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Abstract. Semantic datasets provide support to automate many tasks such as
decision-making and question answering. However, their performance is always
decreased by the noises in the datasets, among which, noisy type assertions play
an important role. This problem has been mainly studied in the domain of data
mining but not in the semantic web community. In this paper, we study the prob-
lem of noisy type assertion detection in semantic web datasets by making use
of concept disjointness relationships hidden in the datasets. We transform noisy
type assertion detection into multiclass classification of pairs of type assertions
which type an individual to two potential disjoint concepts. The multiclass clas-
sification is solved by Adaboost with C4.5 as the base classifier. Furthermore,
we propose instance-concept compatability metrics based on instance-instance
relationships and instance-concept assertions. We evaluate the approach on both
synthetic datasets and DBpedia. Our approach effectively detect noisy type asser-
tions in DBpedia with a high precision of 95%.

1 Introduction

Real world data is never as perfect as we would like it to be and can often suffer from
corruptions that may impact interpretations of the data, models created from the data,
and decisions made based on the data [1][2]. Accuracy, relevancy, representational-
consistency and interlinking affect approximately 11.93% of DBpedia' resources.
Among them, the detection of accuracy problem is the least to be automated [3]. We
are interested in the factual errors (called noises in this paper) in the accuracy category.
To be specific, we focus on the detection of noisy type assertions (asserting Schubert’s
last sonatas is of type artist for example), which is suggested to be more severe than
noisy property assertions (asserting TV series Wings’s opening theme is Schubert’s last
sonatas for example) [4].

While there has been a lot of research on noise identification in data mining do-
main in the past two decades, the topic has not yet received sufficient attention from
the Semantic Web community, especially the problem of noisy type detection. Zaveri
et al. [3] analysed empirically the DBpedia dataset. They manually evaluated a part of
indiviual resources, and semi-automatically evaluated the quality of schema axioms.
Fiirber and Hepp [5] summarized the important problems in semantic web data, includ-
ing literal value problems and functional dependency violations, and correspondingly
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developed SPARQL queries to identfy them. Yu et al. [6] focused on identifying noisy
property assertions. They detected such assertions by using probabilistic rules learned
from semantic web data and checked to what extent the rules agree with the context of
assertions.

We find that noisy type assertions could be detected from knowledge hidden in real-
world datasets.

Example 1. If we execute the following SPARQL query in DBpedia

select ?x where{?x a dbpedia-owl:Person.
?x a dbpedia-owl:Place.}

which selects individuals belonging to both concept Person and Place, we get a
list of individuals returned, such as Pope®. Because we, as human-beings, believe that
concept Person and Place share no individuals, which is hidden in DBpedia be-
cause Person and Place share a very small number of individuals, it is reasonable
to guess that the assertions typing the individuals to concept Person or Place are
problematic.

In this paper, we study the problem of noisy type assertion detection in semantic web
datasets for the first time. Roughly speaking, our approach contains 2 steps: Firstly we
cache the number of individuals belonging to a pair of concepts aiming at detecting
abnomal data. We extract conflicts such as Pope belongs to both Person and Place.
After that, we transform the detection of noisy type assertions into a multiclass classi-
fication problem, where a candidate conflict assertion can be labeled (1) none of them
are noisy; (2) first assertion being noisy; (3) second assertion being noisy; (4) both of
them are noisy. The conflicts are classified by Adaboost with decision tree algorithm
C4.5 as the base classifier. In order to characterize the conflict assertions, we propose
two kinds of features: First kind of features make use of type assertions. For example,
the assertions ”Pope is a Cleric” and "Cleric is subsumed by Person” increase
the confidence of assertion “Pope is a Person” Another kind of feature utilizes role
information, which we borrowed from [2]. For example, several individuals are linked
with Pope by role beatifiedBy, and from the dataset, beatifiedBy is always
connected with a Person, then “Pope is a Person” is more probable. To summarize,
the main contributions of this paper are to:

— study the novel problem of noisy type assertion detection in semantic web datasets;

— formalize the noisy type assertion detection problem as a multiclass classification
problem for the first time;

— propose various effective compatibility metrics that incorporate both concept and
role relationships.

The rest of the paper is organized as follows. Section 2 describes decision tree (C4.5)
and Adaboost classification algorithm. In Section 3, we motivate the approach in sec-
tion 3.1 by analyzing the co-occurrence data in DBpedia, and then we formalize the
research problem and introduce the framework. Section 4 details the approach focusing
on the features. The experimental results are presented in section 5. Section 6 introduces
related work, and section 7 concludes the paper and gives future works.

2 In DBpedia 3.9 there are 17 individuals belonging to both Person and Place.
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2 Decision Tree and Adaboost

We use Adaboost as the meta classifier with C4.5, a popular decision tree algorithm, as
the base classifier. Decision tree (DT) is a set of if-then rules representing a mapping
between data features and labels. Each internal node in a DT indicates a feature, and
each leaf node represents a label. We adopt DT as the base classifier for the following
reasons: (1) DT is a white-box model, which is easy to be understood and interpreted;
(2) Rule is the suitable representation for the features proposed in this paper.

DTs can be inductively learned from training data. C4.5 is a popular DTs learning
algorithm [7]. It builds decision trees from a set of training data using information
entropy by divide-and-conquer. At each node of the tree, C4.5 chooses the attribute of
the data that most effectively splits the examples into subsets by normalized information
gain. The attribute with the highest normalized information gain is chosen. The initial
tree is then pruned to avoid overfitting [8].

In order to improve the performance of classification algorithms, boosting iteratively
learns a single strong learner from a set of base learners. There are many variations
of boosting algorithms varying in their method for weighting training data and classi-
fiers. Adaboost [9] uses an optimally weighted majority vote of meta classifiers. More
concretely, the impact on the vote of base classifiers with small error rate is intensi-
fied by increasing their weights. The label of a data instance is predicted by the linear
combination of meta classifiers, in our case, DTs, as follows:

M
T(z) = amTm(z) (1)

where M DTs are learned, c,, is the weight of the mth DT, and T,,,(z) is the output of
the mth DT.

3 Approach

In this section, we firstly motivate our approach by a co-occurrence analysis on DBpe-
dia. Then we formalize the research problem and describe the framework.

3.1 Co-occurrence Analysis on DBpedia

Before we analyse the co-occurrence on DBpedia, we first give the definition of co-
occurrence matrices as follows:

Definition 1 (Co-occurrence Matirx). A co-occurrence matrix M is a symmetric ma-
trix defined over a semantic dataset O. Mathematically, a co-occurrence matrix My N
is defined over N concepts C in O, where Mg = |{i|Cs(i) € O and C,(i) € O,Cs €
C,C, € C}|.

We take 90 concepts in DBpedia containing at least 10,000 individuals, and sort them
in descending order in terms of the number of individuals they have. The values in
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Fig. 1. Co-occurrence matrix of the top-90 concepts in terms of individuals they have in DBpedia.
Left shows the co-occurrence values for each pair of concepts. The figure on the right represents
the frequency of co-occurrence values in different scopes.

the co-occurrence matrix are retrieved by executing SPARQL queries as shown in
Section 1.

The left in Fig. 1 shows directly the co-occurrence matrix. We can easily find from
this figure red squares and black circles representing co-occurrence values below 100
and above 10,000. However, the numbers in between, represented by triangles, are quite
rare. The numbers above 10,000 indicate highly overlapped concepts, while the num-
bers below 100, on the other hand, suggest abnormal data. The figure on the right shows
the percentage of co-occurrence numbers varying scopes. Besides the largest amount of
zero filling the co-occurrence matrix, more than half of the other numbers are below
100 (6.69% in 11.29%), which suggests that the amount of abnormal data can not be ig-
nored and the noisy type assertions can be detected from them. If we take a closer look
of the concept pairs sharing less than 100 individuals, we can find, for example, (Person
Place), (Person Work), (Place Work), (Place Athlete) etc. These concepts, according to
human knowledge, should share no individuals at all.

3.2 Problem Definition

We detect noisy type assertions through conflict in the semantic datasets, which is de-
fined as follows:

Definition 2 (Conflict Type Assertions). A pair of type assertions A(i) and B(i) is
called conflict if AN B T 1, written as < i,A, B >, where i is called the target
individual. A conflict < i, A, B > is called full noisy if A(i) and B(i) are both noisy;
1-st half noisy if only A(i) is noisy; < i, A, B > is called 2-nd half noisy if only B(%)
is noisy; It is called fake conflict if none of A(i) and B(i) are noisy.

where A B C | means concept A and B are disjoint. Explicitly asserting individuals
to A and B will cause problems, if A1 B = 1. We make use of AN B C | hidden in
the datasets. Without ambiguity, conflict type assertions are called conflicts for short.
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According to the definition of conflict type assertions, noisy type assertion detection
from conflicts can be formalized as a multiclass classification problem.

Definition 3 (Noisy Type Assertion Detection From Conflicts). Given a set of con-
Slict type assertions {< i, A, B >}, the goal of noisy type assertion is to find a classifier
M < i, A, B >— {0,1,2,3} such that M maps the full noisy conflict to class 0, 1-st
half noisy to class 1, 2-nd half noisy to 2, and maps fake conflict to class 3.

The multiclass classification problem can be solved by traditional machine learning
algorithms, which require multidimensional features as the input. In noisy type assertion
detection, we extract a feature vector for each conflict type assertion.

Definition 4 (Feature Vector of Conflict Type Assertions). The n-dimensional fea-
ture vector v of a conflict type assertion < i, A, B > consists of n various compatibility
metrics of individual i with concepts A and B. Dimension v; = d; < i, A, B >, where
d; is the ith compatibility metric function for < i, A, B >.

The feature vector of a conflict type assertion indicates the compatibility of an individ-
ual ¢ and a pair of concepts, which are computed by several metric functions.

3.3 Framework

We observe that (1) due to the dataset enrichment mechanisms or data intrinsic statistics,
when concepts share instances, they generally share a large portion of instances even
compare to the number of instances they have themselves; (2) when two concepts share
a small amount of instances (in another word, the concepts are suggested to be disjoint
according to the data), there tend to be noises inside. Based on these observations, we
propose to identify noisy types from conflict type assertions. The framework contains
the following 5 steps (cf. Fig. 2):

(1) Co-occurrence matrix construction. In this step, we construct the co-occurrence
matrix. The values in the co-occurrence matrix signify the relationship between the cor-
responding concept pair. For example, concepts Person and Place have 17 instances
in common as shown in Fig. 2. Suppose the probability of concepts A and B being dis-
joint PLANB C 1)is1— P(ANB) =1— [{a|A(a) € O,B(a) € O,T(a) €
O}/{a|T(a) € O}, O is the semantic dataset. If the cooccurrence is very small, the
probability that the related concepts being disjoint is relatively large. If we are confident
about them being disjoint, then the assertions of instances belonging to both concepts
contain problems. The calculation of co-occurrence matrix includes executing N x N/2
SPARQL queries, where N is the number of concepts in the dataset.

(2) Conflict type assertion generation. Based on the cooccurrence matrix and by
setting threshold, we generate disjoint concepts. By querying the dataset for list of
instances belonging to each pair of disjoint concepts, the conflict type assertions are
generated. For example, instances I (A, B) belong to disjoint concepts A and B, then
Vi € I(A, B), we add the triple < i, A, B > to the conflict set.

(3) Feature extraction. We generate a feature vector for each conflict type assertion.
The details of the compatibility metrics are described in Section 4. We cache all inter-
mediate statistics required to calculate the metrics in a local relational database. Scan
the relational database once will get the feature vectors.
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(4) Classification algorithm. We use Adaboost with C4.5, a well-known classifica-
tion algorithm, as the base learner to classify the conflicts.

(5) Classification results. From the classification results, which contain conflicts be-
longing to class 0, 1, 2, and 3, we output the final noisy type assertions by seperating
conflict with class O into two noisy type assertions, output conflicts with class 1 or 2
into one noisy type assertion. To be specific, suppose the conflict is < i, A, B >, if its
label is 0, A(7) and B(%) are added to the final results; if its label is 1, A(7) is added,
and similarly, if the label of the conflict is 2, B(%) is added.

- | Place :
W | 11472369 1123178 738 0 22
Person | 1124388 17 0 13

| 754415 0 531227 ..
1. Co-occurrence Matrix Construction } ,,,,,,,,,,, | . :

1. Thumbnail : Person , Place
2. Conflict Type Assertion Genemtlon} o _______2Ciuix : Artist , Company

3. Moselle River: Place , Event

4. Clout (band) : Organisation, Musical Artist

3.0 0.677 0.298 0.636 17
2 1.9600.590 0 0 2
2 5.7010.590 0 0 6
0 08570 0.477 0.516 950

{

4. Classification Algorithms J

NS

1. Thumbnail : Person , Place

2. Citrix : Artist , Company
5. Classification Results }

0

1

————————————— 3. Moselle River: Place , Event 2
4. Clout (band) : Organisation, MusicalArtist 3

[ 3. Feature Extraction } ,,,,,,,,,,,,, 1. 2
.5

7

[ 1

Results Person(Thumbnail)  Place(Thumbnail)
Artist(Citrix) Event(Moselle River)

Fig. 2. Overview of the framework

4 Feature Extraction

The compatibility metrics in the feature vector of a conflict type assertion are based
on the type assertions and property assertions of the target individual. In this section,
we first introduce the weight functions of predicates. Then we describe the details of
compatibility metrics in the feature vector.

4.1 Weighted Predicates

The importance of predicates (concepts or roles) playing in classifying conflicts may
be different, especially in imbalanced datasets where the number of individuals belong-
ing to different concepts are not approximately equally distributed. Paulheim and Bizer
([2]) defined weight of object properties. In this paper, we extend the weight to predi-
cates defined as follows:
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w,:= Y (P(C)-P(Clp)) )

all concepts ¢

where
, _Jp if p is a concept;
p= dp.T if p is an object property.
and P(C) = |{a|C(a) € O}|/{a|T(a) € O}, O is the dataset. Additionally, the
weight of concept Jp. T is written as wp, and the weight of Ip™. T is written as w,,-.

4.2 Compatibility Metrics

We motivate the first kind of features by the following example.

Example 1 Revisited. Let us consider the conflict <Pope, Person, Place>.We
want to use compatibility metrics to characterize individual Pope with respect to con-
cept Person and Place. In the dataset, besides Person and Place, Pope also
belongs to Agent. We know that Person is subsumed by Agent, and Place is
not. Then we are more confident about "Pope is a Person”. We simply compute the
number of concepts of this kind, such as Agent, and call this feature supSup (super
support), as shown in Table 1, where A =1 A’ means A is indirectly subsumed by A’.
Similarly, PopeisaCleric” and "Cleric is subsumed by Person also increases
the confidence of "Pope is a Person”. Based on the subsumed concepts, we define the
feature subSup (subclass support). Another feature is calculated based on the equivalent
concepts (equivSup), such as Pope is asserted to be of type a : Person, an equivalent
class of Person. This kind of features is called plain concept related features. The cal-
culation of the concept related features includes transitive subsumption relationships,
which can be achieved for example from Virtuoso by:

SELECT count (?x) AS ?count WHERE{{

SELECT * WHERE {dbpedia:i a ?X.
{?x rdf:type ?y.} UNION
{?x owl:equivalentClass ?y.} UNION
{7y owl:equivalentClass ?x.}}}

OPTION (transitive, t distinct, tin (?x), tout (?y)).
FILTER (?y=dbpedia-owl:A)}

However, the contributions of predicates can be different, as we discussed in Sec-
tion 4.1. We propose two kinds of features to incorporate the differences. Firstly we
simply compute the linear combination of all weights of the predicates related to the
target individual by setting the coefficients to be 1. This kind is called simple weighted
concept related features. Let us consider the following cases to motivate the second
kind: Cleric is subsumed by Person and a: Person is equivalent with Person.
If the individuals belonging to concept Person are always of type a: Person, the
contribution of a : Person is lower than that of Cleric in classifying conflict <i,
Person, Place>, if there are a lot of differences between individuals belonging
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Table 1. Features used in the classification

Plain concept related features

Name Definition Type
subSup(i, A) [{A'|A’ =t A, and A'(i) € O} numeric
supSup(i, A) H{A|ACtT A, A #T, and A'(i) € O} numeric

equivSup(i, A) [{A/|A" =1 A, and A’ (i) € O} numeric
Simple weighted concept related features

Name Definition Type
simpleWSubSup(i, A) ZA,EJrAYA,(i)EO w4 numeric
simpleWSupSup(i, A) 3" -+ ar ar27 ar(iyeo War numeric
simpleWEquivSup(i, A) ZAEJrA,’A,(i)eO w4 numeric

Weighted concept related features

Name Definition Type

wSubSup(i, A) V1D arc+ A aryeo War(l — P(A'|A)) numeric
i =1/ 4rcsa, a0 (iyeo WAl

wSupSup(i, A) V2D oAt ar arzT,Areo War(l — P(A|A’)) numeric
vy =1/ ZA[JrA’,A’zT,A’(i)EOwA'
Role related features
Name Definition Type
attrSup(i, A) V3> all roles r of i Wr - P(A[Fr.T) numeric
(Paulheim and Bizer [2]) v3 = 1/ > .1 roles r of i Wr

to Cleric and that of Person’s. This is because the type assertion of Pope be-
ing a a:Person probabily due to the mechanisms in constructing the dataset. For
this reason, we propose to give weight to the subclass of concept A, A’, defined as
(1 — P(A’|A)). Similarly the weight of the super class of concept A, A’, is defined

s (1 — P(AJA")). We use the compatibility metric of property assertions as defined
in (Paulheim and Bizer [2]). There will be two numbers in the feature vector for each
metric listed in Table 1. One calculates the compatibility metric of the first concept in
the conflict, and the other one computes the metric of the second concept.

5 Experimental Evaluations

We conduct the evaluations on synthetic datasets and DBpedia. The questions we want
to answer using synthetic datasets are: (1) How does the proposed approach work in
the semantic web context? (2) What are the advantages and drawbacks of the proposed
approach? By applying the proposed method on DBpedia, we show the effectiveness of
the proposed method by manually checking the correctness of the detected triples.

5.1 Experimental Settings

For each experiment, we perform 10-fold cross-validation. We use the precision, recall,
F1 scores defined as follows:
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# correctly detected noisy type assertions

S 3
precision # detected noisy type assertions )
_ 2TPy+ThP + TP, @)

- 2TPy+2FPy+ TP+ FP+ TP, + FP,

# correctly detected noisy type assertions
recall = . . 5
# noisy type assertions

TP+ TP+ TP, ©)

T 9TPy+ 2FNy+ TP, + FN, + TP, + FN,

where T'Py, T' Py, T P, are the number of true positives of label 0, 1, and 2 respectively,
F Py, FPy, FP, are the number of false positives of label 0, 1 and 2, and F' Ny, F'N1,
F' N, are the number of false negatives of label 0, 1 and 2 respectively. F1 score is the
harmonic mean of precision and recall, which is calculated by 2 x Ziiiiiiﬁﬁifiﬂf In
terms of the performance of the classifier, we use average accuracy as the final results.
In terms of the classifier implementation, we use Adaboost and J48 - the Weka 33 im-
plementation of C4.5. We set the weight threshold of Adaboost to 100, and number of
iterations to be 10. We also use resampling. All the experiments are carried out on a

laptop computer with Ubuntu 12.04 64-bit with a i7 CPU, 8 GiB of memory.

Feature Schemes. We use different combinations of features described in this paper in
the evaluations. The details of the compositions are as follows:

CS: use subSup, supSup, and equivSup features;

WCS: use wSubSup, wSupSup features;

SWCS: use simpleWSubSup, simpleWSupSup, and simpleWEquivSup as features;
AS: only use attrSup in the feature vector;

ALL: use all features.

5.2 Evaluations on Synthetic Datasets

In order to control the amount of noise in the synthetic dataset, we construct datasets
containing noises based on LUBM [10] dataset, which is an automatically constructed
dataset without any noises in the assertions. LUBM consists of 43 concepts, 25 object
properties, 36 subClassOf axioms, 6 equivalentClass axioms, 1555 individuals. We use
LUBM in order to get the full control on the noises, and we can also get a benchmark
dataset.

Noise Control Strategy. A type assertion A’(a) can be noisy in the following forms
(suppose the correct assertion is A(a)): (1) A’ intersects with A, (2) A’ and A share no
individuals, and (3) A’ is subsumed by A. To simulate these possibilities, we adopt the
following method: given a pair of classes (X, Y) and a noise level x, an instance with
its label X has a x x 100% chance to be corrupted and mislabeld as Y. We use this method

3 http://www.cs.waikato.ac.nz/ml/weka/
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because in realistic situations, only certain types of classes are likely to be mislabeled.
Using this method, the percentage of the entire training set that is corrupted will be less
than xx 100% because only some pairs of classes are considered problematic. In the
sections below, we construct the following 3 datasets based on LUBM:

RATA: To simulate the noisy type assertion of form (1), we corrupt the individuals of
concept TeachingAssistant with concept ResearchAssistant accord-
ing to the given noise levels.

UGS: To simulate the noisy type assertion of form (2), we corrupt the individuals of
concept GraduateStudent with concept University according to the given
noise levels.

GCC: To simulate the noisy type assertion of form (3), we corrupt the individuals of
concept Course but not GraduateCourse with concept GraduateCourse
according to the given noise levels.

Data Partition Strategy. Semantic web datasets differ from traditional datasets in the
data linkage aspect, which makes data partition different from traditional data partition
methods. We sketched the details of partition method used in this paper here, which
prevented the training and testing set from containing uncontrolled amount of individu-
als. The datasets are partitioned by individuals. Given the original dataset, training and
testing set individuals, we try to add all concept and property assertions related to the in-
dividuals in the corresponding training and testing datasets. Object property assertions
can link individuals to others that are not in the individual set. We ignore these property
assertions in order to maintain the size of the individual set. In each run, the dataset
is randomly divided into a training set and a test set, and we corrupt the training and
testing set by adding noise with the above method, and use the testing set to evaluate
the system performance.

Experimental Results. Fig. 3 shows the evaluation results on the 4 datasets with noise
level 10% - 50% using different feature schemes. From this figure, we find:

— As the noise level grows, we expect to see a decrease in the performance of classi-
fication in all evaluations. However, in many cases, we see an increase. This is be-
cause after we get more noises, the training data is more balanced to the 4 classes.
This is the reason for the increase in the classification performance.

— We may expect the performance better on the disjoint concept pair, a.k.a. UGS.
However, this might not be found from the evaluations. Actually, the evaluations
on concept pair GCC seem to outperform others. Firstly, we corrupted Course in-
dividuals with GraduateCourse types under the condition that the individuals are
not GraduateCourse themselves. Because otherwise we are not confident about the
corruptions generated are really noises. In this way, the GCC pair is similar to pair
UGS. Secondly, in the LUBM dataset, the individuals belonged to Course are less
than that of GraduateStudent. Although the noise levels are the same, but the num-
ber of noisy type assertions in GCC is smaller than that in UGS.

— Applying the proposed approach with [ALL] gets the best results. Especially on
dataset GCC. This indicates that relying solely on concept supports or role sup-
ports is not effective enough. Since in several cases, an individual possibly only has
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Fig. 3. The average accuracy using various feature schemes with different noise levels by setting
thresholds to 30 and 70

concept labels, or only has role links, using one kind of features obviously cannot
get enough information for classification.

— On RATA, the concept intersected pair, and GCC, the concept subsumption pair,
the performance are also quite good.

In Table 2 we demonstrate the performance of the Adaboost with J48 when noise level
is set to be 50%, and the threshold is 70. From this table, we find that in most cases, the
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proposed method is able to detect all noisy type assertions. When using [AS] on RATA
and GCC, we sometimes missed some conflicts, but the precision is still quite high.

Table 2. Precision, recall, and F1 using different feature schemes (FS) when noise level is 50%,
and threshold is 70

RATA UGS GCC
FS  Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CS 1.000 1.000  1.000 1.000 1.000  1.000 1.000 0.933 0.965
WCS 1.000 1.000  1.000 1.000 1.000  1.000 1.000 0.933  0.965
SWCS  1.000 1.000  1.000 1.000 1.000  1.000 1.000 0.933  0.965
AS 1.000 0.867 0.929 1.000 1.000  1.000 1.000 0.867 0.929
ALL 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000  1.000

5.3 Evaluations on DBpedia

We locally maintained a SPARQL endpoint for DBpedia 3.9, which includes newly cre-
ated type inference results with estimated precision of 95%. Please refer to
http://github.com/fresheye/NoDe for the details of packages used in our
server.

The essence of our approach is making use of disjoint concepts, however, not stated
in the DBpedia ontology yet, to discover the noisy type assertions. This idea can be clear
after we look into the frequencies of co-occurrence (the number of instances belonged
to a pair of concepts is the co-occurrence frequency for this pair) in DBpedia. We can
see one extreme from Fig. 1 which depicts the co-occurrence frequency between 1,000
and 1,000,000, that most pairs of concepts share more than 10,000 instances. The other
extreme we can see from Fig. 1 that hundreds of pairs share instances less than 100,
however each of the concepts in this pair has more than 10,000 instances itself. We
manually construct a benchmark dataset with 4067 data instances, including 170 in (0,
10), 40 in [10, 30), 96 in [30, 50), 51 in [50, 70), 90 in [70, 100), 3673 in [100, 800),
and 47 in [800, 1000]

In Fig. 4, we demonstrate the average accuracy of our approach on DBpedia by using
difference thresholds by using [ALL] feature scheme. The “all data” lines represent the
average accuracy by using all examples in the benchmark dataset. The “same data size”
lines show the results of using the same number of examples (170 examples) in the
experiment. From Fig. 4 we find:

— The accuracy grows with the threshold, especially when all data are used. This
shows that more training examples bring us better model to classify the examples.

— The average accuracy of using J48 with Adaboost is normally better than J48 with-
out Adaboost at approximately 3%.

— When we use same amount of examples in experiments, the accuracy also grows
because when the size of the training set grows, the data are more balanced.
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Table 3. Average precision (Prec.), recall (Rec.), and F1 score (F1) on DBpedia by setting thresh-
old to 800

J48 J48(boost)
Feature Precision Recall Fl-score Precision Recall F1-score
CS 0.837 0.831 0.832 0.785 0.782 0.783
WCS 0.768 0.768  0.768 0.844 0.845 0.844
SWCS  0.825 0.824 0.824 0.823 0.824  0.823
AS 0.812 0.761 0.729 0.812 0.761 0.729
ALL 0.936 0.936  0.936 0.956 0.956  0.956

Accuracy(%)
(o] (0] o (e}
~N o = w

o]
(%3]

10 30 50 70 100 800 1000
threshold

)48, all data 148, same data size

J48(boost), all data J48(boost), same data size

Fig. 4. Average accuracy by J48 and J48(boost) on all data and same size of data with [ALL]
feature scheme. Thresholds are set to be 10, 30, 50, 70, 100, 800, and 1000.

We perform the evaluations setting concept disjoint threshold to 800. The evaluation
results are shown in Table 3. From Table 3 we find conclusions similar to that in the
synthetic evaluations. We expected [WCS] to give high level of statistics in terms of
concept support, however the effect of them is limited. Using J48, the best features are
[CS] and [SWCS]. Using Adaboost, [WCS] performs the best. Overall, the best features
in classifying DBpedia are [SWCS] and [AS]. Combining all features together get the
best average F1-score of 95.6%. Table 4 shows some examples of noisy type assertions
can be found by our approach.

6 Related Work

Noise detection was mostly studied in the data mining community in the last decades.
Zhu and Wu [4] presented a systematic evaluation on the impact of concept and role
noises, with a focus on the latter. They concluded (1) Eliminating individuals contain-
ing concept noise will likely enhance the classification accuracy; (2) In comparison
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Table 4. Examples of noises detected in DBpedia 3.9. The namespaces of the header (con-
cepts) are all http://dbpedia.org/ontology/, and the namespaces of the content (instances) are all
http://dbpedia.org/resource/.

ID Agent Person Place
1 Sponge JSON PHI
. England national
2 Kama Xbox Music field hockey team
3 SQL Xbox Video American Beaver
4 Free State Of Saxony Thumbnail URS
5 Duero Automobile Craiova Al-Qaeda
ID PopulatedPlace Settlement Work
1 Eurovision Song Anglican Church of Daugava
Contest 2007 Southern Africa
England national Byzantine Catholic Metropolitan
2 field hockey team Church of Pittsburgh North Coast
3 American Beaver U.S. Highway 84 (Alabama) New York State Library
4 Catholics River Blackwater, Northern Ireland Captain Underpants
5 PHI British House of Commons Goodman School of Drama
ID Organization MusicalWork Artist
1 Longfellow (horse) Mirage Press Citrix
2 Kama South African War Royal Pharmaceutical Society
3 U.S. Geological Survey Daugava Argonne National Laboratory
4 Atlantic ocean North Coast PUC-Rio
5 Juris Doctor National Broadcasting Network KOL
ID Broadcaster RecordLabel SportsTeam
1 MHz Kelin DOS
2 Tate Gallery Velas Coral Springs
3 Louisiana Tech Central Europe Kama
4 TEENick (block) Catskills FSO Warszawa
5 List of Chinese-language Koliba West Point

television channels

with concept noise, the role noise is usually less harmful. One technique often adopted
is voting. Zhu et al. [11] inductively processed partitions of the original dataset; they
evaluated the whole dataset using the selected good rules. They adopt majority and non-
objection threshold schemes to find noises. Miranda et al. [12] used ML classifiers to
make predictions on noisy examples in Bioinfomatics domain. They use majority vot-
ing and non-objection voting to filter out erroneous predictions. They concluded that
non-objection voting was too conservative and majority voting identified low levels of
noise. Kubica and Moore [1] identified corrupted fields, and used the remaining non-
corrupted fields for subsequent modeling and analysis. They learned a probability model
containing components for clean records, noise values, and the corruption process. Reb-
bapragada and Brodley [13] assigned a vector of class membership probabilities to each
training instance, and proposed to use clustering to calculate a probability distribution
over the class labels for each instance. Valizadegan and Tan [14] formulated mislabeled
detection as an optimization problem and introduced a kernel-based approach for filter-
ing the mislabeled examples.
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Noise detection studies have just begun in the semantic web community. Fiirber and
Hepp [5] developed generic SPARQL queries to identify (1) missing datatype proper-
ties or literal values, (2) illegal values, and (3) functional dependency violations. Yu et
al. [6] identified potential erroneous (the degree to which a triple deviates from similar
triples can be an important heuristic for identifying “abnormal triples”) relational de-
scriptions between objects in triples by learning probabilistic rules from the reference
data and checking to what extent these rules agree with the context of triples. Suominen
and Mader [15] analysed the quality of SKOS vocabularies, and proposed heuristics to
correct the problems in the vocabularies. The focus was mainly on syntax level, made
the use of labels consistent for example.

Besides these works dealing with noises detection, type inference works are also re-
lated. Paulheim and Bizer [2] studied type inference on dataset like DBpedia. They use
role links to infer types of individuals, but they do not detect noises. Gangemi et al.
[16] automatically typed DBpedia entities by interpreting natural language definition
of an entity. Lehmann et al. [17] validated facts by a deep fact validation algorithm,
which provided excerpts of webpages to users who create and maintain knowledge
bases. Fanizzi et al. [18] adopted a self-training strategy to iteratively predict instance
labels. Fleischhacker and Volker [19] enriched learned or manually engineered ontolo-
gies with disjointness axioms. dAmato et al. [20] used inductive methods to handle
noises in semantic search.

7 Conclusion and Future Work

In this paper, we study the problem of noisy type assertions, which plays an important
role in the performance of semantic web applications. In large datasets, such as DBpe-
dia, the numbers of type assertions are too large to be processed by most ML classifiers,
we propose a novel approach that transforms the problem into multiclass classification
of a pair of type assertions related to the same individual. We perform evaluations on
both synthetic datasets and DBpedia. From the evaluations, we conclude that: (1) Our
approach can be applicable to most situations where noises exist; (2) The feature com-
position that use both concept knowledge and role knowledge outperforms others by
conducting evaluations using different feature compositions; (3) Our approach is effec-
tive in detecting noisy type assertions in DBpedia with the average precison of 95%.

In the future, we will try to explore the following issues: (1) We will study the im-
pact of noisy types in other assertions in the dataset; (2) We will extend conflict type
assertion extraction to the general type of disjointness, to be specific, the concept in the
disjoint pair may not be atomic. (3) Currently the detected noises are recorded in a local
DB. We will study how to correct them or remove them in the future.
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