elabb])] = {( ) [e] 1Sa 6 Sy}
[[( [a6u] ]] { [H]\SQHu}

II u 9 ']_) II lf u 9 v
- ¢ Otherwise

. Cross product:

[(61 X eZ)ﬂ = { (gl UQQ,S . T) ‘(glas) € [[ ]] gZ’ [€2H

See figure 5 for an example.

. Aggregation:

the expression (e (a, f,b)) groups by the a'* element in the binding, then
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r~
o

(a) [e] (b) [(e® (a,p2,2))]

Fig. 3. Defining a new triple (extending graphs)

apply the aggregate function f on the values of the b" element in each
group. [(e (a. £,)] = {(6, (k. F({Sh [3(9.S) € [] A 5. = kD})}

See Figure 6 for an example and notice that the resulting RDF graphs are
empty (absence of graph in the figure indicates empty graph component).

2.3 Relationship to SPARQL

Lemma 1. RDF Algebra expressions can express SPARQL 1.1 basic graph pat-
terns with filters, aggregations and assignments.

Proof. SPARQL filters, aggregation and assignments can be directly mapped to
“filtering”, “aggregation” and “extending bindings” expressions in RDF Algebra.
SPARQL individual triple patterns can be expressed by “triple pattern match-
ing” expressions. Basic graph patterns in SPARQL imply a join on common
variables among individual triple patterns. These expressions can be expressed
by a sequence of “cross products” and filtering “expressions” in the same way

that natural join is defined in relational algebra. O

We provide next a couple of example SPARQL queries along with their equiv-
alent RDF Algebra expressions:

— The SPARQL query: SELECT ?s ?v WHERE { ?s :p 7o . 7o :p2 ?v }
evaluated on the RDF graph g is equivalent to the expression:
(g7, D)) < (gl(?,: p2,M)]) )2 = 3] (1,4))

— The SPARQL query:
SELECT 7s 7z WHERE { ?s :p 70 . 7o :p2 7v BIND(?v *x 1.1) AS 7z }
evaluated on the RDF graph g is equivalent to the expression:
(Gl p. D) x (o7 p2 D)2 =3]) B0y 11 )ls)
Where x11(z) =2 x 1.1
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[ p2| p1 ] a b
(e (4D
1 2 3 p1
a pl b B ° o L
4 - ik 2
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O
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p2 b a b

(a) [e] (b) [Ce[(?,p1,7)])]

pd
1
C

Fig. 4. Triple pattern matching example

2.4 Algebraic Properties

Algebraic laws are important for query optimisation. RDF Algebra shares some
operators with SPARQL algebra and therefore related properties and laws de-
fined in SPARQL algebra carry along. We focus here on triple patterns properties
that are unique to our algebra. First, we define a partial ordering relationship
between triple patterns.

Definition 2. Vz,y € TU{?} : « < y iff one of the following holds:

— Both z and y are 7.
— z and y are equal RDF terms (i.e. v,y € T ANz =1y).
—zisatermandy is? (ie. x €T ANy =7).

We generalise < to triple patterns.

Definition 3. For two triple patterns (x1,x2,23) and (y1,y2,y3) we say that
(w1, 22, 23) = (Y1,y2,93) iff z1 2 y1, T2 2 Y2, and x3 = y3.

The defined partial ordering relationship between triple patterns (<) can be
thought of as a “more specific” relationship. The following list contains a number
of algebraic properties that use this relationship. We also highlight potential
optimisation opportunities of each of these algebraic property.

L [(elt)D)] g = [efta])]-g it 1 < s

Applying a less specific triple pattern does not change the resulting graph.
It can nevertheless change the binding. For example,

[(l(?: p.: 0D, 2, 0)])] g = [(el(?: p.: 0)])] -9
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1O @ €F

) [ea] x [e2]

1

(b) [[(61 X 62)]

Fig. 5. Cross product example

2. [(efta))] = [((eft)[Ea])] if t2 <

Therefore to calculate the results of matching expression e to the pattern ¢y
one can instead try matching ¢; against the results of matching ¢, against e.
This can be advantageous if the e[ts] is “cached”.

3. [(ex x e2)])] = [[(((el[t}) x (ez[t]»[tm]
More generally [[((61 X €2) ] = [[ e1t1]) eg[tgb)[t])ﬂ for all ¢1,ts such
that t < t; and ¢ < to. This can cut down the cost of a cross product between
two expressions by substituting them with further matched expressions.

The list above is not comprehensive by any means. Further study of other
algebraic properties of triple patterns is one of our current research focus. We
believe that studying this “triple algebra” can yield fruitful results that can
further be applied in tasks like caching RDF query results, views management
and query results re-use.
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1 2
b 10
d ™ 1 2 A
| OB ! b |13
il 2
d 2
OO
1 2 — i 2
b 3 " ld 2 -
(a) [e] (b) [(e (1, SUM, 2))]

Fig. 6. Aggregate expression example

3 A Data flow Language for RDF

3.1 SYRql Language

SYRql is a dataflow language that is grounded in the algebra defined before.
A SYRql script is a sequence of statements and each statement is either an
assignment or an expression. The core set of operators in SYRql are those defined
by the algebra in sections 2.2.

The syntax of SYRql borrows the use of “— >" syntax to explicitly show the
data flow. According to the designers of Jaql, the “— >” syntax, inspired by
the Unix pipes, makes scripts easier to read and debug [4]. It allows eliminating
the need for defining variables (as in PIG) or for a WITH clause (as in SQL)
in each computational step. It is worth mentioning that Meteor [13] language
dropped the pipe notation of Jaql to support operators with multiple inputs and
outputs. In SYRql, operators with multiple inputs or outputs are not common
and therefore we decided to adopt the pipe syntax. However, SYRql does support
multi-input operators such as multi-way joins.

Pattern matching in SYRql uses identical syntax to basic graph patterns of
SPARQL. SPARQL syntax for patterns is intuitive, concise and well-known to
many users in the Semantic Web field. We hope that this facilitates learning
SYRql for many users.

Listing 1.3 shows an example SYRql script that performs pattern matching,
filtering, and aggregation. Notably, line 10 in the script provides an example of
composability that is not directly available in SPARQL. In line 10, a pattern
matching is applied to the results of another pattern matching. We believe that
such capabilities are useful for complicated scripts, specifically for exploratory
tasks, and for reusing previous scripts as well as previously computed results.
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Further description and examples of the SYRql language is available online®.
The BNF grammar defining the syntax can also be found on SYRql website.

Listing 1.3. Example SYRql script

1 $rdf = load (’hdfs://master:9001/bsbm20k ’); A
2
3  $janReviewers = $rdf —> pattern ('?review rev:reviewer Zreviewer .
4 ?review dc:date ?date .
5 ?reviewer bsbm:country Zcntry .°)
6 —> filter (?date >= ’'2008—-01—-01" && ?date < ’'2008—-02—-01");
7
8 $janReviewers —> group by ?cntry into janReviewersCount :count (?review );
9
10 $irelandJanReviewers = $janReviewers —> pattern (’?rev bsbm:country :IE’);
(S J

3.2 SYRqgl Implementation

The current implementation* translates SYRql scripts into a series of MapRe-
duce [9] jobs. We use Java and Apache Hadoop 2 API® in our implementation.

Data Representation: JSONS is used for internal representation of the data.
Particularly, we use JSON arrays for bindings and JSON-LD [31] to represent
graphs. JSON-LD is a recent W3C recommended serialisation of RDF. It has
attracted good adoption so far and this can be expected to grow. Consequently,
by using JSON-LD a large amount of RDF data can be directly processed using
SYRql. Furthermore, existing works such as NTGA [24] have demonstrated the
benefit of manipulating RDF graphs as “groups of triples” that share the same
subject. In this work, we utilize JSON-LD’s ability to represent star subgraphs as
single JSON objects, thus eliminating the need for joins when evaluating star-join
queries. This particular way of encoding RDF in JSON-LD is referred to as the
flattened document form” and it is the format used in SYRql implementation.
Moreover, we provide a MapReduce implementation that converts RDF data
serialised as N-Triple format® into flattened JSON-LD.

Parsing, Compiling and Evaluation: We use ANTLR? to parse SYRql
scripts and build the abstract syntax tree. Each node in the tree represents
an expression and the children of the node are its inputs. For triple matching
expressions, triple patterns are grouped by subject to utilise the data stored as
star-structured subgraphs, thus reducing the number of required joins. The tree
is then translated into a directed acyclic graph (DAG) of MapReduce jobs. Se-
quences of expressions that can be evaluated together are grouped into a single
MapReduce job. Finally, the graph is topologically sorted and the MapReduce

3 https://gitlab.insight-centre.org/Maali/syrql-jsonld-imp/wikis/home
* https://gitlab.insight-centre.org/Maali/syrql-jsonld-imp

® http://hadoop.apache.org/

5 http://json.org

" http://www.w3.org/TR/json-1d/#flattened-document-form

8 http://www.w3.org/TR/2014/REC-n-triples-20140225/

9 http://www.antlr.org/
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http://json.org
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jobs are scheduled to execute on the cluster. It is worth mentioning that for join
expressions we implemented the optimised repartition join [14].

4 FEvaluation

We conducted a performance evaluation of SYRql. Our goal of this evaluation
is two-fold:

— Compare performance of SYRql to other popular alternatives, namely Jaql,
Pig Latin, and HiveQL. Our thesis is that SYRql’s features and syntax can
improve user productivity when processing RDF data and help generating
scripts that are easier to understand and debug. Therefore, we want to mea-
sure the loss in performance, if any, that an early adopter of the language
might have to tolerate.

— In the same spirit of Pig Mix!'? that is developed as part of Pig, we want this
benchmark to measure performance on a regular basis so that the effects of
individual code changes on performance could be understood.

We based our benchmark on the Berlin SPARQL Benchmark (BSBM) [5] that
defines an e-commerce use case. Specifically, we translated a number of queries in
the BSBM Business Intelligence usecase (BSBM BI)!! into equivalent programs
in a number of popular big data languages. In particular, we provide programs
in the following languages:

Jaql. A scripting language designed for Javascript Object Notation (JSON).

Pig Latin. A dataflow language that provides high-level data manipulation
constructs that are similar to relational algebra operators.

HiveQL. A declarative language that uses a syntax similar to SQL.

The programs were written by the authors of this paper who have interme-
diate to high expertise in those languages. We believe that they reflect what an
interested user would write given a reasonable amount of time. We evaluated
four queries from BSBM BI that cover all core operators i.e., filters, patterns,
joins and aggregation. We plan to evaluate other benchmark queries as part of
the near future work.

4.1 Setup

Environment: The experiments were conducted on VCL'2, an on-demand com-
puting and service-oriented technology that provides remote access to virtualised
resources. Nodes in the clusters had minimum specifications of single or duo core
Intel X86 machines with 2.33 GHz processor speed, 4G memory and running

10 nttps://cwiki.apache.org/confluence/display/PIG/PigMix

" http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
spec/BusinessIntelligenceUseCase/index.html

12 nttps://vcl.ncsu. edu/


https://cwiki.apache.org/confluence/display/PIG/PigMix
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BusinessIntelligenceUseCase/index.html
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BusinessIntelligenceUseCase/index.html
https://vcl.ncsu.edu/
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Fig. 7. Query processing times

Red Hat Linux. We used a 10-node cluster and the following software versions:
Apache Hadoop 2.3.0, Jaql 0.5.1, Pig 0.12.1, and Hive 0.12.0.

Dataset and Queries: We generated BSBM data for 400K products in N-
triple format. The size of the data was about 35GB containing approximately
140 million triples. As mentioned before, the queries are the scripts corresponding
to BSBM BI queries.

4.2 Results and Discussion

Figure 7 shows corresponding response time for each of the scripts. Jagl and
SYRql required pre-processing of the data to convert the N-Triple RDF data into
JSON-LD. The conversion, which took 40 minutes, is only needed once and then
the data can be used by all the queries. In general, our SYRql implementation
shows encouraging results. It is comparable to the times that Jaql and Pig Latin
showed. However, Hive outperformed all the other four systems significantly. The
superior performance of Hive was also reported in [33].

Both SYRgl and Jaqgl can evaluate triple patterns that share the same subject
together due to their underlying data model and their use of JSON-LD. Pig, on
the other hand, evaluates each triple pattern individually and then joins the
results. We believe that this is the main reason for the better performance that
Jaql and SYRql generally achieved in comparison to Pig despite the maturity
and the larger developers community that Pig enjoys.

Examining the generated MapReduce jobs, it was observed that Jaql and
SYRql generated similar sequences of jobs. However, SYRql computes results
for both graphs and bindings as specified in the underlying algebra. This results
in more computation to be done. Nevertheless, separating bindings and graphs
helped speeding up some operators through reading and processing less data.
For example, filters operate only on the bindings and do not need to process the
graphs. Similarly, joins are calculated based on the bindings and then joining the
corresponding graphs is a simple union of the matched graphs (see the semantics
of the cross product operator in Section 2.2).
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We speculate that the superior performance of Hive is mostly due to its effi-
cient join performance. Hive join optimisations such as conversion to map-joins
can be applicable when the joining relations are small in size. Additionally, for
grouping queries, Hive computes map-side partial aggregations using a Com-
biner, an optimisation we plan to integrate in our next version.

In summary, SYRql implementation showed a good performance that will
hopefully encourage users to try it. Moreover, SYRql scripts contained 50% less
lines than Pig scripts and 42% less than Jaql scripts. Evaluating the language
ease-of-use and readability is planned for future work.

5 Related Work

A large number of declarative languages were introduced recently as part of the
big data movement. These languages vary in their programming paradigm, and in
their underlying data model. Pig Latin [20] is a dataflow language with a tabular
data model that also supports nesting. Jaql [4] is a declarative scripting languages
that blends in a number of constructs from functional programming languages
and uses JSON for its data model. HiveQL [35] adopts a declarative syntax
similar to SQL and its underlying data model is a set of tables. Other examples
of languages include Impala!®, Cascalog!4, Meteor [13] and DryadLINQ [39]. [33]
presented a performance as well as a language comparison of HiveQL, Pig Latin
and Jaql. [28] also compared a number of big data languages but focuses on their
compilation into a series of MapReduce jobs.

In the semantic web field, SPARQL is the W3C recommended querying
language for RDF. A number of extensions to SPARQL were proposed in the
literature to support search for semantic associations [3], and to add nested reg-
ular expressions [23] for instances. However, these extensions do not change the
pure declarative nature of SPARQL. There are also a number of non-declarative
languages that can be integrated in common programming languages to provide
support for RDF data manipulation [21,32]. In the more general context of graph
processing languages, [38] provides a good survey.

6 Conclusions and Future Work

RDF Algebra, a fully composable algebra that is similar to SPARQL algebra,
was presented in this paper. The composabilty of RDF Algebra is obtained by
pairing graphs and bindings together. A number of unique algebraic properties
were presented. Further study of these properties is at the top of our research
agenda. We believe that this is a fruitful direction that can have impact in a
number of related research problems.

Based on RDF Algebra, we presented SYRql, a dataflow language for large
scale processing of RDF data. An implementation of SYRql on top of MapRe-
duce platform was described. This paper also reported some initial results on a

13 https://github.com/cloudera/impala
 nttp://cascalog.org/
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performance comparison between SYRql implementation and other existing big
data languages. Our future work includes refining SYRql syntax and improving
its performance. In particular, we plan to provide an implementation that runs
SYRql scripts on top of Apache Spark!® and to use binary representation of the
JSON-LD RDF data instead of the textual one currently used.
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