Skip to main content

Low-Rank Outlier Detection

  • Chapter
  • First Online:
Low-Rank and Sparse Modeling for Visual Analysis

Abstract

In this chapter, we present a novel low-rank outlier detection approach, which incorporates a low-rank constraint into the support vector data description (SVDD) model. Different from the traditional SVDD, our approach learns multiple hyper-spheres to fit the normal data. The low-rank constraint helps us group the complicated dataset into several clusters dynamically. We present both primal and dual solutions to solve this problem, and provide the detailed strategy of outlier detection. Moreover, the kernel-trick used in SVDD becomes unnecessary in our approach, which implies that the training time and memory space could be substantially reduced. The performance of our approach, along with other related methods, was evaluated using three image databases. Results show our approach outperforms other methods in most scenarios.

\(\copyright \) [2014] IEEE. This chapter is reprinted with permission from IEEE. “Locality Linear Fitting One-class SVM with Low-Rank Constraints for Outlier Detection”, International Joint Conference on Neural Networks (IJCNN), 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.R. Bach, Consistency of trace norm minimization. J. Mach. Learn. Res. 9, 1019–1048 (2008)

    MathSciNet  MATH  Google Scholar 

  2. A. Banerjee, P. Burlina, R. Meth, Fast hyperspectral anomaly detection via svdd, in ICIP, vol 4, pp. 101–104 (2007)

    Google Scholar 

  3. D. Barbará, P. Chen, Using the fractal dimension to cluster datasets, in KDD, pp. 260–264 (2000)

    Google Scholar 

  4. V. Barnett, T. Lewis, Outliers in Statistical Data (Wiley, New York, 1994)

    MATH  Google Scholar 

  5. S.D. Bay, M. Schwabacher, Mining distance-based outliers in near linear time with randomization and a simple pruning rule, in KDD, pp. 29–38 (2003)

    Google Scholar 

  6. D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Belmont, 1982)

    MATH  Google Scholar 

  7. M. Breitenbach, G.Z. Grudic, Clustering through ranking on manifolds, in ICML, pp. 73–80 (2005)

    Google Scholar 

  8. J.F. Cai, E.J. Candes, Z.W. Shen, A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. E.J. Candès, X.D. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  10. M. Cha, J.-S. Kim, J.-G. Baek, Density weighted support vector data description. Expert Syst. Appl. 41(7), 3343–3350 (2014)

    Article  Google Scholar 

  11. M. Elahi, K. Li, W. Nisar, X. Lv, H. Wang, Efficient clustering-based outlier detection algorithm for dynamic data stream, in FSKD, vol. 5, pp. 298–304 (2008)

    Google Scholar 

  12. P.-Y. Hao, Y.-H. Lin, A new multi-class support vector machine with multi-sphere in the feature space, in IEA/AIE, pp. 756–765 (2007)

    Google Scholar 

  13. D.M. Hawkins, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Belmont, 1982)

    Google Scholar 

  14. S. Hawkins, H. He, G. J. Williams, R.A. Baxter, Outlier detection using replicator neural networks, in DaWaK, pp. 170–180 (2002)

    Google Scholar 

  15. K.A. Heller, K.M. Svore, A.D. Keromytis, S.J. Stolfo, One class support vector machines for detecting anomalous windows registry accesses, in The Workshop on Data Mining for Computer Security (2003)

    Google Scholar 

  16. W. Jin, A.K.H. Tung, J. Han, Mining top-n local outliers in large databases, in KDD, pp. 293–298 (2001)

    Google Scholar 

  17. A. Koufakou, M. Georgiopoulos, A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data Min. Knowl. Discov. 20(2), 259–289 (2010)

    Article  MathSciNet  Google Scholar 

  18. T. Le, D. Tran, W. Ma, D. Sharma, A theoretical framework for multi-sphere support vector data description, in ICONIP, vol. 2, pp. 132–142 (2010)

    Google Scholar 

  19. T. Le, D. Tran, P. Nguyen, W. Ma, D. Sharma, Proximity multi-sphere support vector clustering. Neural Comput. Appl. 22(7–8), 1309–1319 (2013)

    Article  Google Scholar 

  20. L. Li, S. Li, Y. Fu, Discriminative dictionary learning with low-rank regularization for face recognition, in FG, pp. 1–6 (2013)

    Google Scholar 

  21. S. Li, Y. Fu, Low-rank coding with b-matching constraint for semi-supervised classification, in IJCAI, pp. 1472–1478 (2013)

    Google Scholar 

  22. S. Li, Y. Fu, Robust subspace discovery through supervised low-rank constraints, in SDM (2014)

    Google Scholar 

  23. S. Li, M. Shao, Y. Fu, Locality linear fitting one-class svm with low-rank constraints for outlier detection, in International Joint Conference on Neural Networks (IJCNN) (2014)

    Google Scholar 

  24. S. Li, I.W. Tsang, Maximum margin/volume outlier detection, in ICTAI, pp. 385–392 (2011)

    Google Scholar 

  25. Z.C. Lin, M.M. Chen, L.Q. Wu, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices (Technique Report, UIUC, 2009)

    Google Scholar 

  26. B. Liu, Y. Xiao, L. Cao, Z. Hao, F. Deng, Svdd-based outlier detection on uncertain data. Knowl. Inf. Syst. 34(3), 597–618 (2013)

    Article  Google Scholar 

  27. G.C. Liu, Z.C. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in ICML, pp. 663–670 (2010)

    Google Scholar 

  28. G.C. Liu, S.C. Yan, Latent low-rank representation for subspace segmentation and feature extraction, in ICCV (2011)

    Google Scholar 

  29. H.M. Lukashevich, S. Nowak, P. Dunker, Using one-class svm outliers detection for verification of collaboratively tagged image training sets, in IEEE International Conference on Multimedia and Expo (ICME), pp. 682–685 (2009)

    Google Scholar 

  30. E.J. Pauwels, O. Ambekar, One class classification for anomaly detection: support vector data description revisited, in ICDM, pp. 25–39 (2011)

    Google Scholar 

  31. P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection (Wiley, New York, 1987)

    Book  MATH  Google Scholar 

  32. B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  33. S. Shekhar, C.T. Lu, P. Zhang, Detecting graph-based spatial outliers: algorithms and applications (a summary of results), in KDD, pp. 371–376 (2001)

    Google Scholar 

  34. T. Sim, S. Baker, M. Bsat, The cmu pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  35. D.M.J. Tax, R.P.W. Duin, Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  36. G.J. Williams, R.A. Baxter, H. He, S. Hawkins, L. Gu, A comparative study of rnn for outlier detection in data mining, in ICDM, pp. 709–712 (2002)

    Google Scholar 

  37. Y. Xiao, B. Liu, L. Cao, X. Wu, C. Zhang, Z. Hao, F. Yang, J. Cao, Multi-sphere support vector data description for outliers detection on multi-distribution data, in ICDM Workshops, pp. 82–87 (2009)

    Google Scholar 

  38. B. Zhang, L. Zhang, D. Zhang, L. Shen, Directional binary code with application to polyu near-infrared face database. Pattern Recogn. Lett. 31(14), 2337–2344 (2010)

    Article  Google Scholar 

  39. Y. Zhang, Z. Jiang, L.S. Davis, Learning structured low-rank representations for image classification, in CVPR, pp. 676–683 (2013)

    Google Scholar 

  40. X. Zhou, C. Yang, W. Yu, Automatic mitral leaflet tracking in echocardiography by outlier detection in the low-rank representation, in CVPR, pp. 972–979 (2012)

    Google Scholar 

  41. F. Zhu, N. Ye, W. Yu, S. Xu, G. Li, Boundary detection and sample reduction for one-class support vector machines. Neurocomputing 123, 166–173 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the NSF CNS award 1314484, Office of Naval Research award N00014-12-1-1028, Air Force Office of Scientific Research award FA9550-12-1-0201, and U.S. Army Research Office grant W911NF-13-1-0160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, S., Shao, M., Fu, Y. (2014). Low-Rank Outlier Detection. In: Fu, Y. (eds) Low-Rank and Sparse Modeling for Visual Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-12000-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12000-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11999-1

  • Online ISBN: 978-3-319-12000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics