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Abstract. While the Semantic Web currently can exhibit provenance informa-
tion by using the W3C PROV standards, there is a “missing link” in connect-
ing PROV to storing and querying for dynamic changes to RDF graphs using
SPARQL. Solving this problem would be required for such clear use-cases as the
creation of version control systems for RDF. While some provenance models and
annotation techniques for storing and querying provenance data originally devel-
oped with databases or workflows in mind transfer readily to RDF and SPARQL,
these techniques do not readily adapt to describing changes in dynamic RDF
datasets over time. In this paper we explore how to adapt the dynamic copy-
paste provenance model of Buneman et al. [2] to RDF datasets that change over
time in response to SPARQL updates, how to represent the resulting provenance
records themselves as RDF in a manner compatible with W3C PROV, and how
the provenance information can be defined by reinterpreting SPARQL updates.
The primary contribution of this paper is a semantic framework that enables the
semantics of SPARQL Update to be used as the basis for a ‘cut-and-paste’ prove-
nance model in a principled manner.

Keywords: SPARQL Update, provenance, versioning, RDF, semantics

1 Introduction

It is becoming increasingly common to publish scientific and governmental data on
the Web as RDF (the Resource Description Framework, a W3C standard for structured
data on the Web) and to attach provenance data to this information using the W3C
PROV standard. In doing so, it is crucial to track not only the provenance metadata,
but the changes to the graph itself, including both its derivation process and a history
of changes to the data over time. Being able to track changes to RDF graphs could, in
combination with the W3C PROV standards and SPARQL, provide the foundation for
addressing the important use-case of creating a Git-like version control system for RDF.

The term provenance is used in several different ways, often aligning with research
in two different communities, in particular the database community and the scientific
workflow community. We introduce some terminology to distinguish different uses of
the term. There is a difference between static provenance that describes data at a given
point in time versus dynamic provenance that describes how artifacts have evolved over
time. Second, there is a difference between provenance for atomic artifacts that expose
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no internal structure as part of the provenance record, versus provenance for collections
or other structured artifacts. The workflow community has largely focused on static
provenance for atomic artifacts, whereas much of the work on provenance in databases
has focused on dynamic provenance for collections (e.g. tuples in relations). An exam-
ple of static provenance would be attaching the name of an origin and time-stamp to a
set of astronomical RDF data. Thus static provenance can often be considered metadata
related to provenance. Currently the W3C PROV data model and vocabulary [15], pro-
vides a standard way to attach this provenance, and other work such as PROV-AQ [13]
provides options for extracting this metadata by virtue of HTTP.

An example of dynamic provenance would be given by a single astronomical data-
set that is updated over time, and then if some erroneous data was added at a particular
time, the data-set could be queried for its state at a prior time before the erroneous data
was added so the error could be corrected. Thus dynamic provenance can in some cases
be reduced to issues of history and version control. Note that static and dynamic prove-
nance are not orthogonal, as we can capture static provenance metadata at every step of
recording dynamic provenance. The W3C Provenance Working Group has focused pri-
marily on static provenance, but we believe a mutually beneficial relationship between
the W3C PROV static provenance and SPARQL Update with an improved provenance-
aware semantic model will allow dynamic provenance capabilities to be added to RDF.
While fine-grained dynamic provenance imposes overhead that may make it unsuited
to some applications, there are use-cases where knowing exactly when a graph was
modified is necessary for reasons of accountability, including data-sets such as private
financial and public scientific data.

1.1 Related Literature

The workflow community has largely focused on declaratively describing causality or
derivation steps of processes to aid repeatability for scientific experiments, and these re-
quirements have been a key motivation for the Open Provenance Model (OPM) [17,18],
a vocabulary and data model for describing processes including (but certainly not lim-
ited to) runs of scientific workflows. OPM is important in its own right, and has become
the foundation for the W3C PROV data model [19]. The formal semantics of PROV
have been formalized, but do not address the relationship between the provenance and
the semantics of the processes being described [7]. However, previous work on the se-
mantics of OPM, PROV, and other provenance vocabularies focuses on temporal and
validity constraints [14] and does not address the meaning of the processes being rep-
resented — one could in principle use them either to represent static provenance for
processes that construct new data from existing artifacts or to represent dynamic prove-
nance that represents how data change over time at each step, such as needed by version
control systems. Most applications of OPM seem to have focused on static provenance,
although PROV explicitly grapples with issues concerning representing the provenance
of objects that may be changing over time, but does not provide a semantics for storing
and querying changes over time. Our approach to dynamic provenance is complemen-
tary to work on OPM and PROV, as we show how any provenance metadata vocabulary
such as the W3C PROV ontology [15] can be connected directly to query and update



languages by presenting a semantics for a generalized provenance model and showing
how this builds upon the formal semantics of the query and update languages.

Within database research, complex provenance is also becoming increasingly seen
as necessary, although the work has taken a different turn than that of the workflow com-
munity. Foundational work on provenance for database queries distinguishes between
where-provenance, which is the “locations in the source databases from which the data
was extracted,” and why-provenance, which is “the source data that had some influence
on the existence of the data” [4]. Further, increasing importance is being placed on
how-provenance, the operations used to produce the derived data and other annotations,
such as who precisely produced the derived data and for what reasons. There is less
work considering provenance for updates; previous work on provenance in databases
has focused on simple atomic update operations: insertion, deletion, and copy [2]. A
provenance-aware database should support queries that permit users to find the ultimate
or proximate ‘sources’ of some data and apply data provenance techniques to under-
stand why a given part of the data was inserted or deleted by a given update. There is
considerable work on correct formalisms to enable provenance in databases [9]. This
work on dynamic provenance is related to earlier work on version control in unstruc-
tured data, a classic and well-studied problem for information systems ranging from
source code management systems to temporal databases and data archiving [23]. Ver-
sion control systems such as CVS, Subversion, and Git have a solid track record of
tracking versions and (coarse-grained) provenance for text (e.g. source code) over time
and are well-understood in the form of temporal annotations and a log of changes.

On the Semantic Web, work on provenance has been quite diverse. There is widely
implemented support for named graphs, where each graph G is identified with a name
URI [6], and as the new RDF Working Group has standardized the graph name in the
semantics, the new standards have left the practical use of such a graph name under-
defined; thus, the graph name could be used to store or denote provenance-related infor-
mation such as time-stamps. Tackling directly the version control aspect of provenance
are proposals such as Temporal RDF [10] for attaching temporal annotations and a
generalized Annotated RDF for any partially-ordered sets already exist [25,16]. How-
ever, by confining provenance annotations to partially-ordered sets, these approaches do
not allow for a (queryable) graph structure for more complex types of provenance that
include work such as the PROV model. Static provenance techniques have been inves-
tigated for RDFS inferences [5,8,20] over RDF datasets. Some of this work considers
updates, particularly Flouris et al. [8], who consider the problem of how to maintain
provenance information for RDFS inferences when tuples are inserted or deleted using
coherence semantics. Their solution uses ‘colouring’ (where the color is the URI of the
source of each triple) and tracking implicit triples [8].

Understanding provenance for a language requires understanding the ordinary se-
mantics of the language. Arenas et al. formalized the semantics of SPARQL [21,1], and
the SPARQL Update recommendation proposes a formal model for updates [22]. Horne
et al. [12] propose an operational semantics for SPARQL Updates, which however dif-
fers in some respects from the SPARQL 1.1 standard and does not deal with named
graphs.



1.2 Overview

In this paper, we build on Arenas et al.’s semantics of SPARQL [21,1] and extend it
to formalize SPARQL Update semantics (following a denotational approach similar to
the SPARQL Update Formal Model [22]). Then, as our main contribution, we detail a
provenance model for SPARQL queries and updates that provides a (queryable) record
of how the raw data in a dataset has changed over time. This change history includes
a way to insert static provenance metadata using a full-scale provenance ontology such
as PROV-O [15].

Our hypothesis is that a simple vocabulary, composed of insert, delete, and copy op-
erations as introduced by Buneman et al. [2], along with explicit identifiers for update
steps, versioning relationships, and metadata about updates provides a flexible format
for dynamic provenance on the Semantic Web. A primary advantage of our methodol-
ogy is it keeps the changes to raw data separate from the changes in provenance meta-
data, so legacy applications will continue to work and the cost of storing and providing
access to provenance can be isolated from that of the raw data. We will introduce the
semantics of SPARQL queries, then our semantics for SPARQL updates, and finally
describe our semantics for dynamic provenance-tracking for RDF graphs and SPARQL
updates. To summarize, our contributions are an extension to the semantics of SPARQL
Update that includes provenance semantics to handle dynamic semantics [21,1] and a
vocabulary for representing changes to RDF graphs made by SPARQL updates, and a
translation from ordinary SPARQL updates to provenance-aware updates that record
provenance as they execute.

2 Background: Semantics of SPARQL Queries

We first review a simplified (due to space limits) version of Arenas et. al.’s formal se-
mantics of SPARQL [21,1]. Note that this is not original work, but simply a necessary
precursor to the semantics of SPARQL Update and our extension that adds provenance
to SPARQL Update. The main simplification is that we disallow nesting other opera-
tions such as ., UNION, etc. inside GRAPHA {. . .} patterns. This limitation is inessential.

Let Lit be a set of literals (e.g. strings), let Id be a set of resource identifiers, and let
Var be a set of variables usually written ?X . We write Atom = Lit ∪ Id for the set of
atomic values, that is literals or ids. The syntax of a core algebra for SPARQL discussed
in [1] is as follows:

A ::= ` ∈ Lit | ι ∈ Id | ?X ∈ Var

t ::= 〈A1 A2 A3〉
C ::= {t1, . . . , tn} | GRAPH A {t1, . . . , tn} | C C ′

R ::= BOUND(?x) | A = B | R ∧R′ | R ∨R′ | ¬R
P ::= C | P . P ′ | P UNION P ′ | P OPT P ′ | P FILTER R

Q ::= SELECT ?X WHERE P | CONSTRUCT C WHERE P

Here, C denotes basic graph (or dataset) patterns that may contain variables; R
denotes conditions; P denotes patterns, and Q denotes queries. We do not distinguish



between subject, predicate and object components of triples, so this is a mild generaliza-
tion of [1], since SPARQL does not permit literals to appear in the subject or predicate
position or as the name of a graph in the GRAPH A {P} pattern, although the formal
semantics of RDF allows this and the syntax may be updated in forthcoming work on
RDF. We also do not consider blank nodes, which pose complications especially when
updates are concerned, and we instead consider them to be skolemized (or just replaced
by generic identifiers), as this is how most implementations handle blank nodes. There
has been previous work giving a detailed treatment of the problematic nature of blank
nodes and why skolemization is necessary in real-world work.

The semantics of queries Q or patterns P is defined using functions from graph
stores D to sets of valuations µ. A graph store D = (G, {gi 7→ G1 . . . , gn 7→ Gn})
consists of a default graph G0 together with a mapping from names gi to graphs Gi.
Each such graph is essentially just a set of ground triples. We often refer to graph stores
as datasets, although this is a slight abuse of terminology.

We overload set operations for datasets, e.g. D ∪ D′ or D \ D′ denotes the dataset
obtained by unioning or respectively subtracting the default graphs and named graphs of
D andD′ pointwise. If a graph g is defined inD and undefined inD′, then (D∪D′)(g) =
D(g) and similarly if g is undefined in D and defined in D′ then (D ∪D′)(g) = D′(g);
if g is undefined in both datasets then it is undefined in their union. For set difference,
if g is defined in D and undefined in D′ then (D \ D′)(g) = D(g); if g is undefined in
D then it is undefined in (D \ D′). Likewise, we define D ⊆ D′ as D′ = D ∪D′.

A valuation is a partial function µ : Var ⇀ Lit ∪ Id. We lift valuations to functions
µ : Atom ∪ Var→ Atom as follows:

µ(?X) = µ(X)

µ(a) = a a ∈ Atom

that is, if A is a variable ?X then µ(A) = µ(X) and otherwise if A is an atom then
µ(A) = A. We thus consider all atoms to be implicitly part of the domain of µ. Fur-
thermore, we define µ applied to triple, graph or dataset patterns as follows:

µ(〈A1 A2 A3〉) = 〈µ(A1) µ(A2) µ(A3)〉
µ({t1, . . . , tn}) = ({µ(t1), . . . , µ(tn)}, ∅)

µ(GRAPH A {t1, . . . , tn}) = (∅, {µ(A) 7→ {µ(t1), . . . , µ(tn)}})
µ(C C ′) = µ(C) ∪ µ(C ′)

where, as elsewhere, we define D ∪D′ as pointwise union of datasets.

The conditions R are interpreted as three-valued formulas over the lattice L =
{true, false, error}, where false ≤ error ≤ true, and ∧ and ∨ are minimum
and maximum operations respectively, and ¬true = false, ¬false = true, and



¬error = error. The semantics of a condition is defined as follows:

JBOUND(?X)Kµ =

{
false if ?X 6∈ dom(µ)
true if ?X ∈ dom(µ)

JA = BKµ =

error if {A,B} 6⊆ dom(µ)
true if µ(A) = µ(B) where A,B ∈ dom(µ)
false if µ(A) 6= µ(B) where A,B ∈ dom(µ)

J¬RKµ = ¬JRKµ
JR ∧R′Kµ = JRKµ ∧ JR′Kµ
JR ∨R′Kµ = JRKµ ∨ JR′Kµ

We write µ |= R to indicate that JRK = true.
We say that two valuations µ, µ′ are compatible (or write µ compat µ′) if for all

variables x ∈ dom(µ) ∩ dom(µ′), we have µ(x) = µ′(x). Then there is a unique
valuation µ ∪ µ′ that behaves like µ on dom(µ) and like µ′ on dom(µ′). We define the
following operations on sets of valuations Ω.

Ω1 1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 compat µ2}
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}
Ω1 \Ω2 = {µ ∈ Ω1 |6 ∃µ′ ∈ Ω2.µ compat µ′}
Ω1 oΩ2 = (Ω1 1 Ω2) ∪ (Ω1 \Ω2)

Note that union is the same as ordinary set union, but difference is not, since Ω1 \ Ω2

only includes valuations that are incompatible with all those in in Ω2.
Now we can define the meaning of a pattern P in a dataset D as a set of valuations

JP KD, as follows:

JCKD = {µ | dom(µ) = vars(C) and µ(C) ⊆ D}
JP1 . P2KD = JP1KD 1 JP2KD

JP1 UNION P2KD = JP1KD ∪ JP2KD
JP1 OPT P2KD = JP1KD o JP2KD

JP FILTER RKD = {µ ∈ JP KD | µ |= R}

Note that, in contrast to Arenas et al.’s semantics for SPARQL with named graphs [1],
we do not handle GRAPH A {. . .} patterns that contain other pattern operations such as
. or UNION, and we do not keep track of the “current graph” G. Instead, since graph
patterns can only occur in basic patterns, we can build the proper behavior of pattern
matching into the definition of µ(C), and we select all matches µ such that µ(C) ⊆ D
in the case for JCKD.

Finally, we consider the semantics of selection and construction queries. A selection
query has the form SELECT ?X WHERE P where ?X is a list of distinct variables. It
simply returns the valuations obtained by P and discards the bindings of variables not
in X . A construction query builds a new graph or dataset from these results. Note that
in SPARQL such queries only construct anonymous graphs; here we generalize in order



to use construction queries to build datasets that can be inserted or deleted.

JSELECT ?X WHERE P KD = {µ|X | µ ∈ JP KD}

JCONSTRUCT C WHERE P KD =
⋃
{µ(C) | µ ∈ JP KD}

Here, note that µ|X stands for µ restricted to the variables in the list X .

We omit discussion of the FROM components of queries (which are used to initialize
the graph store by pulling data in from external sources) or of the other query forms
ASK, and DESCRIBE, as they are described elsewhere [1] in a manner coherent with
our approach.

3 The Semantics of SPARQL Update

We will describe the semantics of the core language for atomic updates, based upon [22]:

U ::= INSERT {C} WHERE P | DELETE {C} WHERE P
| DELETE {C} INSERT {C ′} WHERE P | LOAD g INTO g′ | CLEAR g
| CREATE g | DROP g | COPY g TO g′ | MOVE g TO g′ | ADD g TO g′

We omit the INSERT DATA and DELETE DATA forms since they are definable in terms
of INSERT and DELETE.

SPARQL Update [22] specifies that transactions consisting of multiple updates
should be applied atomically, but leaves some semantic questions unresolved, such as
whether aborted transactions have to roll-back partial changes. It also does not specify
whether updates in a transaction are applied sequentially (as in most imperative lan-
guages), or using a snapshot semantics (as in most database update languages). Both
alternatives pose complications, so in this paper we focus on transactions consisting of
single atomic updates.

We model a collection of named graphs as a dataset D, as for SPARQL queries.
We consider only a single graph in isolation here, and not the case of multiple named
graphs that may be being updated concurrently. The semantics of an update operation
u on dataset D is defined as JUKD.



The semantics of a SPARQL Update U in dataset D is defined as follows:

JDELETE {C} WHERE P KD = D \ JCONSTRUCT C WHERE P KD
JINSERT {C} WHERE P KD = D ∪ JCONSTRUCT C WHERE P KD

JDELETE {C} INSERT {C ′} WHERE P KD = (D \ JCONSTRUCT C WHERE P KD)
∪ JCONSTRUCT C ′ WHERE P KD

JLOAD g1 INTO g2KD = D[g2 := D(g1) ∪ D(g2)]
JCLEAR gKD = D[g := ∅]

JCREATE gKD = D ] {g 7→ ∅}
JDROP gKD = D[g := ⊥]

JCOPY g1 TO g2KD =

{
D[g2 := D(g1)] if g1 6= g2
D otherwise

JMOVE g1 TO g2KD =

{
D[g2 := D(g1), g1 := ⊥] if g1 6= g2
D otherwise

JADD g1 TO g2KD = D[g2 := D(g1) ∪ D(g2)]

Here, D[g := G] denotes D updated by setting the graph named g to G, and D[g := ⊥]
denotesD updated by making g undefined, and finallyD] [g := G] denotesD updated
by adding a graph named g with value G, where g must not already be in the domain of
D. Set-theoretic notation is used for graphs, e.g.G∪G′ is used for set union andG\G′

for set difference, and ∅ stands for the empty graph. Note that the COPY g TO g′ and
MOVE g TO g′ operations have no effect if g = g′. Also, observe that we do not model
external URI dereferences, and the LOAD g INTO g′ operation (which allows g to be an
external URI) behaves exactly as ADD g TO g′ operation (which expects g to be a local
graph name).

4 Provenance semantics

A single SPARQL update can read from and write to several named graphs (and possi-
bly also the default graph). For simplicity, we restrict attention to the problem of track-
ing the provenance of updates to a single (possibly named) RDF graph. All operations
may still use the default graph or other named graphs in the dataset as sources. The
general case can be handled using the same ideas as for a single anonymous graph, only
with more bureaucracy to account for versioning of all of the named graphs managed
in a given dataset.

A graph that records all the updates of triples from a given graph g is considered a
provenance graph for g. For each operation, a provenance record is stored that track of
the state of the graph at any given moment and their associated metadata. The general
concept is that in a fully automated process one should be able to re-construct the state
of the given graph at any time from its provenance graph by following the SPARQL
queries and metadata given in the provenance records for each update operation tracked.
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Fig. 1. Example provenance graph

We model the provenance of a single RDF graph G that is updated over time as a
set of history records, including the special provenance graph named prov which con-
sists of indexed graphs for each operation such as G_v0,. . . ,G_vn and G_u1. . . ,G_um.
These provenance records are immutable; that is, once they have been created and ini-
tialized, the implementation should fixed so that their content cannot be changed. The
index of all provenance records then is also strictly linear and consistent (i.e. non-
circular), although branching could be allowed. They can be stored as a special im-
mutable type in the triple-store. Intuitively, G_vi is the named graph showing G’s
state in version i and G_ui is another named graph showing the triples inserted into or
deleted from G by update i. An example illustration is given in Figure 1.

The provenance graph of named graph G includes several kinds of nodes and edges:

– G_vi upd:version G_vi+1 edges that show the sequence of versions. When-
ever a upd:version link is added between G_vi and G_vi+1, a backlink called
upd:prevVersion between G_vi+1 and G_vi;

– nodes u1,. . . ,un representing the updates that have been applied to G, along with
a upd:type edge linking to one of upd:insert, upd:delete, upd:load,
upd:clear, upd:create, or upd:drop.

– For all updates except create, an upd:input edge linking ui to G_vi.
– For all updates except drop, an upd:output edge linking ui to G_vi+1.
– For insert and delete updates, an edge ui upd:data G_ui where G_ui is a

named graph containing the triples that were inserted or deleted by ui.



– Edges ui upd:source n linking each update to each named graph n that was
consulted by ui. For an insert or delete, this includes all graphs that were consulted
while evaluatingP (note that this may only be known at run time); for a load update,
this is the name of the graph whose contents were loaded; create, drop and clear
updates have no sources.

– Additional edges from ui providing metadata for the update (such as author, com-
mit time, log message, or the source text of the update); possibly using a standard
vocabulary such as Dublin Core, or using OPM or PROV vocabulary terms.
Note that this representation does not directly link triples in a given version to places

from which they were “copied” as it only contains the triples directly concerning the
update in the history record. However, each history record in combination with the rest
of the history records in the provenance graph does provide enough information to re-
cover previous versions on request. As we store the source text of the update statements
performed by each update in each history record of the provenance graph, we can trace
backwards through the update sequence to to identify places where triples were in-
serted or copied into or deleted from the graph. For queries, we consider a simple form
of provenance which calculates a set of named graphs “consulted” by the query. The set
of sources of a pattern or query is computed as follows:

SJCKD =
⋃
{namesµ(C) | µ ∈ JCKD}

SJP1 . P2KD = SJP1KD ∪ SJP2KD
SJP1 UNION P2KD = SJP1KD ∪ SJP2KD
SJP1 OPT P2KD = SJP1KD ∪ SJP2KD
SJP FILTER RKD = SJP KD

SJSELECT ?X WHERE P KD = SJP KD
SJCONSTRUCT C WHERE P KD = SJP KD

where the auxiliary function namesµ(C) collects all of the graph names occurring in a
ground basic graph pattern C:

namesµ({t1, . . . , tn}) = {DEFAULT}
namesµ(GRAPH A {t1, . . . , tn}) = {µ(A)}

namesµ(C C ′) = namesµ(C) ∪ namesµ(C
′)

Here, we use the special identifier DEFAULT as the name of the default graph; this can
be replaced by its URI.

The SJP KD function produces a set S of graph identifiers such that replaying JQKD|S =
JQKD, where D|S is D with all graphs not in S set to ∅ (including the default graph if
DEFAULT /∈ S). Intuitively, S identifies graphs that “witness” Q, analogous to why-
provenance in databases [4]. This is not necessarily the smallest such set; it may be an
overapproximation, particularly in the presence of P1 OPT P2 queries [24]. Alterna-
tive, more precise notions of source (for example involving triple-level annotations [8])
could also be used.

We define the provenance of an atomic update by translation to a sequence of up-
dates that, in addition to performing the requested updates to a given named graph, also



constructs some auxiliary named graphs and triples (provenance record) in a special
named graph for provenance information called prov (the provenance graph). We ap-
ply this translation to each update posed by the user, and execute the resulting updates
directly without further translation. We detail how provenance information should be
attached to each SPARQL Update operation.

We consider simple forms of insert and delete operations that target a single, stati-
cally known, named graph g; full SPARQL Updates including simultaneous insert and
delete operations can also be handled. In what follows, we write “(metadata)” as a
placeholder where extra provenance metadata (e.g. time, author, etc. as in Dublin Core
or further information given by the PROV vocabulary [15]) may be added. DROP com-
mands simply end the provenance collection, but previous versions of the graph should
still be available.

– A graph creation of a new graph CREATE g is translated to

CREATE g;
CREATE g v0;
INSERT DATA {GRAPH prov {
〈g version g v0〉, 〈g current g v0〉,
〈u1 type create〉, 〈u1 output g v0〉,
〈u1 metami〉, (metadata)
}}

– A drop operation (deleting a graph) DROP g is handled as follows, symmetrically to
creation:

DROP g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈ui type drop〉, 〈ui input g vi〉,
〈ui metami〉, (metadata)

}}

where g vi is the current version of g. Note that since this operation deletes g, after
this step the URI g no longer names a graph in the store; it is possible to create a
new graph named g, which will result in a new sequence of versions being created
for it. The old chain of versions will still be linked to g via the version edges, but
there will be a gap in the chain.

– A clear graph operation CLEAR g is handled as follows:

CLEAR g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type clear〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui metami〉,
(metadata)

}}



– A load graph operation LOAD h INTO g is handled as follows:

LOAD h INTO g;
DELETE WHERE {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui type load〉, 〈ui input g vi〉,
〈ui output g vi+1〉, 〈ui source hj〉,
〈ui metami〉, (metadata)

}}

where hj is the current version of h. Note that a load will not create any new graphs
because both the source and target should already exist. If no target exists, a new
graph is created as outlined above with using the create operation.

– An insertion INSERT {GRAPH g {C}} WHERE P is translated to a sequence of up-
dates that creates a new version and links it to URIs representing the update, as
well as links to the source graphs identified by the query provenance semantics and
a named graph containing the inserted triples:

CREATE g ui;
INSERT {GRAPH g ui {C}} WHERE P ;
INSERT {GRAPH g {C}} WHERE P ;
CREATE g vi+1;
LOAD g INTO g vi+1;
DELETE DATA {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type insert〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui metami〉, (metadata)}}

where s1, . . . , sm are the source graph names of P .
– A deletion DELETE {GRAPH g {C}} WHERE P is handled similarly to an insert,

except for the update type annotation.

CREATE g ui;
INSERT {GRAPH g ui {C}} WHERE P ;
DELETE {GRAPH g {C}} WHERE P ;
CREATE g vi+1;
LOAD g INTO g vi+1;
DELETE DATA {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉, 〈g current g vi+1〉,
〈ui input g vi〉, 〈ui output g vi+1〉,
〈ui type delete〉, 〈ui data g ui〉
〈ui source s1〉, . . . , 〈ui source sm〉,
〈ui metami〉, (metadata)}}



Note that we still insert the deleted tuples into the g ui.
– The DELETE {C} INSERT {C ′} WHERE P update can be handled as a delete fol-

lowed by an insert, with the only difference being that both update steps are linked
to the same metadata.

– The COPY h TO g, MOVE h TO g, and ADD h TO g commands can be handled similarly
to LOAD h INTO g; the only subtlety is that if g = h then these operations have no
visible effect, but the provenance record should still show that these operations
were performed.

Our approach makes a design decision to treat DELETE {C} INSERT {C ′} WHERE P
as a delete followed by an insert. In SPARQL Update, the effect of a combined delete–
insert is not the same as doing the delete and insert separately, because both phases of
a delete–insert are evaluated against the same data store before any changes are made.
However, it is not clear that this distinction needs to be reflected in the provenance
record; in particular, it is not needed to ensure correct reconstruction. Moreover, the
connection between the delete and insert can be made explicit by linking both to the
same metadata, as suggested above. Alternatively, the deletion and insertion can be
treated as a single compound update, but this would collapse the distinction between
the “sources” of the inserted and deleted data, which seems undesirable for use-cases
such as version control.

Also note that our method does not formally take into account tracking the prove-
nance of inferences. This is because of the complex interactions between SPARQL
Update and the large number of possible (RDFS and the many varieties of OWL and
OWL2) inference mechanisms and also because, unlike other research in the area [8],
we do not consider it a requirement or even a desirable feature that inferences be pre-
served between updates. It is possible that an update will invalidate some inferences
or that a new inference regime will be necessary. A simple solution would be that if
the inferences produced by a reasoning procedure are necessary to be tracked with a
particular graph, the triples resulting from this reasoning procedure should be material-
ized into the graph via an insert operation, with the history record’s metadata specifying
instead of a SPARQL Update statement the particular inference regime used. We also
do not include a detailed treatment of blank nodes that takes their semantics as existen-
tial variables, as empirical research has in general shown that blank nodes are generally
used as generic stable identifiers rather than existential variables, and thus can be treated
as simply minting unique identifiers [11].

5 Update Provenance Vocabulary

For the provenance graph itself, we propose the following lightweight vocabulary called
the “Update Provenance Vocabulary” (UPD) given in Table 2. Every time there is a
change to a provenance-enabled graph by SPARQL Update, there is the addition of a
provenance record to the provenance graph using the UPD vocabulary, including infor-
mation such as an explicit time-stamp and the text of the SPARQL update itself. Every
step in the transaction will have the option of recording metadata using W3C PROV vo-
cabulary (or even some other provenance vocabulary like OPM) explicitly given by the
“meta” link in our vocabulary and semantics, with UPD restricted to providing a record



of the ‘cut-and-paste’ operations needed for applications of dynamic provenance like
version control. We align the UPD vocabulary as a specialization of the W3C PROV
vocabulary. A graph (upd:graph) is a subtype of prov:Entity and an update of
a graph (upd:update) is a subtype of prov:Activity. For inverse properties, we
use the inverse names recommended by PROV-O [15].

Name Description PROV Subtype
upd:input Link to provenance record from graph before an update prov:wasUsedBy

upd:output Link from provenance record to a graph after update prov:generated
upd:data Changed data in insert/delete operation prov:wasUsedBy

upd:version Sequential link forward in time between a version of a
graph and an update

prov:hadRevision

upd:prevVersion sequential link backwards in time between a version of
a graph and an update

prov:wasRevisionOf

upd:type Type of update operation (insert, delete, load, clear, cre-
ate, or drop)

prov:type

upd:current Link to most current state of graph prov:hadRevision
upd:source Any other graph that was consulted by the update prov:wasUsedBy
upd:meta Link to any metadata about the graph rdfs:seeAlso
upd:user User identifier (string or URI) prov:wasAttributedTo
upd:text Text of the SPARQL Update Query prov:value
upd:time Time of update to the graph prov:atTime

Fig. 2. Lightweight Update Provenance Vocabulary (UPD)

6 Implementation Considerations

So far we have formalized a logical model of the provenance of a graph as it evolves
over time (which allow us to derive its intermediate versions), but we have not detailed
how to store or query the intermediate versions of a graph efficiently. For any given
graph one should likely store the most up-to-date graph so that queries on the graph
in its present state can be run without reconstructing the entire graph. One could to
simply store the graph G_vi resulting from each update operation in addition to the
provenance record, but this would lead to an explosive growth in storage requirements.
This would also be the case even for the provenance graph if the storage of an aux-
iliary graph G_ui in a provenance record involved many triples, although we allow
this in the UPD vocabulary as it may be useful for some applications. For those op-
erating over large graphs, the contents of the named graphs G_ui that store inserted
or deleted triples can be represented more efficiently by just storing the original graph
and the SPARQL Update statements themselves in each provenance record given by the
upd:text property, and not storing the auxiliary named graphs given by upd:data.

Strategically, one can trade computational expense for storage in provenance, due to
the immutability of the provenance information. A hybrid methodology to ameliorate
the cost of reconstruction of the version of a graph would be to store the graph at various



temporal intervals (i.e. “snapshots”). For small graphs where storage cost is low and
processing cost is high, it would make more sense to store all provenance information
for the entire graph. In situations where the cost of processing is high and storage cost
is low, storing the SPARQL Updates and re-running them makes sense to reconstruct
the graph. In this case, it also makes sense to store “snapshots” of the graph at various
intervals to reduce processing cost. Simulation results for these scenarios are available.3

7 Conclusion

Provenance is a challenging problem for RDF. By extending SPARQL Update, we have
provided a method to use W3C PROV (and other metadata vocabularies) to keep track
of the changes to triple-stores. We formalized this approach by drawing on similar work
in database archiving and copy-paste provenance, which allow us to use SPARQL Up-
date provenance records to reconstruct graphs at arbitrary instances in time. This work
is a first step in addressing the important issue of RDF version control. We hope this will
contribute to discussion of how to standardize descriptions of changes to RDF datasets,
and even provide a way to translate changes to underlying (e.g. relational or XML)
databases to RDF representations, as the same underlying “cut-and-paste” model has
already been well-explored in these kinds of databases [2]. Explorations to adapt this
work to the Google Research-funded DatabaseWiki project, and implementation per-
formance with real-world data-sets is a next step [3]. A number of areas for theoretical
future work remain, including the subtle issue of combining it with RDFS inferences [8]
or special-purpose SPARQL provenance queries [25,16].
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